
Dissertation

Representing and Rendering Distant Objects
for Real-Time Visualization

ausgeführt
zum Zwecke der Erlangung des akademischen Grades

eines Doktors der technischen Wissenschaften

unter der Leitung von
Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Michael Gervautz,
Institut 186 für Computergraphik und Algorithmen,

und unter Mitwirkung von
Univ.-Ass. Dipl.-Ing. Dr.techn. Dieter Schmalstieg

eingereicht
an der Technischen Universität Wien,

Fakultät für Technische Naturwissenschaften und Informatik,

von
Dipl.-Ing. Michael Wimmer,
Matrikelnummer 9225135,

Veronikagasse 42/14,
A-1170 Wien, Österreich,

geboren am 23. Dezember 1973 in Wien.

Wien, im Juni 2001.

Michael Wimmer (PhD Thesis)

Representing and Rendering Distant Objects
for Real-Time Visualization

http://www.cg.tuwien.ac.at/research/vr/urbanviz/
mailto:wimmer@cg.tuwien.ac.at

reviewer:
Michael Gervautz
François X. Sillion
Dieter Schmalstieg

Abstract

Computer graphics is the art of creating believable images. The difficulty in many
applications lies in doing so quickly. Architectural walkthroughs, urban simula-
tion, computer games and many others require high-quality representation of very
large models at interactive update rates. This usually means creating a new image
at least 60 times a second. This is what real-time visualization is about.

This thesis presents two methods to accelerate the rendering of very large vir-
tual environments. Both algorithms exploit a common property of many such
environments: distant objects usually take up a significant amount of computation
time during rendering, but contribute only little to the final image. This thesis
shows how to represent and render distant objects with a complexity proportional
to the image area they cover, and not to their actual complexity. The algorithms
are destined for different scenarios: the first is an online algorithm that carries out
all computation during runtime and does not require precomputation. The second
algorithm makes use of preprocessing to speed up online rendering and to improve
rendering quality.

The first part of the thesis shows an output-sensitive rendering algorithm for
accelerating walkthroughs of large, densely occluded virtual environments using
a multi-stage image-based rendering pipeline. In the first stage of the pipeline,
objects within a certain distance (the near field) are rendered using the traditional
graphics pipeline. In the following stages, the remainder of the scene (the far
field), which consists of all pixels not yet covered by near-field geometry, is ren-
dered by a pixel-based approach using a panoramic image cache, horizon estima-
tion to avoid calculating sky pixels, and finally, ray casting. The time complexity
of the approach does not depend on the total number of primitives in the scene. We
have measured speedups of up to one order of magnitude compared to standard
rendering with view-frustum culling.

In the second part of the thesis, a new data structure for encoding the appear-
ance of a geometric model as seen from a viewing region (view cell) is presented.
This representation can be used in interactive or real-time visualization applica-
tions to replace complex models—especially distant geometry—by an impostor,
maintaining high-quality rendering while cutting down on rendering time. The ap-
proach relies on an object-space sampled representation similar to a point cloud or
a layered depth image, but introduces two fundamental additions to previous tech-
niques. First, the sampling rate is controlled to provide sufficient density across
all possible viewing conditions from the specified view cell. Second, a correct, an-
tialiased representation of the plenoptic function is computed using Monte Carlo
integration. The system therefore achieves high-quality rendering using a simple
representation with bounded complexity.

i

This thesis also contains a comprehensive overview of related work in the
field of real-time visualization, and an in-depth discussion of the advantages and
disadvantages of image-based and point-based representations for distant objects.

ii

Kurzfassung

Computergraphik ist die Wissenschaft, die sich mit der Generierung glaubwürdi-
ger Bilder beschäftigt. Eine der größten Herausforderungen dabei ist, diese Bilder
in ausreichender Geschwindigkeit zu erzeugen. Speziell bei der Simulation von
Fahrzeugen in Stadtgebieten, bei der virtuellen Erforschung von Gebäuden (ob
noch nicht gebaute, existierende oder schon lange zerstörte), bei Computerspielen
und vielen anderen Anwendungen ist es wichtig, daß die Bilder in flüssiger Abfol-
ge erscheinen. Üblicherweise versteht man darunter eine Bildrate von mindestens
60 Bildern pro Sekunde. Das ist das Thema der Echtzeitvisualisierung.

In dieser Dissertation werden zwei Algorithmen zur beschleunigten Darstel-
lung von großen virtuellen Szenen vorgestellt. Dabei wird bei beiden Algorith-
men eine interessante Eigenschaft von vielen solchen Szenen ausgenützt: Objekte,
die sich weiter weg vom Betrachter befinden, machen nur einen kleinen Teil des
endgültigen Bildes aus, benötigen aber relativ viel Rechenzeit. In dieser Disserta-
tion wird gezeigt, wie man entfernte Objekte mit einer Komplexität, die der über-
deckten Bildfläche – und nicht ihrer eigentlichen geometrischen Komplexität –
entspricht, repräsentieren und darstellen kann. Die beiden Algorithmen sind für
unterschiedliche Szenarien gedacht. Die erste Methode funktioniert zur Laufzeit,
braucht also keine Vorberechnung. Die zweite Methode hingegen hat einen wich-
tigen Vorberechnungsschritt, der bei der Darstellung sowohl die Geschwindigkeit
als auch die Qualität signifikant erhöht.

Der erste Teil der Dissertation beschäftigt sich mit einem Algorithmus zur
Darstellung von Szenen mit starker gegenseitiger Verdeckung von Objekten. Da-
bei kommen in mehreren Schritten bildbasierte Renderingmethoden zum Einsatz.
Objekte bis zu einer bestimmten Entfernung vom Betrachter werden mit gewöhn-
lichen polygonbasierten Methoden gezeichnet. In einem weiteren pixelbasierten
Schritt werden dann alle noch nicht bedeckten Pixel des Bildes identifiziert und
in einem zylindrischen Zwischenspeicher für Farbwerte nachgesehen. Sollte dort
kein sinnvoller Wert vorhanden sein, wird die Farbe des Pixels mittels eines Blick-
strahls ermittelt, sofern sich das Pixel nicht über dem Horizont befindet. Die Me-
thode funktioniert praktisch unabhängig von der Anzahl der verwendeten Objekte
in der Szene und erreicht eine bis zu zehnfache Beschleunigung im Vergleich zu
üblichen Darstellungsmethoden.

Im zweiten Teil der Dissertation wird eine Datenstruktur zur getrennten Spei-
cherung von Geometrie- und Farbinformationen für ein Objekt präsentiert, geeig-
net für die Betrachtung aus einem bestimmten räumlich abgegrenzten Bereich.
Damit sollen komplexe Objekte in virtuellen Szenen – insbesonders weit entfern-
te Objekte – ersetzt werden, um eine schnellere und qualitativ bessere Darstellung
dieser Objekte zu erreichen. Dabei wird das Objekt quasi mit einer Punktwolke

iii

dargestellt, deren Dichte sich nach den möglichen Betrachterpositionen richtet.
Das Aussehen der Punktwolke wird mittels eines Monte Carlo Verfahrens be-
stimmt, das eine artefaktfreie Darstellung von allen erlaubten Blickpunkten aus
gestattet.

Außerdem gibt diese Dissertation einen ausführlichen Überblick über schon
publizierte Methoden im Bereich der Echtzeitvisualisierung, und enthält eine Ana-
lyse über Vor- und Nachteile von bild- und punktbasierten Renderingmethoden für
die Darstellung von entfernten Objekten.

iv

Acknowledgements

This thesis would not have been possible without the help of many people: I would
like to thank my advisor, Michael Gervautz, for bringing me into the wonderful
research group at Vienna. I owe thanks to Dieter Schmalstieg, who introduced me
during many discussions to the peculiarities of scientific research, and who super-
vised the first part of this thesis. The second part of the thesis was supervised by
François Sillion, who never failed to bring the work on track in critical situations.

Many of the ideas leading to the first part of the thesis are directly attributable
to Markus Giegl, who also kindly let me use his ArsCreat programming frame-
work to implement the method. I equally want to thank his wife, Gabi, for design-
ing a test model for this part of the work.

The second part of this thesis is the direct result of endless discussions, throw-
ing around ideas, filling one drawing board after the other, and generally working
together, with my colleague Peter Wonka. He also provided the test model for
the walkthroughs shown in the second part of the thesis. This model also prof-
ited greatly from the dedicated work of our students: thanks to Gregor Lehninger
and Christian Petzer for tree models, Paul Schroffenegger for an automatic roof
generator, and Gerald Hummel for providing a street generation tool.

Finally, I wish to thank all people of the research group in iMAGIS, Grenoble,
where I spent six months working on the thesis, and the research group in Vienna,
where I spent the rest of my time.

Part of this research was supported by the Austrian Science Fund (FWF) con-
tract no. P13867-INF and P11392-MAT, and by the EU Training and Mobility
of Researchers network (TMR FMRX-CT96-0036) “Platform for Animation and
Virtual Reality”.

v

Contents

Abstract i

Kurzfassung iii

Acknowledgements v

1 Introduction 1
1.1 The evolution of real-time rendering 1
1.2 Problem statement . 2
1.3 Thesis statement . 3
1.4 Proposed solutions and chapter layout 3
1.5 Contributions . 4
1.6 Motivations . 5
1.7 Individual publications about this work 5

2 Related Work 7
2.1 Definition and goals of real-time rendering 7
2.2 The traditional pipeline, standard acceleration techniques 9

2.2.1 Visibility Culling . 11
2.2.2 Levels of Detail . 15

2.3 Image-based rendering . 19
2.3.1 The Plenoptic function 20
2.3.2 Light fields . 21
2.3.3 Quicktime VR and View Interpolation 22
2.3.4 Images as approximation, impostors 23
2.3.5 Images as caches . 24
2.3.6 Enhancing images with depth 25
2.3.7 Impostor meshes . 26

2.4 Point-based rendering . 28
2.5 Ray tracing . 30

2.5.1 Ray casting . 31

vi

2.5.2 Complexity bounds . 32
2.6 Mathematical tools . 33

2.6.1 Bases and their duals . 33
2.6.2 Monte Carlo integration 35
2.6.3 Sampling theory and antialiasing 36

2.7 Discussion . 37

3 Motivation—General Terms 39
3.1 Near field and far field . 39
3.2 Online and offline calculation . 40
3.3 Notation of vectors in this thesis 41

4 Ray Casting with Image Caching and Horizon Tracing 43
4.1 Introduction . 43
4.2 System overview . 45
4.3 Ray casting . 46

4.3.1 Near field / far field . 46
4.3.2 Ray casting . 48

4.4 Image caching . 49
4.4.1 Panoramic image cache 49
4.4.2 Cache update strategy 51

4.5 Horizon tracing . 53
4.6 Results . 55
4.7 Discussion—advantages and shortcomings 58

4.7.1 Scalability . 58
4.7.2 Aliasing . 59

4.8 Applications . 59
4.8.1 Walkthroughs . 59
4.8.2 Computer Games . 60
4.8.3 Portal Tracing . 60
4.8.4 Effects . 61

5 Point-Based Impostors 63
5.1 Introduction . 63
5.2 Overview of the algorithm . 65
5.3 Point-Based Impostors . 66

5.3.1 Complexity of appearance 66
5.3.2 Geometric sampling . 68
5.3.3 Appearance: the plenoptic image function 69

5.4 Implementation . 72
5.4.1 Obtaining geometric samples 72

vii

5.4.2 Monte Carlo integration of radiance fields 75
5.4.3 Compression and Rendering 76

5.5 Results . 76
5.6 Discussion . 79

6 Conclusions and Future Work 83
6.1 Synopsis . 84
6.2 Advantages . 84

6.2.1 Specific advantages of point-based impostors 85
6.3 Disadvantages and limitations 86
6.4 Future work . 88

6.4.1 Triangle-based impostors 88
6.4.2 View cell partitioning . 89
6.4.3 Near-field and far-field distance 89

6.5 Conclusion . 90

Bibliography 91

Curriculum vitae 109

viii

List of Figures

4.1 Ray casting screenshot . 44
4.2 Diagram of traditional rendering pipeline 45
4.3 Diagram of extended image-based pipeline 46
4.4 Image cache diagram . 46
4.5 Indexing into the panoramic image cache 50
4.6 Image cache data structure . 52
4.7 Horizon tracing . 54
4.8 Results for hardware rendering and ray casting 55
4.9 Results for different near-field distances 57
4.10 Ray casting results for 320x240 58
4.11 Overview of test model for ray casting 61
4.12 Screen shot of test model for ray casting 62

5.1 Urban walkthrough shot with point-based impostor 63
5.2 Placement of perspective LDI cameras 66
5.3 Ray casting from the sampling plane 67
5.4 Microgeometry . 67
5.5 Parameters of the plenoptic image function 69
5.6 Arrangement of impostor, view cell, cameras, sampling plane . . . 73
5.7 2D sampling analogon . 73
5.8 Resampling factor for rotations 74
5.9 Point removal . 75
5.10 Finding the texture matrix for hardware rendering 77
5.11 Example of a packed impostor texture 78
5.12 Impostor and view cell placement example in a city 80
5.13 Impostor example: building front with trees 81
5.14 Impostor example: city shot . 82
5.15 Impostor in urban walkthrough 82

ix

List of Tables

4.1 Pixel statistics for ray casting . 57

5.1 Impostor statistics for 3 point-based impostors 79

x

Chapter 1

Introduction

1.1 The evolution of real-time rendering

Computer graphics is an ever evolving field. Years ago, researchers concentrated
on rendering appealing still images. Ray tracing and radiosity were developed to
create images which mimick real photographs, giving rise to “photorealistic ren-
dering”. Applications of photorealistic rendering are manifold, including lighting
simulation of planned buildings, creating artwork, and not the least of them is
rendering effects and whole image sequences in the movie industry.

Yet, many users did not content themselves with single images which took in
the range of minutes or even hours to compute. Many application areas called
for interactive image generation. Early systems were very plain, presenting the
user with wireframe views of a scene, barely sufficient to form a notion of the
spatial relationship of objects. The potential of interactive techniques was soon
discovered, however, and a huge effort was dedicated to creating systems of both
higher display speed and higher image quality. A new research direction was
born: “real-time rendering”. Flight simulation, driving simulation, architectural
walkthroughs, interactive modeling packages and virtual reality were among the
applications that benefited from or even were inspired by the advances made in
real-time rendering.

Yet as interactive graphics systems got faster and faster, the expectations and
requirements of such systems grew at an even faster pace. While early applications
offered manipulation of some simple objects, it was soon expected to see terrain
flythroughs and car simulations with considerably increased complexity, while
today’s applications try to display full-fledged city models with realistic lighting
and full real-time, interactive car simulations.

1

Chapter 1 Introduction

In recent years, the popularity of three-dimensional computer games has given
an unexpected boost to consumer graphics hardware, starting with the introduction
of the 3DFX Voodoo graphics card in 1997 [Leht00]. Relatively cheap graphic
boards are now threatening to overtake expensive workstation hardware in speed
as well as in quality. Practically all newly sold personal computers come with
considerable graphics capabilities.

While recently introduced graphics boards promise to achieve near photore-
alistic image generation in real-time, the sheer complexity and size of today’s
models still tends to be overwhelming for contemporary hardware, and a lot of
research has been invested into finding ways to deal with that complexity on a
higher level, making use of a priori knowledge about the given models.

This thesis is about one such approach, which is apt to reduce the rendering
time for very complex models, while at the same time improving their visual qual-
ity.

1.2 Problem statement

Interactive computer graphics applications are used in many fields, but most of
them can be summarized in three categories:

• Indoor exploration: the user navigates inside a building or similar closed
environment, like a cave system.

• Outdoor exploration: the user walks, drives or flies over an outdoor envi-
ronment like a city or a terrain.

• Object manipulation: the user interactively manipulates a virtual object like
a prototype of a car or a manufacturing part.

Of these three categories, the first two offer an interesting challenge: while the
requirements on display speed and image quality are very stringent, indoor and
outdoor scenes feature practically unbound complexity, making it very difficult
to meet such requirements. Even a very modest city model, for example, where
individual buildings consist of not more than a few hundred triangles, total sev-
eral million triangles. Walkthrough and simulation applications, however, usually
demand frame rates high enough to match the display update rate (between 60
and 85 Hz). Modern graphics accelerators may display several million triangles
per second, but this does not suffice to display large models at an update rate of

2

Chapter 1 Introduction

60 times per second, and models have not reached their peak of complexity for
long.

Besides performance, large environments pose another problem: distant ob-
jects, although of the same complexity as foreground objects, are perceived on
a much smaller area on the screen as foreground objects. Therefore, the screen
resolution is not sufficient to display distant objects in their full detail. Current
rendering algorithms have to subsample distant objects, leading to spatial and
temporal aliasing. This creates a noticeable image quality problem.

Fortunately, models in one of the mentioned categories are structured and
share some interesting aspects: due to the nature of perspective (which makes near
objects appear large and far objects appear small) and occlusion (which causes
many objects to be hidden by other objects in any given view) only a very small
number of objects account for covering most of the pixels on the screen.

The problem treated in this thesis is how to exploit this particular property of
virtual environments to improve both frame rates and image quality.

1.3 Thesis statement

This research presents a set of algorithms to exploit the specific structure of many
virtual environments in order to obtain higher frame rates and better image quality.

The central thesis of this research is that

It is worthwhile to treat distant objects using different representations
and rendering algorithms than foreground objects. In this way, dis-
tant objects can be rendered faster and in higher quality than with
traditional rendering.

1.4 Proposed solutions and chapter layout

This dissertation presents two conceptually different approaches to the problem.
The first approach makes direct use of the observation that near objects cover a
large part of the screen. It directly computes color values for screen pixels that
have not yet been covered by near objects. The second approach computes an
alternative representation for distant objects based on points, which allows for
fast, high-quality rendering.

As a prerequisite for the work presented in this thesis, chapter 2 discusses
the state of the art in the field of real-time rendering. This chapter also contains

3

Chapter 1 Introduction

an overview of other related work in as much as it is used in the thesis, mainly
sampling theory and ray tracing. Chapter 3 introduces some terms and notation
used throughout the rest of the thesis. The first approach is treated in chapter 4,
thoroughly describing the different algorithms used and showing results on a city
walkthrough. Chapter 5 is dedicated to the second approach, containing among
others a mathematical treatment of points for common point rendering algorithms.
Conclusions are drawn in chapter 6, along with a discussion of future work that
could be spawned by this thesis.

1.5 Contributions

This dissertation contributes to the field of computer graphics a family of algo-
rithms useful for rendering large virtual environments.

Most notably, chapter 4 is based upon

• an algorithm to partition a scene from a specific viewpoint into an area near
the viewpoint and an area far from the viewpoint, and a method to assign
individual pixels to the one or the other area,

• a panoramic image cache to preserve pixel color values already calculated
in a previous frame,

• an algorithm to find the horizon of a scene from a specific viewpoint, sig-
nificantly reducing the number of pixels which have to be calculated, and

• a working system which combines the three algorithms above with a fast
ray caster to quickly calculate contributions from pixels identified as being
in the area far from the viewpoint.

In chapter 5, the significant contributions include

• an object-space resampling method that distributes sampling of parts of a
scene with respect to prospective viewing locations,

• a mathematical analysis of the meaning of a point in the light of current
point rendering algorithms,

• a fast rendering algorithm for points that takes into account the mathemati-
cal properties of a point mentioned before, and which runs fully accelerated
on current graphics hardware, and

4

Chapter 1 Introduction

• a system which demonstrates the feasibility of the approach and a discussion
of the practical implementation of such a system.

Furthermore, this work contains a comprehensive overview of research in real-
time rendering and a discussion of the most important methods and how they relate
to the algorithms described in this thesis.

Substantial evidence will be provided supporting that the techniques presented
in this thesis are feasible, offer significant performance gains and improvements
in image quality.

1.6 Motivations

While the development of graphics systems shows dramatic increases in perfor-
mance and image quality over the last years, their power is still far from being able
to render large virtual environments without the help of specialized algorithms.

The idea for the method presented in chapter 4 arose from the need to render
large outdoor environments on low- and medium-end computer systems, as for
example available for computer games. One requirement was not having to rely
on hardware features unavailable in mainstream systems, like reading back the
frame buffer quickly. The method should be simple, and should not require long
preprocessing or large additional storage space. Ray casting fit very well into these
requirements, and the other algorithms used in addition were found to provide the
necessary operating speed.

The method in chapter 5 was inspired by the author’s previous work in visi-
bility, where sets of objects potentially visible from specific regions of space were
precalculated to reduce the number of objects to be rendered from that region. In
many cases, the reduction obtained was not sufficient to allow for real-time ren-
dering, leading to the necessity of representing distant objects visible from this
region in a more efficient way. Investigations into the mathematical properties of
several different representations lead to the conviction that image quality was just
as important as speed when designing such representations.

1.7 Individual publications about this work

Results of this work have been previously published by the author. The follow-
ing papers describe the preliminary outcome of the work [Wimm99a, Wimm99b,
Wimm01]:

5

Chapter 1 Introduction

• Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast Walkthr-
oughs with Image Caches and Ray Casting. In Michael Gervautz, Dieter
Schmalstieg and Axel Hildebrand, editors, Virtual Environments’99. Pro-
ceedings of the 5th EUROGRAPHICS Workshop on Virtual Environments,
pages 73–84. Springer Verlag-Wien, June 1999.

• Republished as an extended version in Computers & Graphics, 23(6):831–
838, December 1999. ISSN 0097-8493.

• Michael Wimmer, Peter Wonka, and François Sillion. Point-Based Impos-
tors for Real-Time Visualization. In Karl Myszkowski and Steven J. Gortler,
editors, Rendering Techniques 2001 (Proceedings of the EUROGRAPHICS
Workshop on Rendering 2001). Eurographics, Springer-Verlag Wien New
York, June 2001.

The author has also participated in projects closely related to this thesis, and
contributed to the following publications [Wonk00, Wonk01]:

• Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibility Prepro-
cessing with Occluder Fusion for Urban Walkthroughs. In Bernard Péroche
and Holly Rushmeier, editors, Rendering Techniques 2000 (Proceedings of
the EUROGRAPHICS Workshop on Rendering 2000), pages 71-82. Euro-
graphics, Springer-Verlag Wien New York, June 2000. ISBN 3-211-83535-
0.

• Peter Wonka, Michael Wimmer, and François Sillion. Instant Visibility.
Computer Graphics Forum (Proc. EUROGRAPHICS 2001), 20(3), Septem-
ber 2001.

6

Chapter 2

Related Work

This chapter contains a comprehensive overview of research related to this the-
sis. The field of real-time rendering will be given special attention, including
traditional acceleration techniques like state sorting, levels of detail and visibility
culling. As an alternative to traditional techniques, image-based rendering has
received a lot of attention in recent years, and will be discussed with a view to
chapter 5. The same chapter will profit from an analysis of prior point-based
rendering algorithms, and a discussion of some mathematical tools needed later
on. Chapter 4 will make use of ray tracing, especially acceleration structures for
finding the first intersection.

2.1 Definition and goals of real-time rendering

Real-time rendering is concerned with the display of computer-generated images
at rates which let a human observer believe that he is looking at a smooth ani-
mation. Ideally, we would like to produce those images in a way that matches or
exceeds the limits of the human visual system in all aspects. Unfortunately, limits
in the way current graphics generators are built, both with respect to their phys-
ical characteristics as well as to their raw performance, make this goal unattain-
able [Helm94].

Nevertheless, attempts to reduce the gap between the degree of realism that a
computer system can generate and that a human user can perceive have been man-
ifold. Before elaborating on some of these attempts in more detail, it is important
to define the parameters of computer-generated scenery that determine the degree
of realism perceived by the user.

Image resolution (measured in the number of horizontal and vertical pixels) is

7

Chapter 2 Related Work

usually referred to as the main factor influencing the quality of an image displayed
on a computer screen. At the lower end, we find arcade and console systems de-
signed for standard TV screens, which offer output resolutions of 640x480 pixels
(NTSC) or 720x576 pixels (PAL). Personal computers are usually equipped with
17” screens, allowing up to 1280x1024 pixels (which is also the usual upper limit
for LCD displays), whereas professional users typically work on 21” screens set
to 1600x1200 pixels. At the very high end, we can sporadically find displays ca-
pable of showing 2048x1536 pixels, but neither displays nor graphics hardware
are usually capable of displaying this resolution with good quality.

Such displays have practically reached the limits of detail the human eye can
resolve. For example, one pixel on the center of a 21” screen (which is 406 mm
wide) driven at 1600x1200 pixels subtends an angle of only about 1.4 (horizontal)
arc minutes at the eye when viewed from a distance of 60 cm. The visual acuity of
the human eye, i.e., the degree to which visible features can be perceived (usually
measured as the angle subtended at the eye), is about 1 arc minute at the center of
the fovea, and deteriorates rapidly towards the outer regions [Helm94].

A factor which is frequently overlooked but equally important is image quality
in a signal theoretic sense. Images displayed on a computer screen are signals that
have gone through a variety of signal transformation, most importantly sampling
of a continuous signal to discrete pixel values and reconstruction of a continuous
signal from these pixel values. Signal theory states that signals have to be properly
band-limited (“smoothed”) before sampling or resampling so as to allow perfect
reconstruction [Glas95]. Not properly band-limited signals manifest themselves
in artifacts known as spatial and temporal aliasing, for example the well-known
jaggies, staircase and moiré effects. Spatial aliasing effects are often most notice-
able during motion, leading to pixel blinking and flickering and a generally noisy
appearance of the image as pixels erratically change their colors. Remedies for
this problem include mip-mapped texture filtering and super sampling, which will
be discussed along with a more mathematical treatment of aliasing effects later
on.

Temporal aspects are equally important for image quality. Latency, for in-
stance, is the time measured from the setting of an input until the corresponding
output is obtained. In real-time rendering, this is usually the time when the last
pixel of the frame containing the result of the user action is displayed (in this case,
the term is visual latency). Latency is usually an issue when multiple processors
are used to achieve higher frame rates through concurrency [Jone94].

One of the most important figures to judge the quality of a real-time system
by is its frame rate. A sufficiently high frame rate is necessary to fool the human
eye into seeing a smooth and continuous motion. The frame rate is tightly coupled

8

Chapter 2 Related Work

to the update rate of the display device. TV screens run at either 50 Hz (PAL) or
60 Hz (NTSC), and although the human eye can perceive flicker at this frequency
and will weary from prolonged watching, many applications are targeted towards
systems using TV screens (e.g., arcade and console games). Computer CRTs usu-
ally run at a comfortable 85 Hz, which is well above the flicker limit of the human
eye. While on the one hand, these frequencies set an upper limit on the frame rates
a real-time rendering system has to achieve, and on the other hand, it is generally
agreed that little more than 20 frames per second (fps) are sufficient to gener-
ate the illusion of motion (24 fps is used in motion theaters, for example), it has
been discovered that frame rates below the display update rate lead to significant
artifacts. If the rendering system cannot provide a new image for every display
refresh, the same image will be displayed several times before being changed.
This results in unnatural choppy motion and confuses the human visual system
into seeing distracting “ghost images”, especially noticeable at sharp edges in the
image (like, for example, a building border) [Helm94].

The goal of any real-time rendering system is therefore to maintain a frame
rate which matches the display update rate—a difficult task, given that the frame
rate is bound to the scene complexity in traditional rendering systems. After in-
troducing the basic rendering pipeline which has been standard for years now, the
rest of this chapter will introduce techniques invented to achieve this goal.

2.2 The traditional rendering pipeline and standard
acceleration techniques

Practically all current real-time rendering systems are based on a polygonal ren-
dering pipeline. This pipeline consists of the following stages:

• Traversal: the application traverses its internal data structures and produces
the polygons to be sent to the next stage

• Geometry: Vertices of polygons are transformed into screen space and light-
ing calculations are performed on the vertices. This stage also includes other
per-vertex operations such as the calculation of texture coordinates for en-
vironment mapping.

• Rasterization and pixel processing: color values are generated for all pixels
inside a polygon and stored in the frame buffer. Pixel processing involves
operations such as depth buffer testing, antialiasing, texturing, and alpha
blending. Most of these operations require access to memory (e.g. for look-
ing up texture values), which can have great impact on the performance.

9

Chapter 2 Related Work

While traversal always happens on the host CPU, all other stages are carried
out by graphics hardware on current systems. Some recently released graphics
cards offer fully programmable vertex and pixel processing units, paving the way
for near-photorealistic rendering in real-time [Corp01]. The overall speed of the
pipeline depends on its slowest stage (the bottleneck of the pipeline). Keeping all
pipeline stages equally saturated is the key to a balanced rendering system.

To make optimal use of available resources, the peculiarities of the target
graphics architecture have to be known. Most architectures are optimized to pro-
cess triangle strips in order to minimize the number of vertices that have to be
transformed. Recent cards keep a number of transformed and lit vertices in a ver-
tex cache, making it important to order vertices so as to maximize the number of
cache hits.

Changing the rendering mode (for example, switching the texture) usually in-
volves a performance penalty, so presorting primitives according to their type and
rendering mode is crucial to avoid costly state changes in the graphics hardware.

Many scene attributes do not change over time, and calculating their effects
beforehand avoids runtime calculations (for example, static lights on static geom-
etry, or transformations that are important for modeling, but do not change later
on).

Other runtime optimizations include precompiling rendering commands into
so-called display lists, making good use of the cache hierarchy (for example by
storing static geometry on the graphics card memory) and optimizing texture lay-
out. Applications with significant computation load beside database traversal
profit from concurrency between the graphics card and the host CPU, if properly
utilized.

The optimizations presented here need not always be implemented by hand.
Many of them are readily available in commercial rendering toolkits, most no-
tably the SGI OpenGL Performer and Optimizer programming libraries [Rohl94,
Ecke00, Ecke98]. While Performer concentrates on high-speed rendering using
multiprocessing and parallel culling strategies, Optimizer offers high-level opti-
mization tools for surface simplification and occlusion culling (see the following
sections).

Note that although the above-mentioned optimizations result in good utiliza-
tion of available resources and are an often-overlooked prerequisite for real-time
rendering, they can guarantee sufficient frame rates only up to a certain degree of
scene complexity. More complex virtual environments require more sophisticated
techniques, all of which aim to reduce the number of geometric primitives which
have to be passed to the graphics subsystem in the first place. The most promi-
nent techniques in this class are visibility culling (section 2.2.1) and level-of-detail

10

Chapter 2 Related Work

rendering (section 2.2.2).

2.2.1 Visibility Culling

An important challenge of early computer graphics was hidden surface removal,
the elimination of all parts of surfaces not visible from a specific viewpoint. Sev-
eral solutions have been proposed to this classical problem (later on referred to
as the visibility problem), of which nowadays only the z-buffer [Catm75] is used
in real-time graphics because of its simple hardware implementation. In order to
render scenes larger than the limits imposed by the number and size of geometric
primitives that a hardware z-buffer can handle in real-time, the focus of research
efforts has changed to resolving visibility on a coarser scale. The goal is to cull
surfaces, whole objects or even larger parts of the scene that are not visible from
the current viewpoint, with backface culling being a trivial example. Most meth-
ods are conservative, meaning that they only cull objects that are guaranteed to be
invisible. The result of a visibility culling algorithm is usually called the poten-
tially visible set (PVS) [Aire90], because it is composed of a list of objects which
are potentially visible. This list is passed on to the graphics hardware, where final
hidden surface removal is done.

There is a natural distinction between algorithms that try to solve visibility
during runtime and algorithms that do some preprocessing on the scene and de-
termine visibility beforehand. Runtime algorithms almost invariably operate on a
per-frame basis, i.e., each frame they calculate a PVS for the current viewpoint.

A very simple but effective example for online visibility culling is view-frus-
tum culling, which discards all objects not contained in the current viewing frus-
tum. This form of visibility culling, or its more advanced variant, hierarchical
view-frustum culling [Clar76], is implemented in practically all current real-time
rendering systems. As is valid for all visibility culling algorithms, a thoughtful
spatial organization of the scene based on a grouping of nearby objects is benefi-
cial to culling efficiency. Objects may be grouped in a spatial hierarchy such as an
octree [Same89] or a binary space partition (BSP) tree [Fuch80], or in a bounding
volume hierarchy determined in the modeling phase.

Certain densely occluded scenes can be structured into a set of cells connected
by portals. Such a subdivision comes most naturally for indoor scenes like build-
ing interiors, where individual rooms and hallways constitute the cells and doors
and windows make up the portals. After calculating the cell adjacency graph,
Teller and Sequin [Tell91] precompute cell to cell and cell to object visibility using
an analytic method and linear programming, which is quite time consuming. Lue-
bke and Georges [Lueb95] proposed a method that works without preprocessing:

11

Chapter 2 Related Work

during the traversal of the cell adjacency graph, they accumulate the intersection
of projected screen-space bounding boxes of the portals until this intersection is
empty. Objects in each cell are tested by intersecting their screen-space bounding
box with the aggregate intersection of the current portal sequence.

Most online occlusion culling algorithms build an occlusion data structure in
object space or image space, and test the scene hierarchically against this struc-
ture. Building and testing can be interleaved, adding visible objects to the current
occlusion data structure after testing them, or separate, building the occlusion
structure first and testing all objects against the complete structure. The occlusion
data structure is often maintained in image space, which reduces the complexity
of visibility computation by reducing the dimensionality of the problem. Another
way to handle complexity is by discretization of the domain. This is straight-
forward for image space methods where the projection plane is discretized into
pixels, but can be applied likewise to object-space methods for example by dis-
cretizing the scene into an octree.

The hierarchical z-buffer (HZB) [Gree93] is an extension to the classical z-
buffer in which the z-buffer is maintained as a quadtree (it is therefore an image
space method using discretization). The upper levels of the hierarchy store the
maximum of the z-values of its children. The scene is also maintained hierarchi-
cally in an octree. If an octree node is found visible during front to back traversal,
its children are traversed, or, if it is a leaf node, its stored geometry is rendered into
the hierarchical z-buffer. In practice, hardware implementations are not available
and only low resolution variants of the z-buffer can be used because of the raster-
ization overhead for higher resolutions. This drawback is partially overcome by
hierarchical occlusion maps (HOMs) [Zhan97]: opacity values are used instead
of depth, so occlusion maps can be rendered with graphics hardware. However,
creating the hierarchy and reading back the results from the frame buffer is still
costly. In the absence of depth information, the method relies on a good selection
of occluders, which have to be guaranteed to lie in front of the objects to be tested
for visibility. Both algorithms work well for arbitrary environments, including
scenes which are not densely occluded.

Although projection into the current viewing frustum (as in the HZB and HOM
techniques) is very general, it raises problems because the size of the occlusion
image is not independent of screen resolution. In a large class of scenes, occlusion
is mainly due to objects connected to the ground, as for example in an urban envi-
ronment, where buildings are the most important occluders. Wonka and Schmal-
stieg [Wonk99] have proposed to use an orthographic projection from above, i.e.,
a birds-eye view, to record the shadows cast by such occluders. The projection
is organized in a rectangular array of height values, called cull map. Each oc-
cluder, given as a function z = f (x, y), creates a shadow volume when seen from

12

Chapter 2 Related Work

a particular viewpoint. Only the upward-pointing faces of this shadow volume
are relevant for occlusion. They are rasterized into the cull map using z-buffered
graphics hardware. After reading back the cull map from the frame buffer (which
can be a bottleneck on contemporary graphics hardware), the cull map is traversed
and objects lower than the depth value recorded in the cull map are discarded. Ad-
vantages of the method include the ability to handle a large number of occluders,
occlusion due to the interaction of several occluders (occluder fusion) and the fact
that cull map resolution is independent of screen resolution, which allows tuning
the algorithm to the properties of the available graphics hardware.

Several authors have proposed object-space methods for online occlusion cul-
ling which rely on geometric computations. As the computational complexity
precludes a large number of occluders, such methods typically rely on selecting
a small number of large occluders according to a metric based on the projected
screen area. Hudson et al. [Huds97] test a bounding volume hierarchy of the scene
against the individual shadow frusta of occluders. Coorg and Teller [Coor97,
Coor99] traverse an octree, testing each node for occlusion using supporting and
separating planes. They also incorporate temporal coherence in their framework.
Finally, Bittner [Bitt98] presented an algorithm based on a shadow volume BSP
tree for occluders.

While many of the online occlusion culling algorithms presented here can sig-
nificantly reduce the total frame rendering time, they all suffer from the problem
that the time required to calculate visibility reduces the time available to render
geometry. If the result of visibility computations were available beforehand, it
would only have to be looked up somewhere at runtime and the entire frame time
would be available to render geometry. Naturally, it is impossible to precompute
a PVS for every possible viewpoint (there are infinitely many). In recent times,
researchers have therefore focused on visibility culling for a region of space, typ-
ically called view cell. The idea is to calculate a PVS which contains all objects
that are potentially visible from any viewpoint in the view cell. The scene is par-
titioned into view cells so that all possible observer positions are contained in at
least one view cell. During runtime, it is only necessary to determine the view
cell of the observer, and display the appropriate PVS, which has been calculated
offline.

Unfortunately, calculating visibility for a region of space is not straightfor-
ward. There are striking similarities to shadow rendering, where it is significantly
more difficult to find the shadow due to an area or volumetric light source as op-
posed to a point light source. Indeed, it turns out that finding the PVS with respect
to a view cell is equivalent to finding all objects not totally contained in an umbra
region if the view cell is considered as a volumetric light source.

13

Chapter 2 Related Work

The complexity of the problem was first made apparent in the context of aspect
graph computation, a data structure which encodes all qualitatively different views
of an object [Gigu91, Plan90]. Later, Teller [Tell92] formulated the problem in
line space to compute potentially visible sets for scenes made up of cells and por-
tals, and Durand et al. [Dura97] presented the visibility skeleton, a data structure
which compactly encodes all visibility relationships in a scene. All authors em-
phasize that region visibility computations are complex in part because the object
of primary interest, the umbra, is bounded by curved quadratic surfaces. Such sur-
faces arise when edges of the view cell interact with edges of occluders. Another
noteworthy complication is that there is no obvious way to consider occlusion
due to multiple occluders. The union of umbrae is often negligible, whereas the
umbra of the union of the occluders would be very considerable. The challenge
in designing algorithms for region visibility is therefore to best approximate the
umbra region due to the view cell and all occluders. While early attempts to cal-
culate region visibility for real-time graphics applications ignored the problem
altogether (considering only strong occlusion, i.e., occlusion due to one convex
occluder [Cohe98b]), recent publications show several different ways to increase
the total umbra region considered.

Schaufler et al. [Scha00] create an octree discretization of the scene. The
model is assumed to be watertight, which enables them to find the interior using
a floodfill-like algorithm. During umbra calculation, interior (opaque) nodes and
nodes in umbra are considered equivalent. The unique feature of the algorithm
is that before the umbra of an occluder (i.e., an opaque node) is calculated, the
occluder is extended into nearby opaque or umbra nodes in order to create a larger
umbra region. This effectively allows occluder fusion by combining an occluder
with an existing umbra, thereby creating a larger joint umbra. The algorithm is
robust and runs on arbitrary scenes, provided they are watertight.

Durand et al. [Dura00] proposed extended projections as an extension of the
hierarchical z-buffer for region visibility. The extended projection of an occluder
is defined to be the intersection of all possible projections of the occluder onto an
occlusion map when seen from a point within the view cell, while the extended
projection of an occludee is the union. They show how to calculate the extended
projection for some classes of objects and accelerate rendering the projections us-
ing graphics hardware. Occluder fusion is achieved by reprojecting the occlusion
map several times farther away using image space convolution, rendering occlud-
ers into a plane where its extended projection is maximal. Essentially, this allows
combining the umbrae of different occluders if the umbrae overlap in any of the
reprojected image planes.

Finally, Wonka, Wimmer and Schmalstieg [Wonk00] have presented an algo-
rithm based on the idea of occluder shrinking. They observe that the umbra of

14

Chapter 2 Related Work

an occluder with respect to a point conservatively represents its occlusion with
respect to an ε-neighborhood around that point as long as the occluder is shrunk
by ε before calculating its umbra. An occlusion culling algorithm based on this
observation covers the view cell with point samples such that each point on the
boundary is contained within the ε-neighborhood of at least one point sample.
The region visibility problem is now reduced to a point visibility problem: an
object is considered occluded if it is occluded with respect to all point samples,
using shrunk occluders. The authors apply the method to the occluder shadow al-
gorithm they presented earlier, and show how to efficiently combine the cull maps
from each point sample using graphics hardware. They stress that their method is
the only practical region visibility algorithm published so far that can deal with ar-
bitrary occluder interactions. Their approach discretizes umbra boundaries, even
if they are made up of curved surfaces (as mentioned above), and arguably pro-
vides the best approximation to the real umbra region.

Although region visibility algorithms provide better frame rates than online
algorithms because they incur no runtime overhead, this advantage comes with a
cost. The involved calculations are inherently complex and precomputation can
run several hours for larger scenes with a big number of view cells. The results
of visibility computations have to be stored and can take up considerable storage
space. It is also not clear how to select a partition of the scene into view cells.
Large view cells minimize storage space and allow the PVS to be transmitted over
a network, for example, but smaller view cells provide for better occlusion, i.e.,
smaller PVSs. A future avenue of research is to calculate region visibility on the
fly and amortize the cost for visibility calculations over several frames. A first
step in this direction is the Instant Visibility system proposed by Wonka, Wimmer
and Sillion [Wonk01], in which region visibility is calculated during runtime on a
different computing resource, such as a computer connected through a local area
network. The system allows the display host to run at full frame rates, while still
providing a tight PVS.

Note that a more comprehensive and more general overview of visibility al-
gorithms can be found in Durand’s PhD Dissertation [Dura99]. A very critical
review of many recent visibility culling techniques is contained in the reference
manual for the Umbra system [Aila01], a commercial online occlusion culling
system based loosely on the hierarchical z-buffer approach.

2.2.2 Levels of Detail

Visibility calculations reduce geometric complexity by eliminating objects not
visible on the screen. In large virtual environments, however, many visible ob-

15

Chapter 2 Related Work

jects are very small or distant. The size of the geometric features of such objects
often falls below the perception threshold or the size of a pixel on screen. To bet-
ter utilize the effort put into rendering small details and to improve frame rates,
simpler versions—commonly called levels of detail (LOD)—of an object can be
prepared. The technique has first been utilized by Clark in 1976 [Clar76], and
has been an important research topic ever since. Several questions have to be
answered in order to apply levels of detail in an application: How to select an ap-
propriate level of detail? How to stage the transition between two levels of detail?
And, most importantly, how to generate levels of detail for a given model?

To tackle the question of LOD selection, heuristics are used because human
perception and aesthetics are hard to catch in a single formula. Most commonly,
the distance of the object from the observer or the size projected to the screen
is used as a measure for the LOD. Unfortunately, these static heuristics do not
adapt to variable load on the graphics pipeline. Reactive level-of-detail selection
adaptively selects levels of detail according to the rendering time required by re-
cent frames. To guarantee bounded frame rates and accommodate sudden changes
in the rendering load, Funkhouser and Sequin proposed a predictive selection al-
gorithm [Funk93] formulated as a cost/benefit optimization problem. Levels of
detail are selected to produce the best image while keeping the cost for rendering
all selected objects below the maximum capacity of the rendering system at the
desired frame rate. The cost heuristic is based on the polygon and pixel capacity
of the rendering system, and the benefit heuristic takes into account factors such
as the size, accuracy, and importance of the object. The optimization problem is
a variant of the knapsack problem and can be solved approximately with tractable
computation effort for every frame.

Staging the transition between two successive LOD representations can most
easily be done by hard switching: At some point, the simpler model replaces the
more complex model. To reduce the resulting visual popping, for a short transi-
tion period the representations can be drawn blended together (which temporarily
increases the rendering load). Best quality is achieved by geometrically morph-
ing one object into another, but this requires levels of detail with well-defined
geometric correspondences.

The question which has attracted most interest, however, is how to automati-
cally generate simplified versions of a model from a detailed model while trying to
preserve appearance. Important aspects in the classification of algorithms include
whether they work on local features such as a vertex and its surrounding polygons,
or on a global level, and what error bounds are used to control the quality of the
resulting simplifications.

Vertex clustering algorithms ignore topology in input data and perform ro-

16

Chapter 2 Related Work

bustly even for degenerate data. The number of vertices in a polygonal model
is reduced by creating clusters of vertices close to each other and replacing clus-
ter members by a representative vertex. In the course of that process, degenerate
triangles are replaced by lines or points respectively. Several selection criteria
have been presented to choose the vertices to be clustered. Rossignac and Bor-
rel [Ross93] propose a simple, yet efficient uniform quantization in 3D. Schaufler
and Stürzlinger [Scha95b] and Luebke and Erikson [Lueb97] independently de-
veloped hierarchical clustering methods. Vertex clustering algorithms can achieve
arbitrarily high compression, but also exhibit severe artifacts for higher compres-
sion rations, and local features are not preserved well.

Most mesh simplification algorithms perform local operations on the surface of
the object, with an emphasis on the preservation of important visual features such
as shape and topology. They usually expect topologically sound, manifold input
meshes. This criterion is often not met by models generated with CAD packages,
and also limits the simplification ratio by the requirement of not reducing the
genus of the object.

The vertex decimation algorithm by Schroeder et al. [Schr92] analyzes the
vertices of the original model for possible removal based upon a distance crite-
rion. A local retriangulation scheme is then used to fill the hole resulting from
the removed vertex. Turk’s retiling method [Turk92] optimizes a triangle mesh
by uniformly distributing new vertices on the surface of the original object. The
original vertices are then iteratively removed, and the surface is locally retriangu-
lated to best match the local connectivity of the surface. Hoppe et al. [Hopp93]
introduced the concept of an energy function to model the opposing factors of
polygon reduction and similarity to the original geometry. The energy function,
used to provide a measure of the deviation between the original and the simplified
mesh, is minimized to find an optimal distribution of vertices for any particular
instantiation of the energy function.

Progressive algorithms represent the original object by a series of approxima-
tions that allow a near-continuous reconstruction and can be encoded incremen-
tally in a very compact way. Lounsbery et al. [Loun97] use wavelets to represent
polygonal objects by a multi-resolution data set of wavelet coefficients obtained
from a triangular mesh with subdivision connectivity. Levels of detail can easily
be constructed by omitting higher order detail coefficients in the reconstruction
process. Eck et al. [Eck95] present a method to transform an arbitrary mesh into
an equivalent one with the required subdivision connectivity. This work is taken
further by Certain et al. [Cert96] to include colored meshes and support progres-
sive reconstruction of the model.

Several authors present methods based on the edge-collapse operation. The

17

Chapter 2 Related Work

representation is generated as a sequence of repeated edge collapses, and is sim-
ply inverted in the progressive reconstruction process. The essential difference
between these algorithms lies in how they choose an edge to collapse. The pro-
gressive meshes introduced by Hoppe [Hopp96] adopt the energy function in-
troduced earlier [Hopp93]. Ronford and Rossignac [Ronf96] track the planes of
the polygons adjacent to a vertex throughout the decimation process, and base
the decision on a metric dependent on the distance to these planes. Garland and
Heckbert [Garl97] generalize edge collapses for arbitrary models by allowing con-
traction of vertices not common to an edge. Consequently, their algorithm allows
topological changes to the model and therefore achieves superior compression
rates. They also introduce a very efficient and high-quality method to choose ver-
tex pairs for contraction based on a quadric error metric. Their method is one of
the most widely used today, also because source code is available on the web.

View-dependent simplification methods exploit the fact that during runtime,
edge collapses and its inverse operation, vertex splits, do not necessarily have to
be executed in the same order as used in their creation. Simplifications on dif-
ferent parts of the model may be completely independent and can be executed
in any desired order. Instead of storing the progressive mesh as a sequence of
vertex splits, Hoppe [Hopp97] orders the vertex splits in a tree based on the de-
pendencies between the individual splits. Any front through this tree represents a
valid simplification of the original model. View-dependent criteria such as silhou-
ette preservation (based on the normal vector), back facing surfaces and surfaces
outside the viewing frustum are used to determine which parts of the model to
refine and which parts to simplify. A similar idea was proposed by Xia and Varsh-
ney [Xia96], and the whole process was formalized in a theoretical framework by
De Floriani et al. [De F97].

Most of the methods presented here work purely on the geometrical structure
of the model. Some algorithms take precautions to preserve other attributes of
the mesh such as discrete values like material identifiers, or scalar values like tex-
ture coordinates and color values [Garl98, Hopp96]. This idea is taken further in
the appearance preserving simplification method [Cohe98a], where textures and
bump maps are actually used to represent small object features in simplified mod-
els. The method requires a parameterization of the model, which is not always
readily available. Recently, Lindstrom and Turk showed a novel approach to sim-
plification [Lind00]. They base the decision where to apply edge collapses on a
comparison of images of the simplified and the original model. The simplified
models are close to the original models according to image differences as well as
geometrically. Note that their article also contains a critical review of many recent
level-of-detail approaches.

Many specific algorithms have been published about both visibility culling and

18

Chapter 2 Related Work

levels of detail. However, there is not a lot of experience in combining different
rendering techniques into a larger system. A commercial system that offers at least
geometric simplification and occlusion culling at the same time is SGI OpenGL
Optimizer. In an interesting research project, Aliaga et al. [Alia99a] have com-
bined geometric simplification, hierarchical occlusion maps, image-based tech-
niques (impostor meshes, see later) and others to accelerate the walkthrough of
a very complex power plant model. They observe that the best combination of
algorithms to use is not trivial to find—when combined with other methods, a
particular algorithm might even slow down rendering in many situations.

2.3 Image-based rendering

The recent decade has seen a tremendous amount of research being invested into
modeling and rendering with images. Image-based rendering methods claim to
provide high-quality rendering of highly complex scenes at fast rendering rates.
This promise sounds alluring; especially for researchers in traditional real-time
graphics, where the struggle for high frame rates is not yet won and photorealistic
rendering is still far out of reach. Indeed, many image-based rendering methods
warrant a closer scrutiny. However, we observe a trend to use such methods in
conjunction with and not as a replacement for traditional computer graphics ren-
dering.

The advantage of using images for rendering rather than geometry-based ap-
proaches is that they are easy to acquire, either by using digitized photography or
rendered images, with an option to mix both. Furthermore, while the complexity
of geometric models can be arbitrary, images per se are of bounded complexity
and tend to express complexity only where it actually appears.

Images have been used for several purposes in computer graphics:

• as a simplification for and approximation to complex geometric structures
(the most prominent example being texture mapping)

• as databases, storing images for all views allowed in the system

• as full-fledged modeling primitives in systems based solely on images, ac-
companied with the ability to extract new views from existing ones

Before going into the details about different specific methods, it is instructive
to introduce a framework in which all image-based rendering methods can be
compared.

19

Chapter 2 Related Work

2.3.1 The Plenoptic function

The fundamental computation of traditional computer graphics is the simulation
of the interaction between light and the objects in a scene. The rendering process
simulates the notion of a camera with certain parameters capturing this light onto
film. While this process is well described for geometry-based computer graphics,
image-based rendering has only recently received a computational framework that
can be used to express most of its techniques. Adelson and Bergen [Adel91] as-
signed the name plenoptic function (from the Latin root plenus, meaning complete
or full, and optic pertaining to vision) to the set of rays visible from any point in
space, at any time, and over any range of wavelengths. In traditional computer-
graphics terms, the plenoptic function can be considered as the set of all possible
environment maps that can be defined for a given scene. Formally, the plenoptic
function can be described as a function

Plenoptic(x, θ, λ, t)

with values in any (photometric) unit useful to describe intensity values of
images. Here, x denotes a three-dimensional vector describing an eye positioned
anywhere in space, θ is a two-dimensional orientation (consisting of azimuth and
elevation angle), λ is the considered wavelength, and, in the case of a dynamic
scene, t gives the time at which to evaluate the function.

Although the complete plenoptic function will hardly ever be available for
any scene, it serves well to relate different images of a scene to each other. In
fact, an image is nothing else than a subset of the plenoptic function, describing
values for a given observer position and time over an interval of orientations and
wavelengths.

The plenoptic function is important for image-based rendering because it al-
lows us to interpret the task of generating new views from existing ones as a
function reconstruction problem. The existing images provide samples for the
plenoptic function, and synthesizing a new view means to locally reconstruct it
and derive new samples from it.

Aliasing problems in image-based rendering were previously not fully under-
stood. As the plenoptic function is a continuous function describing all possible
images, signal theoretic concepts can now be applied to any method which can be
expressed in terms of the plenoptic function framework.

Miller and Bishop [McMi95b] were the first to realize the importance of the
plenoptic function for computer graphics in general and image-based rendering in
particular. Their plenoptic modeling system emphasizes acquisition of a database

20

Chapter 2 Related Work

of cylindrical images and the different camera parameters that have to be taken
into account to synthesize new views from the database.

Having laid the grounds for a systematic study, this section will deal first with
solely image-based methods, presenting hybrid methods (where images are used
for acceleration) later on.

2.3.2 Light fields

In 1996, Levoy and Hanrahan [Levo96] and Gortler et al. [Gort96] simultane-
ously introduced a new image-based primitive that has sparked the interest of
researchers ever since: the light field (Gortler called it the lumigraph). The light
field is appealing because it represents the first attempt to systematically describe
a considerable subset of the plenoptic function. Leaving aside time and wave-
length, they observe that 4 degrees of freedom (instead of 5) suffice to describe
the plenoptic function if either its domain (for an outward looking light field) or
the inverse of its domain (for an inward looking light field) is restricted to a convex
region of space that contains no obstacles. Putting aside effects like participating
media, the intensity of a light ray does not change when it traverses empty space,
so only one value is required to describe this subset of the plenoptic function.

Both articles parameterize rays by their relative coordinates on two planes
placed around the object (in the case of an inward looking light field). To capture
all rays, three such plane slabs are needed. Conceptually, a light field is acquired
by placing a camera on all positions of a regular grid on the first plane (the entry
plane) and pointing it at the second plane (the exit plane). Light fields involve huge
storage costs, and compression methods based on vector quantization combined
with entropy coding have been proposed by Levoy and Hanrahan. Both articles
deal with filtering issues. While Levoy and Hanrahan design an aperture filter
around a camera analogy, in Gortler et al.’s method the reconstruction filter is
given automatically as an integral by the mathematical framework they use. They
also use available 3D geometry to improve reconstruction quality.

This is taken even further by Chai et al. [Chai00] in plenoptic sampling, by
computing exactly the number of images (i.e., samples on the entry plane) needed
for antialiased reconstruction of a light field. The work is based on Fourier anal-
ysis and assumes the minimum and maximum depth of the scene is known. It is
also based on the assumption of a diffuse scene, which is a major practical limi-
tation. The number of images can be further reduced if more depth information
is available. The minimal rendering curve shows for each amount of depth infor-
mation the corresponding number of images needed for antialiased rendering. A
closer scrutiny of the minimal rendering curve reveals that if exact depth informa-

21

Chapter 2 Related Work

tion is available, only one image is needed to represent any scene. This is caused
by a further hidden assumption: no occlusion is allowed between the different
depth layers. Although this observation limits the theoretical value of the article,
in practice plenoptic sampling still provides valuable insights for the design of
light fields that include so many images that occlusion artifacts are negligible.

A different four-dimensional parameterization of the plenoptic function is the
surface light field [Mill98, Wood00]. A parameterization for the surface of an
object is assumed to be known and replaces the entry plane (in light field terms).
The exit plane is replaced by a hemisphere over each point on the object surface.
The surface light field can also be interpreted as encoding the exitant radiance in
every direction at every point of a surface. Although limited to certain types of
objects, the quality of surface light fields is superior to normal light fields because
the geometric structure is not implicitly encoded in the light field, but explicitly
by the surface of the object. So, while a surface light field is based on the geo-
metric structure of an object and adds sophisticated lighting effects to it, a normal
light field tries to capture lighting effects and geometric structure in the same data
structure, at the expense of quality.

Numerous other papers have been published on light fields, including their
application to store the appearance of complex light sources [Heid98], considera-
tions on depth of field in light field rendering [Isak00], fast rendering methods for
lumigraphs [Sloa97, Schi00], and several alternative sampling and compression
strategies. However, the huge storage requirements for moderately small objects
still limit their practical use.

2.3.3 Quicktime VR and View Interpolation

It is one of the most simple representations of the plenoptic functions that has
gained the most widespread use because of its efficiency and availability on a wide
range of platforms. The Quicktime VR system [Chen95] basically consists of a
sequence of full panoramas. In terms of the plenoptic function, a full panorama is
achieved by keeping the viewer position constant and considering all orientations
(almost, as only a cylindrical parameterization is used in current Quicktime sys-
tems). The user is allowed to rotate and zoom, but movement is discrete between
viewpoints.

Chen and Williams [Chen93] present a view interpolation method for three-
dimensional computer graphics. It uses linear interpolation between correspond-
ing points to map reference images to a desired viewpoint. In general, this in-
terpolation scheme gives a reasonable approximation to an exact reprojection as
long as the change in viewing position is slight. The method bears resemblances

22

Chapter 2 Related Work

to view morphing [Seit96], which also relies on linear interpolation, and is a spe-
cial version of the more general image morphing [Wolb90], where corresponding
points may be specified through various differing methods.

The earliest attempt to use images in a three-dimensional exploration setting
is the movie map system [Lipp80], which does not allow synthesizing new views
and basically constitutes an interactive slide show.

2.3.4 Images as approximation, impostors

Most of the methods discussed up to now were solely based on images, which
can be provided by real photographs or any computer graphics renderer. Apart
from the idea of using real photographs to display more convincing environments,
one appeal of image-based rendering is the bounded complexity and near-constant
rendering time of images. This has been explored separately by many researchers,
and frequently, proposed methods work in conjunction with traditional real-time
rendering to speed up frame rates.

The earliest and most prominent example in this category is of course tex-
ture mapping [Heck89], which simulates detail by mapping images (often defined
using bitmaps) onto flat surfaces. Bilinear filtering, mip-mapping [Will83] and,
more recently, anisotropic filtering is available in current rendering hardware to
overcome the aliasing artifacts due to perspective warping when mapping the tex-
ture to the screen. The flexibility of image textures as three-dimensional computer
graphics primitives has since been extended to include small perturbations in sur-
face orientation (bump maps) [Blin78] and approximations to global illumination
(environment and shadow mapping) [Blin76, Gree86, Sega92]. All these methods
are implemented in hardware on current graphics accelerators.

The fast rendering speed of textures and their visual richness make them can-
didates to replace complex geometry in virtual environments. Maciel and Shirley
[Maci95] introduced the concept of an impostor: An image of an object is used
in place of the object itself by rendering it as a texture map onto a single polygon
facing the observer. Schaufler extended this concept to the dynamic generation of
impostors at runtime using graphics hardware [Scha95a]. For rotationally sym-
metric objects like trees, the impostor polygon can always be oriented towards
the observer—in this case, the impostor is also called a billboard. Subsequently,
Schaufler and Stürzlinger [Scha96] and Shade et al. [Shad96] concurrently devel-
oped a hierarchical image cache based on impostors to accelerate the rendering of
very large polygonal scenes. A hierarchical spatial data structure such as an octree
is traversed, and a cache of impostors for each node is created and updated as re-
quired by an error metric that decides on the validity of the impostor. The method

23

Chapter 2 Related Work

requires a large amount of texture storage and graphics hardware that supports fast
direct rendering into a texture. It also depends strongly on temporal coherence:
if there are substantial changes from one frame to the next, many impostors will
have to be rebuilt, slowing down rendering. Aliaga and Lastra [Alia97] combined
portal rendering (section 2.2.1) with impostors by replacing geometry behind a
portal with one of several textures generated on the fly. Rafferty et al. [Raff97]
later reduced the number of textures needed for each portal by warping two pre-
computed depth images (instead of only one texture) into the new view.

The first attempt to implement impostors directly in hardware was the Talis-
man architecture [Torb96]. The concept of a frame buffer is abandoned in favor
of small reusable image layers (basically, impostors) that are composed on the fly
at full rendering speed. During the composition process, a full affine transforma-
tion is applied to the layers to allow translation, rotation and scaling to simulate
3D motion and to approximate perspective distortion. Although a commercial
implementation of Talisman never saw the light of day, some of its ideas are im-
plemented in low cost graphics accelerators like the PowerVR [Powe01].

2.3.5 Images as caches

Images can serve as caches for alternative rendering techniques. The method in
chapter 4 will make use of a panoramic image cache to reduce ray casting costs
for distant objects. The render cache proposed by Walter et al. [Walt99] allows
near-interactive rendering, while still using high-quality image generation meth-
ods like ray tracing or path tracing. This is achieved by caching radiance val-
ues from one view in an image and reprojecting them to the next view, thereby
exploiting temporal coherence. Fast sequences where a lot of new information
comes into view each frame are handled by progressive refinement, only tracing
a subset of the necessary rays and reconstructing an image from available infor-
mation. The Holodeck presented by Ward and Simmons [Ward99] differs from
the render cache by the use of a four-dimensional data structure instead of an im-
age as a ray cache. Simmons and Séquin showed how to use graphics hardware
to perform the reprojection of cached radiance values [Simm00]. The radiance
values are stored in a triangulation of the unit sphere, but with associated depth
values. The triangles can be rendered using graphics hardware, which means that
linear interpolation between radiance values comes practically for free through
Gouraud shading. However, moving the viewpoint (and consequently, the unit
sphere that is always centered on the viewpoint) will lead to overlapping trian-
gles on the unit sphere, making it necessary to update the triangulation between
consecutive frames.

24

Chapter 2 Related Work

Finally, dynamic impostors as in section 2.3.4 can be considered as a form of
image cache as well.

2.3.6 Enhancing images with depth

All impostor methods described in section 2.3.4 have one point in common: they
represent a three-dimensional object by a planar polygon and discard all asso-
ciated depth information. This can work for well-separated objects that do not
show strong parallax effects. However, scenes that are not so well behaved will
be problematical. Consequently, different methods have been proposed to remedy
the situation. Most of these methods enhance the images used as impostors with
per-pixel depth values, which allows a more realistic reprojection of impostors.

Schaufler addressed the problem of interpenetrating objects by introducing a
new primitive called nailboard [Scha97]. Each pixel of an impostor texture is as-
signed a depth value, and during rendering this depth value is transformed into
the eye coordinate system and used to modify the polygon depth value. Thus, the
actual object depth values are used for visible surface determination. Nailboards
can be rendered completely in hardware on current consumer-class graphics ac-
celerators [Corp01].

Another possible extension to impostors is to add depth information to each
pixel and then use the optical flow that would be induced by a camera shift to
warp the object into an approximation of the new view [Chen93, McMi95b].
Forward mapping an image pixel by pixel can provide proper parallax, but will
result in gaps in the image either due to visibility changes when some portion
of the object becomes unoccluded, or when a surface is magnified in the new
view. Several authors have proposed solutions to this problem, including gap-
filling algorithms [Chan99], backward mapping [Lave94] (entailing an expensive
search for each source pixel), or two-pass warping with so-called sprites with
depth [Shad98].

For complex geometries, however, occlusion artifacts make a single image
with depth inadequate to provide enough information to render the object from
a wide range of viewpoints. While a possible solution would be to use multi-
ple images of the object created from different viewpoints, and fill in information
lacking in one image with pixels from the other images, such an approach re-
quires storing several images for an object and possibly expensive pixel search
operations [McMi97].

In contrast, a layered depth image (LDI), proposed by Shade et al. [Shad98]
(and earlier in part by Max [Max96]), stores only one image, but provides several
depth layers per pixel. For rendering, the authors rely on MacMillan’s ordering

25

Chapter 2 Related Work

algorithm [McMi95a], which, given input and output camera information, estab-
lishes a warping order such that pixels that map to the same location in the output
image are guaranteed to arrive in back to front order. This allows for an efficient
incremental forward warping algorithm, using variable splat sizes to prevent holes
from appearing in the final image. LDIs can be acquired using a conventional ray
tracer or by registering multiple photographs of an object and warping them into a
common camera view. Like most other representations that add depth to images,
LDIs cannot be implemented in current hardware and are therefore of limited use
for real-time visualization environments. Another issue with LDIs is that their
level of detail (i.e., their sampling rate) is adapted only for the reference camera
position. This is remedied in a later paper by a structure called LDI-tree [Chan99],
where LDIs are stored at multiple resolutions in an octree-like fashion, albeit at the
expense of considerable rendering times. Nevertheless, the LDI is a fundamental
object representation, and its use is not limited to real-time rendering.

Oliveira and Bishop [Oliv00] propose a hardware extension to texture map-
ping, relief texture mapping, destined to augment normal texture maps with depth
information. Their method is based upon intelligently rearranging the equation
for warping an image with depth information into a new view: in a first step, the
image is warped using a highly efficient 1D forward transform, and the resulting
texture is mapped onto a polygon using standard texture mapping. The 1D warp-
ing functions work in texture space to handle the parallax and visibility changes
that result from the 3D shape of the displacement surface.

An alternative to using per-pixel depth values is to add depth in layers. Schau-
fler [Scha98] observed that current graphics hardware can be used to warp objects
with depth values grouped into discrete layers. A complex object is stored in sev-
eral α-textures, containing the image of the object clipped to a small depth range
associated with the depth-layer of the texture. A similar approach was indepen-
dently developed by Meyer and Neyret [Meye98]. Their interactive volumetric
textures equally slice complex objects into layers. The main focus lies on the
application to repetitive objects like fur, landscapes or organic tissues.

2.3.7 Impostor meshes

Adding per-pixel depth values to an image and warping the resulting depth im-
age directly does not map well to current graphics hardware. Although special
purpose hardware, the warp engine [Pope00], has been created to this end as a
proof of concept, it is unlikely that such technology will become mainstream in
the near future. Therefore, researchers have tried to exploit the capabilities cur-
rent graphics hardware supports best, i.e., standard texture mapping and triangle

26

Chapter 2 Related Work

rendering.

Mark et al. [Mark97] propose a runtime system which converts a depth image
(acquired on the fly from a standard renderer) to a fine-grained mesh connecting
each group of four pixels via two microtriangles. However, warping only one
image will introduce so-called rubbersheet triangles between features that appear
connected only in the original image. They propose a heuristic to determine the
connectedness of pixels, and claim that composing two depth images along the
user’s path eliminates practically all occlusion artifacts. Still, custom hardware is
required to implement the connectedness calculation and compositing operation.

To date, the only way to add depth information to images in a manner compat-
ible with current graphics hardware is by precomputation. Darsa et al. [Dars97]
present an interactive exploration system with limited user navigability. In a pre-
computation step, the system requires depth images placed on cubes around key
observer positions. Those depth images are then triangulated as in Mark’s method.
Additionally, coherence in depth values is exploited by running a triangle simpli-
fication algorithm on the resulting mesh for improved runtime performance and
reduction in storage. The resulting view will be correct for the key positions
and only moderate errors occur if the observer doesn’t move too far away. Since
key positions have to be placed near each other, only limited observer freedom is
possible. The advantage is that real images can be incorporated into the system,
provided that depth data is available (e.g., using computer vision methods or range
scanners).

In contrast, Sillion et al. [Sill97] propose a framework that makes better use of
available triangle rendering capacities. The central concept is to dynamically seg-
ment the scene into a local three-dimensional model and a set of impostors used to
represent distant scenery. Based on an assumed urban structure of the scene, the
segmentation proceeds along streets in a virtual street graph. The impostors placed
at the entry and exit of individual streets combine three-dimensional geometry to
correctly model large depth discontinuities and parallax, and textures to provide
visual detail. Unlike Darsa’s method, the initial depth images used for the impos-
tors are simplified using computer vision techniques to find depth discontinuities.
The algorithm suffers from rubber-sheet triangles and distorted images, because
the impostors have to be valid over a relatively large region of space (a street).
Subsequently, Decoret et al. [Deco99] refined the method by making better use of
parallax information of individual objects with respect to the view cell. Instead
of generating one single impostor, the algorithm places objects into layers. The
criterion used is the maximum parallax between two objects as perceived from
any point in the validity region of the impostor. The resulting rucksack problem
is solved using a heuristic approach.

27

Chapter 2 Related Work

The impostors described by Sillion and Decoret point to a promising avenue
of research. The valid viewing regions for the impostors are limited to edges of
the street graph (i.e., the observer can only move on a line), and there are still
image quality issues with the method used to triangulate the depth images. In its
current form, the system achieves respectable frame rates and allows interactive
walkthroughs of large urban models.

2.4 Point-based rendering

A hot discussion topic that has been widely debated in the scientific community is
whether triangles constitute the ultimate rendering primitive when it comes to dis-
playing three-dimensional models. Of all the alternative primitives advocated in
recent years, points seem to have been the most persistent in sparking the interest
of the real-time rendering community, as evidenced by several recent papers. The
appeal of points lies in their simplicity: very complex models can be represented
with little effort, because topology information (e.g., triangle connectivity) can be
completely ignored.

The clear advantage of triangles is that all current graphics accelerators do an
excellent job of rendering textured triangles—so much so that mere theoretical ad-
vantages of another primitive in some scenes will not suffice to replace triangles.
Nevertheless, the way future hardware developments go can never be predicted,
and so it is definitely worthwhile to explore the capabilities of alternative primi-
tives. Another interesting avenue lies in using alternative primitives for modeling
or scene representation and converting it on the fly to triangles for the purpose of
rendering.

The use of points as rendering primitives has a long history in computer graph-
ics. As far back as 1974, Catmull [Catm74] observed that geometric subdivision
may ultimately lead to points. Particles were subsequently used for objects that
could not be rendered with geometry, such as clouds, explosions and fire. Levoy
and Whitted [Levo85] use points to model objects for the special case of con-
tinuous, differentiable surfaces. They address the problem of texture filtering in
detail.

More recently, Grossman and Dally [Gros98] describe a point-sampled repre-
sentation for fast rendering of complex objects. Their approach consists of two
major steps: sampling (i.e., converting an object to a point-sampled representa-
tion), and rendering. A significant contribution of their work is that they describe
a minimal sampling criterion for point-sampled representations. A surface is said
to be adequately sampled (for a specific set of viewing parameters), iff at least one

28

Chapter 2 Related Work

point is projected into the support of each output pixel under any projection of the
surface. They prove the following sufficient condition: A surface is adequately
sampled if in every possible projection there exists a Delaunay triangulation with
a minimal edgelength smaller than the pixel edgelength. Grossman and Dally pro-
ceed to note that such a condition is difficult to guarantee in practice, and show a
sampling approach motivated by this condition (and fulfilling it under certain cir-
cumstances), which consists of placing a certain number of cameras on a sphere
enclosing the object and combining the samples so acquired. Rendering the point
samples is achieved by an efficient incremental block-warping method, while vis-
ibility computations rely on a hierarchical push-pull algorithm.

The approach presented by Grossman and Dally was significantly extended
by Pfister et al. [Pfis00], who introduced the concept of a surface element (surfel):
a zero-dimensional n-tuple (i.e., a point) containing shape and shade informa-
tion, and which locally approximates a surface. They sample geometric models
from three sides of a cube into three orthogonal LDIs, called a layered depth
cube (LDC [Lisc98]) using ray casting. Knowing that the maximum sidelength
of a Delaunay triangulation of the surfels is

√
3 times the sample spacing of the

LDC, an adequate sampling resolution can be calculated at least for orthographic
projections. Samples with prefiltered texture information are actually stored in a
hierarchy of LDCs, the LDC tree. The rendering algorithm, although based on
the efficient block-warping algorithm by Grossman and Dally, separates visibil-
ity calculations from image reconstruction. Splatting is used only to establish the
correct visibility order, whereas each surfel only contributes to one pixel. Any
remaining holes are filled by interpolating between available samples.

Surfels achieve remarkable rendering quality on quite complex models. Ren-
dering performance, however, leaves much to be desired. For similar output qual-
ity, the authors report rendering times in the range of an OpenGL software only
implementation, but using bilinear filtering, which is a notoriously slow rendering
path in any OpenGL software implementation. The problem lies with the number
of surfels needed to faithfully represent a geometric model. The authors report
at least twice as many surfels as triangles. For magnified viewing (higher resolu-
tions), image reconstruction becomes a bottleneck. Another consideration is the
motivation to use points in the first place. Points are used to easily represent and
render very complex geometries, usually with the argument that rendering trian-
gles is not a good option if there are several triangles per pixel and not the other
way round. However, the surfel method implicitly assumes a surface structure
that can be locally approximated well by its gradient (where “locally” is the same
order of magnitude as a pixel). It might be argued that in such a case, triangles
would again be a better solution because triangles are very good at approximating
surfaces.

29

Chapter 2 Related Work

An alternative point rendering system, QSplat, was proposed by Rusinkiewicz
and Levoy [Rusi00]. Conceived to display laser range scans of archeological ex-
hibits to a broad audience, the QSplat system emphasizes practicability and ef-
ficiency more than rendering quality and theoretical foundation. Starting from a
triangular mesh of the point cloud, the algorithm builds a hierarchy of bounding
spheres by recursively splitting the set of remaining vertices. Colors and normal
vectors are propagated to interior nodes by averaging. For rendering, the hierar-
chy is traversed until the sphere size approximately matches the output pixel size,
in which case the sphere is splat to the screen using one of several different meth-
ods: simple points provide best performance, while tangent disks textured with
a Gaussian splat achieve best image quality. Although the authors provide little
theoretical discussion of point rendering, their system shows that point rendering
can be competitive to triangle rendering on current graphics system under cer-
tain circumstances (the existence of many uniform geometric details at the pixel
resolution is given as one example).

2.5 Ray tracing

Ray tracing is one of the best researched techniques in computer graphics, and
it is renowned for producing high-quality images. It simulates geometric optics
by tracing rays of light from a virtual viewpoint into an object space. For one
ray, the goal is to find the nearest intersection of the ray with an object along the
ray. Ray tracing was introduced by Appel [Appe68], however, it was the work
of Whitted [Whit80] which made ray tracing popular in computer graphics. The
problem is that in its naı̈ve implementation, each ray must be intersected with each
primitive in the scene. This approach is feasible only for scenes of modest size,
and much research has focused on ways to make this technique more efficient for
complex scenes.

Arvo and Kirk [Arvo89] give a very good survey of ray tracing acceleration
techniques. They classify acceleration techniques in three categories: faster in-
tersections, fewer rays and generalized rays. Faster intersections are obtained by
reducing the intersection costs between a primitive and a ray, or by reducing the
number of ray-object intersection tests. This last category contains the most di-
versity of proposed algorithms. It includes various space subdivision schemes,
directional techniques and hierarchical bounding volumes.

30

Chapter 2 Related Work

2.5.1 Ray casting

The original ray tracing technique is concerned with creating photorealistic im-
ages. When the intersection of a camera ray with the closest object is found, a
local illumination model is evaluated. The reflective, refractive and light source
terms usually found in those models require a huge amount of recursive and light
rays to be shot. Fortunately, the full generality of ray tracing will not be needed
in this thesis.

The goal will rather be to use rays to simulate other rendering algorithms on a
per pixel basis, and only primary rays (from the eye to the first intersection with an
object) will be needed for that. Shooting only primary rays is generally referred
to as ray casting. As a consequence, it is important to reduce the time to intersect
a ray with the scene.

The cost of ray/primitive intersections is not a factor that can be tuned. Op-
timized intersection routines exist for the main primitives of interest, namely tri-
angles (for scene geometry), and spheres and bounding boxes (for bounding vol-
umes). Möller [Möll97] proposes a ray/triangle intersection routine that is effi-
cient, does not require storing the plane equation of the triangle, and provides
the ray-parameter as well as the barycentric coordinates of the intersection point
within the triangle, which is useful for texture mapping and illumination calcu-
lations. The web page [Möll99a] for the book Real-Time Rendering [Möll99b]
contains an up-to-date list of currently known intersection tests between several
different primitives.

The main factor determining ray-casting performance is the efficiency with
which the number of intersections necessary for a ray can be reduced through
a spatial subdivision scheme. Such algorithms can be divided into two classes:
uniform and non-uniform.

Uniform subdivision (i.e., regular grids) has the advantage of being easy to im-
plement, and the cost of traversing each element of the regular grid is very small.
Regular grids have been first used for ray tracing by Fujimoto et al. [Fuji86]. An
alternative efficient grid traversal algorithm has been published by Amanatides
and Woo [Aman87]. Unfortunately, traversal performance degrades when there
are too many voxels because many empty voxels might be traversed and because
of the cost of storage of the voxels. The performance degrades also when there
are too few voxels because of the possibility of having a large number of objects
to intersect within a single voxel. Moreover, there is not yet any good criterion to
determine the optimal grid subdivision for a given scene.

Non-uniform space subdivision can adapt its resolution to the complexity of
a scene and therefore it is less sensitive to the problems of uniform space subdi-

31

Chapter 2 Related Work

vision. Unfortunately, traversing a non-uniform structure is more expensive than
traversing a regular grid. Various non-uniform subdivisions have been used, in-
cluding irregular grids [Giga90], octrees [Glas84], BSP trees [Kapl87] and kD-
trees [Fuss88]. Comparisons between uniform and non-uniform techniques can
be found in various texts [Subr91, Sung91, Jeva89]. Snyder and Barr [Snyd87]
propose to surround each ray with a bounding box, a technique which can be used
along with most of these methods.

Directional techniques rely, as the name indicates, on the direction a ray takes.
These directions are classified by direction cubes subdivided regularly or adap-
tively. The cubes can be located at specific point locations as for the light buffer
(for secondary rays only) [Hain86], onto surfaces as for ray coherence [Ohta87]
or in volumes as for ray classification [Arvo87]. Shaft culling [Hain91] is often
used to test a bundle of rays contained in a shaft against object bounding volumes.

Other algorithms use hierarchical bounding volumes to reduce the number of
ray/object intersection tests. Rubin and Whitted [Rubi80] were the first to use
hierarchies of bounding volumes in ray tracing. Weghorst et al. [Wegh84] and
Goldsmith and Salmon [Gold87] study criteria for choosing efficient bounding
volumes for ray tracing. Kay and Kajiya [Kay86] use slabs as tighter bounding
volumes. However, each of these approaches relies on sorting the intersections
with sub-bounding volumes or primitives each time a bounding volume is entered.
Additionally, intersection tests with bounding volumes are not cheap, and their
number is highly dependent on the scene hierarchy. Often, a modeling hierarchy
is used which is not optimal for ray tracing.

The most efficient algorithms proposed to date consist of combinations of uni-
form and non-uniform subdivisions to alleviate the disadvantages of each structure
while trying to benefit from their respective advantages. Adaptive grids [Klim97],
hierarchical grids [Caza95] and recursive grids [Jeva89] all use regular grids at
different levels of a specific scene hierarchy, which can be made up of a standard
spatial subdivision scheme or again of a grid.

One acceleration method proposed for ray casting is the item buffer [Wegh84]:
a hardware z-buffer is used to determine the first intersections of primary rays.
However, in this thesis we are concerned with speeding up exactly the hardware
rendering step, therefore the item buffer is not a viable acceleration technique for
the methods presented in this thesis.

2.5.2 Complexity bounds

Some researchers have tried to find a formal expression for the complexity of ray
tracing. The naı̈ve ray tracing implementation has a complexity of O(np), where

32

Chapter 2 Related Work

n is the number of objects and p is the number of rays to be shot (equivalent to
the number of pixels in a ray caster). One notable result is that, given a fairly
uniform distribution of objects in the scene, ray casting can be shown to have
complexity constant in the number of objects (O(cp), with c a constant) when
using a regular grid as spatial subdivision scheme [Ohta87, Kapl87]. In practice,
the constants involved are quite large, and a complexity of O(p log n) has proven
a more realistic estimate.

Cleary and Wyvill [Clea88] discuss the optimal number of grid cells for the
regular grid. Again given a fairly uniform scene distribution, 3

√
n can be shown to

be the optimal number of grid cells for a scene with n objects.

Finally, ray tracing is inherently amenable to parallelization. Each individ-
ual ray can be calculated on a separate processor, no interaction is needed with
other rays. Parker et al. [Park99] present an interactive ray tracing system that
achieves up to 20 frames per second on fairly complex scenes, and their system
demonstrates almost linear speedup with the number of processors used.

2.6 Mathematical tools

This section is intended to briefly introduce mathematical notation and tools used
later in this thesis. An excellent treatment of mathematical tools pertinent to com-
puter graphics can be found in Glassner’s book [Glas95]. It deals with the methods
discussed in this section, and contains links to important mathematics textbooks
for further reading.

2.6.1 Bases and their duals

The reader is assumed to be familiar with the basics of vector spaces. Functions
can be added together and multiplied by scalars, thus functions form vector spaces.
While the inner product of two vectors in R3 is

〈v, w〉 = vxwx + vywy + vzwz

the inner product of two functions is defined as

〈 f, g〉 =
∫

f g

33

Chapter 2 Related Work

In what follows, if not otherwise noted, functions and vectors can be used
interchangeably. So, the norm of a vector (or a function) is defined as

‖v‖ = sqrt〈v, v〉 (2.1)

Typical function spaces are made up of all functions over a certain domain for
which expression 2.1 makes sense (i.e., is not infinite—such functions are said to
have finite energy). Two vectors are said to be orthogonal iff 〈v, w〉 = 0. A basis
of a vector space is a set of vectors B1, . . . , Bn such that each vector v can be
uniquely expressed as a linear combination of the basis vectors. In other words,
there exists a unique set of scalars c1, . . . , cn , such that:

v =
n∑

i=1

ci Bi (2.2)

Each vector space has a basis, and the number of elements of a basis defines
the dimension of the vector space. For function spaces, this number is frequently
infinite. A basis is said to be orthogonal if any two elements of the basis are
mutually orthogonal. The dual basis is a set of vectors b1, . . . , bn that fulfills

〈bi B j 〉 = δi j

and forms itself a basis 1. Orthogonal bases are self-dual. Dual bases are
important because they can be used to calculate the scalars in equation 2.2. As
can easily be shown, the following equation always holds:

v =
n∑

i=1

〈bi , v〉Bi

The duals have another property very important for function spaces. Assume
V is a finite dimensional subspace of a (not necessarily finite dimensional) vector
space H (for the mathematically versed: H should be a Hilbert space). Then for
any vector v in H there is exactly one best approximation v ′ in V , i.e., there exists
exactly one vector v ′ ∈ V so that

‖v ′ − v‖ = min
w∈V

‖w − v‖

This element v ′ can be calculated using the duals exactly as in 1:

1Note that δi j denotes the Kronecker delta, defined 1 if i = j , 0 otherwise.

34

Chapter 2 Related Work

v ′ =
n∑

i=1

〈bi , v〉Bi

The vector v ′ is also called the projection of v onto V . The dual basis always
exists and can be calculated by a process called Gram-Schmidt orthogonalization.

2.6.2 Monte Carlo integration

Monte Carlo integration is a powerful tool for the integration of arbitrary functions
and has its roots in some interesting properties of the statistical expected value. Let
X be a random variable and p be a function describing its statistical distribution.
For a one-dimensional, real-valued random variable, for example, this means:

P(X < x) =
∫ x

−∞
p(u)du

(where P(X < x) denotes the probability that X is less than x). The expected
value E pg(X) of a function g on X is then given by

E pg(X) =
∫

g(u)p(u)du

It is interesting that the expected value can be approximated by the mean of
random invocations of g. Assume X1, X2, . . . are all distributed according to p,
then the mean µn is given by

µn = 1

n

n∑
i=1

g(Xi)

and it always holds that

lim
n→∞ µn = E pg(X)

Arbitrary integrals can be evaluated by generating n uniformly distributed
(over the domain of integration) values and taking the mean of the function val-
ues. Better convergence and sample utilization can be achieved if the function to
be integrated is composed of a general part g and a part p which can be easily
integrated: the random values should then be distributed according to p and not
uniformly, and subsequently the mean is taken of the values of g only.

35

Chapter 2 Related Work

The convergence of the integral is usually estimated via the variance sn:

sn = 1

n − 1

n∑
i=1

(Xi − µn)
2 = 1

n − 1

n∑
i=1

X2
i − nµ2

The variance of the approximation µn is then given by sn√
n

.

2.6.3 Sampling theory and antialiasing

Since the days of early raster graphics, aliasing has plagued computer graphics
professionals throughout. Jaggies, moiré patterns, strobe effects and staircase
lines are only some of the names by which aliasing artifacts are generally known.
Signal theory and in particular Fourier analysis has helped tremendously to under-
stand the phenomenon and find remedies for it. Only the most important concepts
will be mentioned here.

To analyze a signal, it is common to look at its spectrum. Each periodic signal
can be written as an infinite linear combination of sinusoids, each a multiple of
the base (lowest) frequency. Aperiodic signals can contain any (spatial) frequency,
thus they are written as an integral over all possible sinusoids. The function giving
the weight for each sinusoid is calculated by the Fourier transform, and is called
the spectrum of the function.

Common image operations can be analyzed in terms of the spectrum: uni-
formly sampling a function (i.e., taking the value of the function at regular in-
tervals) causes the spectrum to be replicated at intervals equaling the sampling
frequency. A function is called band limited if there is a highest frequency in the
spectrum. Obviously, if a function is not band limited, sampling it will cause the
spectrum replica to overlap. This phenomenon is called aliasing, because high
frequencies of the signal will be visible as low frequencies. A band-limited sig-
nal has to be sampled at twice its highest frequency to avoid such overlaps. This
frequency is called the Nyquist frequency.

Signals that are not band limited or that contain higher frequencies than the
Nyquist frequency have to be low-pass filtered by multiplying the spectrum with
a box function (which lets only low frequencies pass). A result of Fourier analysis
is that the same effect can be achieved by convolving the function with a sinc-
function. The convolution of two functions is defined as

(f � g)(x) =
∫

f (t)g(x − t)dt

36

Chapter 2 Related Work

and the sinc as

sinc(x) = sin(x)

x

The sinc function is the ideal low-pass filter, but usually has to be approxi-
mated, for example by a Gaussian. Low-pass filtering a function is usually what
is meant by antialiasing.

To recover a continuous signal from a sampled one, the replica in the spectrum
have to be removed, which can again be achieved by multiplying the spectrum
with a box, or convolving the sampled signal with a sinc. This process is called
reconstruction of the signal, and again, instead of the ideal reconstruction filter—
the sinc—some other filter is usually used as an approximation.

Image operations on digital images usually involve reconstructing a continu-
ous image from the sampled one, transforming it, low-pass filtering the result for
the new resolution, and sampling it again. If the transformation is just a scale, this
is called resampling at a higher (magnification) or lower (minification) resolution.
As magnification does not introduce higher frequencies into a signal, low-pass
filtering is not necessary here.

For instance, bilinear filtering of texture maps is a reconstruction filter, where-
as mip-mapping is an example for a low-pass filter. The last step in a computer
graphics system is usually the display on a computer screen. The reconstruction
filter implied by the phosphors on a CRT resembles a Gaussian. On the other
hand, the first step in acquiring a digital image, for example using a digital camera,
involves a low-pass filter, usually also something like a Gaussian.

Finally, an important similarity between linear algebra and signal theory should
be pointed out: low-pass filtering a function is similar to using dual basis func-
tions to calculate the scalar coefficients in the representation of the function within
a certain basis. The scalar coefficients can be seen as samples of the function, and
reconstructing the function is similar to calculating the linear combination of the
coefficients with the basis functions. Actually, the sinusoids do form a function
basis, and it is an orthogonal basis, therefore self-dual.

2.7 Discussion

This chapter has presented a terse overview of the research pertinent to this thesis.
Sections 2.6 and 2.5 constitute preliminary work in the sense that the techniques
shown will be directly applied in the methods presented in later chapters. The

37

Chapter 2 Related Work

mathematical background will be necessary for point-based impostors, while ray
casting is used in both methods. Section 2.2 presents important background mate-
rial because it shows techniques that have to be used concurrently to our methods.
Good knowledge of graphics hardware and the standard rendering pipeline is a
prerequisite for any real-time rendering system, but is by itself sufficient only for
scenes of modest complexity.

Visibility culling will be frequently used to reduce the geometric complexity
of large models. However, the resulting potentially visible sets will typically still
be too complex to render at monitor refresh rates, however. The situation can be
alleviated by using levels of detail for certain well-defined types of objects. Point
rendering provides an alternative to levels of detail. The point rendering algo-
rithms presented in this chapter bear resemblances to level-of-detail techniques
in that they are intended to efficiently render very complex, but well contained
individual objects.

Indeed, the point-based impostors shown in chapter 5 adapt the idea of point
rendering (section 2.4) to a more general setting. By refining the geometric sam-
pling and appearance filtering aspects of point rendering, point-based impostors
will be able to represent a large number of disconnected objects, typical for distant
views.

Both methods presented in this thesis are in their nature image based. How-
ever, few of the image-based techniques from section 2.3 have been used to sim-
plify distant geometry while working in conjunction with the standard rendering
pipeline. While impostors based on single texture maps are intended for that pur-
pose, they cannot capture parallax effects within objects and provide low overall
visual quality. Similarly, visual quality is also a concern with precomputed im-
postors meshes. Layered depth images do provide correct parallax, but no hard-
ware implementation is available, preventing fast rendering and integration with
the standard rendering pipeline. We will use LDIs, however, to obtain geometric
samples for point-based impostors. Light fields, on the other hand, require geo-
metric information for scenes of large depth variations, and prohibitive amounts
of images would be needed to prevent depth-of-field effects. The point-based im-
postor method can also be seen as an efficient way to add geometric information
to a light field.

38

Chapter 3

Motivation—General Terms

This chapter is intended to lay the ground for the following chapters. It introduces
some terms that will be recurrent throughout the rest of the thesis, such as the near
field and the far field. There will be some clarifications on mathematical notations
for later chapters. Furthermore, the terms discussed here will motivate in the most
general fashion the methods presented later on.

3.1 Near field and far field

Virtually all real-time rendering applications provide the user with a view on the
scene that tries to closely mimic the characteristics of human eyesight. The most
distinguishing feature of visual perception is its ability to recognize depth, partic-
ularly through perspective. Unlike in orthogonal projections, the projected size of
objects varies with their distance to the viewer in perspective projections, so that
objects that are far away do not contribute as much to the image as nearby objects.
Furthermore, the user’s attention is usually more focused on nearby objects, with
which he will typically interact, and not on far away objects.

In contrast to that, traditional rendering pipelines usually spend a large amount
of time on rendering objects that are far away, because the rendering time is pro-
portional to their world-space complexity, not to their screen-space area. This
warrants a distinction of nearby and distant objects.

For the remainder of this thesis, we will use the following terms (this terminol-
ogy was also used by Chamberlain et al. [Cham96], who described an algorithm
to render the far field with a different rendering method):

• near field: designates all objects close to the viewer

39

Chapter 3 Motivation—General Terms

• far field: designates all objects farther away from the viewer (usually all
objects not in the near field)

Obviously, a more precise definition of near field and far field is needed in a
particular application.

One choice is to simply draw the border between near field and far field at a
predefined distance d to the viewer. This distance could be the Euclidean distance
from the viewpoint to the center of the bounding box of the object. The shape of
the near field would then be a sphere with radius d , intersected with the viewing
frustum. Another possibility is to choose the distance along the viewplane normal.
In this case, the near field would be a standard pyramidal viewing frustum with
the far plane placed at d . The far field would also be a standard viewing frustum,
but with the near plane at d and the far plane at infinity.

Near and far field need not be defined through a fixed borderline distance.
It could be defined on a frame-by-frame basis through the characteristics of the
scene and the rendering algorithms used. For instance, objects could be sorted
according to their distance, or alternatively to their projected screen area. The near
field could then be defined to contain objects up to a certain polygon budget. This
is especially interesting for frame-rate control: if the rendering speed of objects
is mainly determined by their polygon count, a maximum frame time could be
guaranteed by drawing only the near field.

When a distinction of a scene into near field and far field has been made, the
question remains how to make use of this distinction. A common approach used
in games is to fade out the near field with a fog function, and not to draw the far
field at all. Some games use environment maps to represent very distant objects
such as mountain ranges or sky, but in general, this approach is limited in the
quality that can be achieved. Important information can reside in the far field, and
the resulting popping artifacts from geometry crossing the line between far field
and near field disturb the user. Other alternatives to draw the far field are impostor
meshes, ray casting as proposed in the next chapter, or point-based impostors.

3.2 Online and offline calculation

Accelerating real-time rendering applications requires some a priori knowledge
about the scene. This knowledge can be generated automatically in an offline
phase, or it is already available, in which case it usually needs to be converted
into a form usable by the algorithm. Furthermore, some algorithms execute the
bulk of their computation online, during the walkthrough, while other algorithms

40

Chapter 3 Motivation—General Terms

precompute most of the needed information beforehand, and only require a table
lookup in the online phase.

Both variations have advantages and disadvantages:

• An online algorithm can be applied immediately to any dataset. Many
datasets are volatile and change frequently, so any lengthy precomputations
as required in offline algorithms would hinder their usability. This may not
always be a concern: fixed datasets in commercial software are a good can-
didate for precomputation, because the result of the precomputation will be
used for a long time.

• Online algorithms can be applied to datasets that change during runtime. In
many cases, this makes for a more flexible environment, and is a prerequi-
site for modeling applications where the goal is to change the environment.
Offline algorithms usually don’t allow the environment to change. Again,
this may not always be a concern.

• However, online time is a scarce resource. In order to maintain a frame rate
of 60 Hz, for example, only 16 ms are available in total per frame. An on-
line algorithm that takes 20 ms to execute might achieve large speedups in
rendering, but it will never allow the application to run at the desired frame
rate. Even if some concurrency with the graphics accelerator is possible,
the bulk of the available frame time should be dedicated to rendering ge-
ometry, not on deciding what geometry to render. This does not preclude
online algorithms—it only means that they should be fast enough. Offline
algorithms have the advantage that they can spend large amounts of time
on optimization. Often, this results in better speedups for the final applica-
tion. Yet even for offline algorithms, computation time is a concern: several
minutes of precomputation might be inconvenient, but acceptable, whereas
several hours usually are a nuisance. Still, in many cases the result is worth
the wait.

The final decision on online or offline algorithms depends on the application re-
quirements, if there is a choice at all. This thesis presents examples of both vari-
ants. Ray casting is a typical example of an online algorithm, while point-based
impostors are calculated offline.

3.3 Notation of vectors in this thesis

To simplify notation, vector parameters will be frequently used for functions
throughout this thesis. For example, the plenoptic function shown earlier will

41

Chapter 3 Motivation—General Terms

be written as P(s, ϕ), where s is a three-dimensional position vector and ϕ a
three-dimensional orientation consisting of azimuth and elevation.

42

Chapter 4

Ray Casting with Image Caching
and Horizon Tracing

4.1 Introduction

An important application of real-time rendering is the so-called “walkthrough-
scenario”. The user has control over camera position and camera orientation, and
navigates an interactively rendered virtual environment.

Of the methods discussed in chapter 2, many are applicable to the walkthrough
scenario, depending on the type of virtual environment: Indoor scenes can be effi-
ciently handled using portal rendering. For sparsely populated outdoor scenes, the
level-of-detail approach is viable, providing a number of representations for the
same object with different rendering costs. Image-based rendering has been pro-
posed for very general, complex scenes. More recently, occlusion culling methods
have been investigated to handle densely occluded, yet unrestricted scenes, for ex-
ample urban environments.

In this chapter, we present a new approach to the problem of interactively ren-
dering large virtual environments. We begin by noting several basic observations,
valid especially in the case of densely occluded outdoor environments, such as
urban environments:

• A large part of the screen is covered by a small set of polygons that are very
near to the observer (in the near field).

• Another large part of the screen is covered by sky.

• Pixels that do not fall into one of these two categories are usually covered
by very small polygons, or even by more than one polygon.

43

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

Horizon

Far Field

Figure 4.1: Ray casting is used to cover the pixels of the far field (beyond 100 m). Pixels
above the horizon are culled early.

• The number of polygons that fall outside a certain “area of interest” is usu-
ally much larger than what a polygonal renderer can handle—but they still
contribute to the final image.

The main contribution of this chapter is a new algorithm for accelerated ren-
dering of such environments. It exploits the observations listed above: the scene is
partitioned into near field and far field. The near field is rendered using traditional
graphics hardware, covering many pixels with polygons, whereas the far field is
rendered using an alternative method. Every pixel not covered by a near-field
polygon undergoes a multi-stage image-based rendering pipeline in which it is
either culled early or sent to the last stage, a ray casting algorithm (see figure 4.1).

The method can be seen as a hybrid hardware / image-based rendering algo-
rithm that uses a new way to obtain images on the fly with very low memory
overhead. The algorithm is in its nature output sensitive [Suda96]: by restricting
hardware rendering to the near field, approximatively constant load of the hard-
ware graphics pipeline can be achieved. The remaining pixels are also obtained in

44

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

Database

Traversal
Transform Rasterization

Figure 4.2: The traditional rendering pipeline consists of three steps.

an output-sensitive manner: both the culling stage and the ray casting stage can be
shown to have linear time complexity in the number of pixels only. Ray casting,
if combined with an acceleration structure, is less than linear in the number of
objects.

4.2 System overview

The traditional polygonal rendering pipeline consists of three basic steps (fig-
ure 4.2). Depending on the architecture, each of them may or may not be ac-
celerated in hardware. What is obvious, though, is that the time complexity of
rendering the scene is always linear in the number of primitives, because arbitrar-
ily many objects may be visible at any one time.

We introduce a second stage to the pipeline, which is not primitive-based, but
purely image-based (figure 4.3). Each of the two stages is able to render the whole
scene alone, but both would be equally overloaded by the whole database. Thus,
rendering of the scene is distributed to the two stages by partitioning the scene into
near and far field. All primitives within a distance less than a certain threshold are
sent to the polygonal renderer. The second stage passes over all the pixels in the
image and fills those that have not yet been covered by near-field polygons with
an appropriate color.

In the pixel stage, various mechanism exist to allow early exits before a ray is
cast to obtain the color information (figure 4.4):

• Pixels already covered by polygons are recognized by an opacity buffer that
is created during the first stage.

• Pixels which fall into an area covered by sky are recognized by a horizon
map created before the second stage.

• If a pixel fails those two tests, but its validity is still deemed to be within a
valid error range, the pixel color is looked up in an image cache.

45

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

Database

Traversal
Transform Rasterization

Pixel

Traversal
Image Cache Raycasting

Stage 1:

Near Field

Stage 2:

Far Field

Figure 4.3: The extended rendering pipeline uses a polygonal pipeline for the near field
and an image-based pipeline for the far field.

Horizon Map
Cache

Lookup

Opacity

Buffer

Figure 4.4: The image cache is composed of three stages.

Only if all these three tests fail, a pixel is sent to the final step in the pipeline,
the ray caster. It is important to note that, while ray casting is a very costly tech-
nique in itself because it has to be done purely in software, the time complexity
of the ray caster is still less than linear in the number of objects. Also, by re-
stricting the number of polygons sent to the graphics hardware, the time spent in
the polygonal graphics pipeline is bounded as well (given a reasonably uniform
distribution of primitives in the scene). Thus, the overall algorithm can be said
to be output-sensitive, i.e., its time complexity is linear in the number of visible
primitives only, but less than linear in the total number of primitives.

4.3 Ray casting

4.3.1 Near field / far field

As already noted in section 3.1, when rendering a large scene, a huge number
of objects can reside in the area defined by the viewing frustum, but only a small

46

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

amount of those objects actually contribute to the appearance of the image. Large,
near objects usually have much more impact on appearance than small and far
away objects.

It should therefore be possible to determine a set of objects that have the most
contribution to the image, and only render this set of objects. The simplest way
to achieve this is to select all objects within a maximum distance of the viewer.
We define the near field to be the space where these particular objects reside. This
approach is very popular, especially in computer games, and it is often combined
with fogging, so that the transition between the near field and the space where
objects are simply not rendered is not so sudden.

Obviously, culling away all objects that do not belong to the near field intro-
duces severe visual artifacts. The far field contains objects beyond the near field,
but not so far away as to be totally indiscernible. An important property of the far
field is that it usually

• consists of much more polygons than the graphics hardware can render, but

• contributes to only very few pixels on the screen, because most of the pixels
have already been covered by near field polygons.

To take advantage of this fact, a separate memory buffer, the opacity buffer, is
used. For every frame, it records which pixels have already been covered by the
near field.

The basic algorithm for our image-based rendering technique using ray casting
is as follows:

1. Find objects in the near field using a regular grid.

2. Render those objects with graphics hardware.

3. Rasterize them into the opacity buffer.

4. Go through the opacity buffer and cast a ray for each uncovered pixel (enter
the resulting color in a separate buffer).

5. Copy the pixels gained by ray casting to the frame buffer.

47

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

4.3.2 Ray casting

We claim that ray casting is an appropriate technique for acquiring images for
image-based rendering on the fly. This might seem strange at first glance, because
ray casting (ray tracing) is known to be a notoriously slow technique. The rea-
son for that is its high complexity: in a naı̈ve approach, every object has to be
intersected with a ray for every pixel, so the complexity is O(pn) as discussed in
section 2.5.2. In our approach, we cast only primary rays into the scene through
individual pixels and find the first hit, i.e., the first intersection with an object in
the far field. No secondary rays have to be cast, and we are interested in so-called
first-hit acceleration techniques.

From the first days of ray tracing, acceleration structures have been used to re-
duce the number of ray-object intersection tests for individual rays. As discussed
in section 2.5.1, the two most popular are bounding volume hierarchies and hier-
archical space subdivision. Of all the methods proposed, the regular grid approach
is the most interesting for our purpose: space is partitioned uniformly into a grid
structure, and all objects are entered into the grid cells with which they intersect.

It has been shown (see section 2.5.2) that theoretically, using an appropriate
acceleration structure, the time complexity of ray tracing can be reduced to O(1),
i.e., constant, in the number of objects (although this constant may be very large).
In our experiments we have observed a sublinear rise in the time to cast rays into
a very large scene.

The advantage of the regular grids is their speed. Also, given a more or less
uniform distribution of objects—which we can safely assume for many types of
virtual environments—the memory overhead is very low. Tracing through a grid
is fast, using for example Woo’s incremental algorithm [Aman87] which only
requires few floating point operations per grid cell. If more objects are added,
runtime behavior can even improve because rays will collide earlier with objects
than if there were huge empty spaces in the grid.

The regular grid also provides a simple solution to view-frustum culling, which
is necessary to quickly find the objects that have to be rendered in the near field.

Note that since ray casting and hardware rendering provide color values for
the same image, care has to be taken to implement the same lighting and shading
model for both. The color values produced in the frame buffer by an OpenGL
system, for example, are well specified and can easily be simulated in the shading
module of the ray caster, so that the distinction between near and far field is not
visible on screen.

For certain scenes, ray casting alone might already be sufficient and moder-
ate gains can be observed. But generally, this still leaves too many pixels for

48

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

which rays have to be cast, and while the time required for ray casting is relatively
independent of scene complexity, casting a single ray is expensive compared to
polygonal rendering and thus only tractable for a moderate number of pixels. The
following sections explain how image caching and horizon tracing can be used to
drastically reduce the number of rays that have to be cast.

4.4 Image caching

4.4.1 Panoramic image cache

Usually, walkthrough sequences exhibit a considerable amount of temporal coher-
ence: the viewpoint changes only by a small amount between successive frames.
We exploit this coherence in our system: instead of tracing every far-field pixel
every frame, we retain all the color values of the previous frame and try to retrace
only those pixels that are outdated according to some error metrics.

The validity of pixels depends strongly on the type of viewpoint motion:

Forward/Backward motion: This makes up for a very large amount of motions
in a walkthrough sequence. The farther away an object is, the smaller is the
amount of pixels it moves on the screen due to forward/backward motion.
Many pixels will even remain at the same location, so just reusing the pixels
from the previous frame is already a good first approximation.

Head Rotation: Rotation is quite different from forward/backward motion: reus-
ing the contents of the frame buffer would indeed be a very bad solution,
because all pixels would be wrong. But actually, many pixels are still valid,
they have just moved to a different position. So what is needed is a method
to store traced pixels that does not depend on the orientation of the viewer.

Panning (left/right, up/down): This type of movement is similar to rotation in
that most pixels move to a different place.

Our assumption is that forward/backward motion and rotation will be the ma-
jor types of motion in a walkthrough sequence. We therefore choose a represen-
tation which is independent of viewpoint rotation: a panoramic image cache.

Panoramic images have been demonstrated to be a very efficient tool to store
full views of a scene where rotation is allowed. We use the panoramic image cache
not for presenting a precomputed panorama as for example in the Quicktime VR
system [Chen95], but we use it as a rotation-independent image cache.

49

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

Viewpoint

Ray Ray

Viewpoint

Image Plane

Im
ag

e
P
la

ne

Environment Map Environment Map

��

�

Figure 4.5: Indexing into the panoramic image cache: Given a pixel on the image plane,
an angle α can be calculated with respect to the image plane center. This angle does not
depend on the initial viewer orientation α0, therefore it can be precomputed and stored
in a lookup table. So, indexing into the image cache consists of looking up α in a table,
adding the viewer orientation α0 and rescaling this value to fit the resolution of the image
cache.

When a ray is cast through a pixel on the (flat) screen, its position on the
(curved) map is calculated and the color value obtained by the ray is entered in
this position (figure 4.5). If, at a later time, another screen pixel projects to the
same position in the curved map, its value can be reused if it is still good enough.

The major advantage of using a panoramic image as an image cache is that the
validity of pixels stored in the map is invariant under rotation. This means that,
as long as the viewpoint does not change, all image elements already calculated
and stored in the map can be reused in the new image, provided they still fall into
the viewing frustum after rotation. This speeds up rotation considerably: only the
very small amount of pixels that appears newly at the border towards which the
viewer is rotating has to be retraced. All other pixels can be reused, and their
values will be correct.

In the case of forward/backward movement, the behavior of the map resembles
that of a normal, flat image map: reusing the previous panoramic map will be a
good approximation to the image and many pixels will be in the correct location.
Panning causes more pixels to be invalidated if no costly reprojection is used.

50

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

4.4.2 Cache update strategy

Assuming that pixels which have been traced in a previous frame are retained in
an image cache, the algorithm has to decide which pixels are considered good
enough according to a certain error metric, and which pixels have to be retraced.
In an interactive walkthrough system, the decision can also be based on a given
pixel-budget instead of an error metric: which pixels are the most important ones
to retrace, given a maximum amount of pixels available per frame.

As with any speedup-algorithm, worst-case scenarios can be constructed that
do not benefit from the algorithm. In such a case, our approach allows progressive
refinement by iteratively retracing all necessary pixels every frame. As soon as
the scenery gets more suited to the algorithm or the observer does not move for a
short moment, the system is able to catch up again.

To select an appropriate set of pixels to retrace, we assign a confidence value
to each pixel in the map. The pixels are then ordered according to their confidence
values and tracing starts with the pixels that have the lowest confidence, proceed-
ing to better ones until the pixel budget is exhausted. Finding a good heuristic
for the confidence value of a pixel is not trivial. We have chosen the following
approach:

Every frame in which the observer moves more than a certain distance (rota-
tion is not taken into account, as the image cache is rotation-independent), a new
confidence record is created, which contains the current observer position (fig-
ure 4.6). All pixels which are traced during this particular frame are assigned a
pointer to the current confidence record (pixels which have not been traced at all
point to a “lowest-confidence” record).

After a few frames, there will be a certain amount of confidence records (as
many as there were distinct observer positions), and each pixel in the image cache
will reference exactly one of those records. This information is used as follows:

During the polygonal rendering stage, a new opacity buffer is created. All
pixels of this buffer are visited sequentially. If a pixel is covered by a polygon, it
is ignored. If not, a lookup is done into the image cache to find out the confidence
record associated with this pixel. The confidence record also contains a pixel
counter which is then incremented.

After all pixels have been visited, each confidence record contains the number
of pixels that refer to it in its internal counter. Now, the observer position stored in
each confidence record can be compared to the current observer position and the
distance between the two is remembered as the current confidence value of this
confidence record. All confidence records are sorted according to this confidence
value.

51

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

CacheElement {
Color;
Pointer to ConfidenceRecord;

};
ConfidenceRecord {

ObserverPosition;
PixelCounter;
CurrentConfidence;

};

Figure 4.6: The basic data-structure used in the cache and for keeping track of confidence
values.

Scanning through the confidence records from worst (farthest away) to best
(nearest), we add up the counted pixels until the pixel budget is met. This gives
a threshold distance: all pixels farther away than this threshold distance will be
retraced. Nearer pixels will be reused from the image cache.

This is accomplished by going again through the opacity buffer, indexing into
the image cache for every unoccluded pixel and casting a ray for the pixel if its
distance (which can be found out by following its pointer to the associated confi-
dence record) is greater than the threshold distance.

One problem with this approach is that it occurs quite often that all pixels
share the same confidence value: if the observer stands still for a while and then
suddenly moves, all pixels will be assigned the same new confidence value. In
this case, the confidence values are not a good indication of where ray casting
effort should be spent. We therefore only trace every n-th pixel that has the same
distance, such that the pixel budget is met. In the subsequent frame, the remaining
pixels will then be selected automatically for retracing.

The distance between the current and previous observer position is used as an
error estimation because the panoramic image map is rotation-independent, hence
the only value that changes between frames with respect to the map is the observer
position. A more elaborate scheme could also store orientations with each confi-
dence record and compare this to the current orientation. For reasons of efficiency,
we have chosen the more simple approach of keeping the error estimation inde-
pendent of rotation. It would be interesting to investigate whether performance
improves if one takes additional information about the hit object or the distance
to the intersection point into account.

To sum up, our update strategy makes sure that pixels are retraced in the order

52

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

of their distances to the current observer position, taking into account a pixel
budget that allows for graceful degradation if the demand for pixels to be retraced
is too high in a particular frame. Note that on average, the area left for ray casting
only covers a small portion of the screen.

4.5 Horizon tracing

Let us reiterate some typical properties of virtual environments: they have

• a polygonal floor, and

• either a polygonal ceiling or

• empty sky.

For indoor scenarios with a polygonal ceiling, the system as presented so
far would already be sufficient. Problems arise, however, for outdoor scenarios
with large areas of empty sky. Theoretically, the ray tracing acceleration structure
should take care of rays that do not hit any object in the scene. But in fact, even
the overhead of just setting up a unique ray for every background pixel is much
too large as to be acceptable. The usual case in outdoor scenes is that between
one third and one half of the pixels are covered by polygons. A very small part is
covered by far-field pixels that do hit objects, but the rest of the screen is covered
by sky.

If it were possible to find out where the sky actually starts, most of the sky
pixels could be safely ignored and set to a background color or filled with the
contents of a static environment map.

We assume that the viewer only takes upright positions, i.e., there is no head
tilt involved. This is a reasonable restriction in a walkthrough situation. Then,
we observe that the screen position where the sky starts only depends on the x-
coordinate in screen space, i.e., on the pixel column. So, for every pixel column
we have to find out the y-coordinate of the horizon.

This, again, is a problem that can be solved by ray casting, but in two-dimen-
sional space. In addition to the 3D regular grid that is used for tracing pixels, a 2D
regular grid is created that contains the height value of the highest point in each
grid node—a two-dimensional height field.

For every frame, a two-dimensional ray is traced through this height field (fig-
ure 4.7) to find the grid node that projects to the highest value in screen space

53

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

Image Plane

Viewing Position 1

Viewing Position 2

Heightfield

Figure 4.7: The image shows a cut through the height field along the path of one particu-
lar horizon ray cast from two viewing positions with different heights. Note that it is not
always the highest point in the heightfield that determines the height of the horizon on the
screen.

(note: this need not be the highest point in absolute coordinates!). All pixels with
a height above this value can be ignored and set to the background color.

Our results indicate that the reduction in the number of pixels to trace was so
substantial that the total time spent ray casting and the time spent horizon trac-
ing were comparable. This makes horizon tracing itself a further candidate for
acceleration.

One way to speed up horizon tracing is to carefully adjust the resolution of
the height field. As opposed to pixel ray casting, rays cast through the height field
have to travel through the whole 2D grid so as to find the point whose projection
has the highest y-value on the screen. Whereas the 3D grid profits from higher
resolution because of improved intersection culling, it is detrimental for horizon
tracing because of the large number of grid cells that have to be visited. Even
though a coarser grid tends to overestimate the horizon height, the speedup gained
through faster horizon tracing makes up for this.

Another way to speed up horizon tracing is to apply the principle of graceful
degradation to the horizon map in the same manner as to the image cache: as long
as the viewer is moving, the horizon is subsampled and the locations between
samples are filled with the maximum of the adjacent samples.

54

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

0

100

200

300

400

500

600

700

800

900

1

1
5

2
9

4
3

5
7

7
1

8
5

9
9

1
1

3

1
2

7

1
4

1

1
5

5

1
6

9

1
8

3

1
9

7

2
1

1

2
2

5

2
3

9

2
5

3

2
6

7

2
8

1

2
9

5

3
0

9

3
2

3

3
3

7

3
5

1

3
6

5

3
7

9

3
9

3

4
0

7

4
2

1

frames

ti
m

e
(m

s)

Hardware Full

Output Sensitive Algorithm

Hardware Near Field

Figure 4.8: The chart compares full hardware rendering (far plane set to infinity), our
new output sensitive algorithm, and hardware rendering (far field not rendered) with the
far plane at 100 m. The image resolution was 640x480 pixels for all tests. The average
frame rates were 2.0 fps for full hardware rendering and 9.25 fps for the new algorithm,
so the speedup is about 4.6.

4.6 Results

The algorithms described in this chapter have been implemented and tested in an
application environment for creating professional computer games. The system
was tested with a Pentium 233MMX processor, which was moderately fast for a
consumer PC at the time when the tests were conducted. The 3D board used was a
3DFX Voodoo Graphics, one of the first PC graphics boards providing significant
pixel fill rate. Both CPU and graphics power have increased about tenfold since
the implementation of these tests, so the results shown here are still a good esti-
mate of the speedup that is possible on current systems. The implementation is
quite crude, and performance gains are likely to be achieved by careful optimiza-
tion of critical per-pixel operations. New SIMD instructions available in current
CPUs give further room for optimization.

One problem to be solved is how to create an occlusion map, and how to
reuse it for rendering. Surprisingly, graphics hardware is not of much help in this
case: transfers from frame-buffer memory to main memory are usually very slow,
except theoretically in some specialized architectures which incorporate a unified
memory concept (e.g., the Silicon Graphics O2 [Kilg97]).

Therefore, while the near field is rendered in the frame buffer using graphics
hardware, we create a 1-bit opacity buffer with a very fast software renderer, tak-
ing advantage of the fact that neither shading nor depth information is required
for the opacity buffer. Our current implementation is limited to upright view-

55

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

ing positions only. This restriction is inherent to the horizon tracing acceleration,
and we believe that it does not severely infringe on the freedom of movement in a
walkthrough environment. With respect to the image cache, a spherical map could
easily be used instead of the cylindrical map that we chose to implement, allowing
the viewer to also look up and down.

Although our ray caster can simulate the color values produced by hardware
rendering exactly, we observed that typical far-field triangles do not cover more
than one or two pixels. As we are also using a prelit model, we decided to store for
each triangle a precalculated color value with lighting and texture (on the lowest
mip-map level) already applied. This avoids having to find the exact intersection
point and evaluating the lighting model for each triangle intersection. We did not
notice a significant degradation in image quality due to this optimization.

The first graph (figure 4.8) shows the time taken to render each frame of a
recorded walkthrough sequence (about 400 frames) through a moderately large
environment, a city containing approximately 150,000 triangles. Two of the se-
ries are for pure hardware rendering only, with the far plane set to infinity in one
case and 100 meters in the other case. The far field is not rendered at all, and
our algorithm disabled completely (so there is no overhead for tracing horizon
pixels, creating or going through the opacity buffer etc.). It shows that up to a cer-
tain distance, graphics hardware can render the scene very quickly, but of course
misses out on a considerable amount of the background. But if the whole scene
is rendered indiscriminately, the hardware simply cannot cope with the amount of
triangles, and the frame rate drops to an unacceptably low value.

Obviously, these are the two extremes between which our algorithm can or
should operate. It will certainly not get faster than just rendering the near field,
but it should be considerably faster than rendering the whole scene with triangles
only. The third series shows how the algorithm performs for the same walkthrough
sequence with the far plane set at 100 meters—ray casting, image caching and
horizon tracing enabled. A speedup of up to one order of magnitude over render-
ing the full scene in hardware can be observed.

To give a feeling for the operating behavior of the algorithm, the second graph
(figure 4.9) shows frame times for our algorithm with different near-field sizes
(i.e., the far plane set to different values). Increasing the far-plane distance beyond
a certain limit reduces performance, because more triangles have to be rendered,
but they do not further reduce the number of pixels that have to be traced. Setting
the far plane too near gives a very non-uniform frame rate.

The third graph (figure 4.10) gives an impression of what the algorithm is
capable of if the screen resolution is reduced and the scenery is more complex
(in this walkthrough sequence, almost all of the polygons were in the viewing

56

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

0

50

100

150

200

250

300
1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

3
2

1

3
3

7

3
5

3

3
6

9

3
8

5

4
0

1

4
1

7frames

ti
m

e
(m

s)

Backplane: 200m

Backplane: 100m

Backplane: 50m

Figure 4.9: The chart compares the behavior of the algorithm with respect to the size of
the near field at a resolution of 640x480 pixels.

Of 307,200 pixels . . . Min [%] Avg. [%] Max [%] Avg. [#]

ray cast and hit an object 0.00% 0.13% 0.49% 400
ray cast and missed 0.00% 0.10% 0.38% 307
taken from the image cache 0.00% 0.13% 0.81% 399
culled by horizon tracing 7.38% 23.76% 39.21% 72,990
covered by polygons 60.37% 75.98% 92.62% 233,410

Table 4.1: Illustrates that very few pixels have to be calculated using ray casting in a
densely occluded environment (measured at a resolution of 640x480 pixels)

frustum most of the time, so view-frustum culling is not able to cull geometry).
Table 4.1 shows that the performance of the output sensitive algorithm is due to
heavy occlusion in the walkthrough sequence.

The images at the end of this chapter (figures 4.11 and 4.12) show two views
of the virtual city the walkthroughs were recorded in. The border to the far field is
indicated by a line. In figure 4.11 there is a view from an elevated position, which
does not satisfy the assumptions because there is no significant occlusion. The
expected frame rate for such a view is about 4 frames per second for a resolution
of 640x480 pixels (hardware rendering alone would be about 1 frame per second).
Figure 4.12 represents a typical shot from a walkthrough sequence that does fulfill
our assumption of dense occlusion.

Note that for the walkthroughs shown and with the parameters chosen, the
algorithm did not need to resort to graceful degradation (i.e., not tracing all rays
every frame). This did occur, however, in some parts of the model with wide open
spaces, and when the near field was too small.

57

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

0

200

400

600

800

1000

1200

1400
1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

4
2

1

4
4

1

4
6

1

4
8

1

5
0

1

5
2

1

5
4

1

5
6

1

5
8

1

6
0

1

6
2

1frames

ti
m

e
(m

s)

Hardware

Output Sensitive Algorithm

Figure 4.10: Frame times for a different walkthrough sequence at a resolution of
320x240 pixels. The average number of polygons in the viewing frustum was higher
than in the first sequence, making hardware rendering even slower. The average frame
time for hardware rendering was 1.1 fps, for the new algorithm 16.3 fps, so the speedup
is 14.8.

4.7 Discussion—advantages and shortcomings

4.7.1 Scalability

The rendering algorithm described in this chapter is applicable to a wide range
of environments (see applications). The same is true for the type of platforms it
can be used on. Originally, it has been designed with the consumer PC in mind,
where almost every new computer is equipped with a 3D accelerator. These accel-
erators share a common property: they are very good at triangle rasterization, but
the transformation step has to be done by the main CPU. Rendering scenes that
contain a lot of primitives easily overloads the transformation capabilities of the
CPU, and the 3D card is idle. Instead of transforming all primitives with the CPU,
the algorithm can put this processing power to better use: by using the methods
described, and some a priori knowledge about the scene, the 3D accelerator is
used to quickly cover the near field with polygons, and the remaining CPU time
is used for the pixel-based operations.

The algorithm is not restricted to such a platform, though. As the power of
the 3D pipeline increases, the size of the near field can be increased as well, thus
leveraging the additional triangle processing power of the pipeline. More pixels
will be covered by polygons, and even fewer pixels will be left to send to the
ray casting step. This is especially true if the geometry transformation stage is
implemented in hardware, as is more and more the case even for consumer PCs

58

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

and 3D workstations.

But even if a high-end graphics pipeline exists, the ideas of this paper are
valid: there will always be scenes too large and too complex to handle even with
the best graphics hardware. Adjusting the size of the near field to the speed of the
polygon pipeline provides a good parameter for tuning an application for speed
on a specific platform.

This means that the approach scales very well with CPU processing power as
well as with graphics pipeline speed, and the result is an output-sensitive algorithm
that can be used in many different setups.

4.7.2 Aliasing

No speedup comes without a cost. There are two reasons why aliasing occurs in
the algorithm: first, ray casting itself is a source of aliasing because the scene is
point sampled with rays (the same is true for hardware geometry rendering, by the
way). The other reason is aliasing due to the projection of the flat screen into a
curved image map and back.

In both cases, antialiasing would theoretically be possible, but it would have a
heavy impact on the performance of the algorithm, thus defying its purpose, i.e.
to accelerate interactive walkthroughs. In chapter 5, we will present a method to
remedy aliasing effects. In contrast to the online method presented here, however,
this method will require a significant amount of preprocessing.

4.8 Applications

There is a variety of applications where the algorithms presented in this chapter
could be applied. Foremost, there is:

4.8.1 Walkthroughs

Many types of virtual environment walkthroughs fulfill the basic preconditions the
algorithm requires. First and foremost, urban environments are ideal to showcase
the points of this chapter. Especially in a city, most of the screen is covered by the
buildings that are near to the viewer. But there are also several viewpoints where
objects are visible that are still very far away—imagine looking down a very long
street. Polygons cover the right, left and lower part of the image, a good part
of the sky is caught by horizon tracing, and the remaining part can be efficiently

59

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

found by ray casting. Note that under normal circumstances, such scenes are
either excruciatingly slow to render, or the far-plane distance is simply set so near
that the result does not look very convincing.

Any other scenery that is densely occluded is also suitable. For example, walk-
ing through virtual woods is very difficult to do with graphics hardware alone—
but with our algorithm, a good number of trees could be rendered in the near field,
and the remaining pixels traced.

4.8.2 Computer Games

In recent times, first person 3D computer games have gained immense popularity.
Many of them are restricted to indoor environments, because portal rendering
provides a very good solution for the complexity problem in this case. But few
have ventured to outdoor scenarios, and most of those who have rely on heavy
fogging to reduce the amount of polygons to render. Sometimes the far plane
is not set much farther than 10–20 meters, which does not provide for a very
realistic feeling. Using the described algorithm, the perceived far plane can be
pushed back to the horizon, or at least a considerable distance further away, as the
space between the previous far plane and the horizon can be covered by far-field
rendering.

Neither graphics hardware nor processing power will be lacking for computer
games in the near future, as both are rapidly catching up with workstation stan-
dards. The benchmarks were done on a system whose performance is by no means
state of the art even for a PC environment (see section 4.6), but they show that
good results can be achieved nevertheless.

4.8.3 Portal Tracing

Previous work [Alia97] has suggested the use of textures as a cache for rendering
portals in indoor environments. Those textures are calculated by using graphics
hardware. We believe that it might be advantageous to use ray casting to trace
through the portals: far away portals cover only a small amount of space on the
screen, so there are very few pixels to trace—but the amount of geometry behind
a portal can still be quite large, especially if portals have to be traced recursively.
Of course in this case, the horizon tracing stage can be omitted.

60

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

Far Field Border

Figure 4.11: A view over much of the virtual city that was used for the walkthroughs.

4.8.4 Effects

A potential application for some of the ideas of this chapter is to render certain
special effects that do not require high accuracy: reflections on partly reflective
surfaces can be adaptively ray traced using only a small number of rays—the effect
would be visible, but one can avoid having to rerender the whole scene multiple
times as is usually necessary for such effects.

61

Chapter 4 Ray Casting with Image Caching and Horizon Tracing

Far Field Border

Figure 4.12: A typical view from a walkthrough sequence in the city.

62

Chapter 5

Point-Based Impostors

5.1 Introduction

Figure 5.1: A scene from an urban walkthrough. Geometry in the red region has been
replaced by a point-based impostor, providing for fast, antialiased rendering of the far
field.

A general and recently quite popular approach to handle the interactive dis-
play of complex scenes is to break down the view space into cells (view cells)
and compute optimizations separately for each view cell. A typical example is
region visibility, which calculates the potentially visible set (PVS) of objects from
a specific view cell.

In this chapter we address the problem of simplifying distant geometry (the
far field) for view cells (see figure 5.1). This is an important problem because
rendering distant geometry often leads to aliasing artifacts (see section 3.1) and,
even after visibility calculations, the amount of geometry remaining in the PVS is
often overwhelming for current graphics accelerators.

63

Chapter 5 Point-Based Impostors

We begin by defining our goals in this process. First, we set out to build a rep-
resentation that provides a high-quality rendered image for all views from a spe-
cific view cell. This means that we try to avoid artifacts such as holes, aliasing or
missing data, and that we require high fidelity in the rendering of view-dependent
appearance changes. Second, we insist that our representation be as compact
as possible, while being amenable to hardware acceleration on consumer-level
graphics hardware.

Distant geometry has some peculiarities resulting from its complexity that
make simplification difficult:

• One aspect is that because of limited image resolution and perspective pro-
jection, typically several triangles project to a single pixel. This makes an-
tialiasing and filtering an important issue.

• Another aspect is that we can not rely on surfaces to drive the simplification
process: the triangles that project to one pixel can stem from disconnected
surfaces and even from different objects. This means, for example, that
there is no well-defined normal for such a pixel.

Generally, simplification can be based either on geometric criteria as in most
level-of-detail approaches, or on image-based representations. Geometric simpli-
fication is useful for certain models, but has its limitations. Scenes with alpha
textures, regular structures as found in buildings, chaotic disconnected structures
as found in trees, or new shading paradigms such as pixel and vertex shading are
not easy to deal with even in recent appearance-based simplification methods. We
will therefore concentrate on image-based simplification approaches.

We observe, however, that none of the simplified representations proposed to
date meets all the goals defined above:

• Layered depth images (LDIs) and similar representations introduce bias in
the sampling patterns, and cannot accommodate situations in which many
primitives project onto each pixel of a view. In the presence of such mi-
crogeometry, we also have to be aware that appearance can change with the
viewing direction. This requires a representation with directionally depen-
dent information, such as a light field.

• Light field approaches are powerful enough to cope with complex and di-
rectionally dependent appearance. However, geometric information needs
to be incorporated into the light field in order to obtain acceptable quality
within a reasonable amount of storage space [Chai00]. A possible starting
point to build an impostor would therefore be a surface lightfield [Wood00],

64

Chapter 5 Point-Based Impostors

but as the name of this primitive already indicates, this requires a surface
(and its parameterization).

In this chapter we introduce a new representation for a complex geometric
model that is especially useful to build impostor objects to replace the far field
for a given view cell. The proposed representation effectively decouples the ge-
ometry, represented as a set of 3D points, and the appearance, represented as a
simplified light field computed from the original model. In our algorithm, the
points are selected from a number of viewpoints, chosen so as to approach a min-
imal sampling criterion in image space, across the entire view cell. Therefore
our sampling mechanism prevents the appearance of holes. In the context of very
complex models composed of a great many independent primitives, 3D points can
not be considered as representatives of a well-defined surface, as in the surfel or
QSplat techniques [Pfis00, Rusi00]. In contrast, we define a proper character-
ization of the radiance contribution to the image from these points, which can
be computed using Monte Carlo integration, and is encoded as a texture map to
model view-dependent effects. The resulting representation is compact, renders
quickly using existing graphics hardware, produces a high quality image with lit-
tle aliasing, has no missing or disappearing objects as the viewpoint moves, and
correctly represents view-dependent changes within the view cell (such as occlu-
sion/disocclusion effects or appearance changes).

After a short overview of the proposed representation, its construction and its
usage (section 5.2), section 5.3 provides an in-depth analysis of the point sample
rendering primitive, its meaning in terms of appearance modeling and theoreti-
cally founded means of representing image radiance information at these points.
Section 5.4 presents the details of the current implementation, which computes
impostor representations for the far field. Results are presented and discussed in
section 5.5.

5.2 Overview of the algorithm

We propose a rendering primitive based on points to replace geometry as seen
from a view cell. The system implements the following pipeline:

• Sampling geometry: we calculate sample points of the geometry using three
perspective LDIs to obtain a dense sampling for a view cell (figure 5.2). We
call the plane defined by the three camera locations the sampling plane.

• Sampling appearance: The antialiased appearance of each point is calcu-
lated for different view cell locations using Monte Carlo integration. We

65

Chapter 5 Point-Based Impostors

Figure 5.2: Geometry is sampled using three perspective LDI cameras from a view cell.

shoot rays from a rectangular region which is contained in the triangle
formed by the three cameras (see figure 5.3). Each point is associated with a
texture map which encodes the appearance contributions for different view
cell locations.

• Real-time display: point-based impostors make full use of existing render-
ing hardware for transforming each point as well as shading it with its asso-
ciated texture map depending on the current viewer location. No additional
software calculations are necessary.

5.3 Point-Based Impostors

5.3.1 Complexity of appearance

The plenoptic function P(s, ϕ) completely models what is visible from any point
s in space in any given direction ϕ (see section 2.3.1). Rendering is therefore
the process of reconstructing parts of the plenoptic function from samples. Both
geometry and appearance information of scene objects contribute to the plenoptic
function. Current rendering algorithms usually emphasize one of those aspects:

• Light fields record rays regardless of geometric information, even if they all
hit the same diffuse surface.

66

Chapter 5 Point-Based Impostors

Figure 5.3: Rays are cast from the view cell to calculate a Monte Carlo integral. A texture
map on the sampling plane records contributions for different view cell locations.

• Other, geometric approaches usually model appearance only to a degree
allowed by their lighting model. They cannot account for microgeometry,
i.e., geometry that projects to less than a pixel. Microgeometry can have
different appearance when viewed from different angles (see figure 5.4).
This usually results in aliasing artifacts or is dealt with by blurring, thereby
discarding possibly important information.

The proposed point-based representation contains both geometric information
(the 3D location) and directionally dependent appearance information. It therefore
captures all of these aspects:

Viewpoints

Microgeometry

Figure 5.4: Microgeometry: if the structure in the figure projects only to a pixel for the
view cell, directional appearance information is required to let it appear green in the left
camera and red in the right camera.

67

Chapter 5 Point-Based Impostors

• Point sampling can easily adapt to unstructured geometry in the absence of
surfaces or a structured model.

• A point on a diffuse, locally flat surface which projects to more than a pixel
has the same appearance from all directions and can be encoded with a
single color.

• Objects with view-dependent lighting effects (e.g. specular lighting) show
different colors when viewed from different angles.

• Microgeometry is also view dependent and is encoded just like lighting ef-
fects.

5.3.2 Geometric sampling

The first step in the creation of a point-based rendering primitive is to decide
on the geometric location of the sample points. The points encode the part of
the plenoptic function defined by the view cell and the geometry to be sampled.
To allow hardware reconstruction, there should be no holes when projecting the
points into any possible view from the view cell.

A sufficient criterion that a point-sampled surface will have no holes in a pro-
jection is that the projected points can be triangulated so that the maximum pro-
jected edgelength is smaller than the side length of a pixel [Gros98].

It is in general difficult to prove that a particular point-based representation ful-
fills this criterion. For unit magnification and orthographic viewing, three orthog-
onal LDIs provide such an adequate sampling [Lisc98]. Although this sampling
strategy works with our method, it is not well suited for far-field objects because
the sampling density is not adapted to the possible viewing directions from the
view cell and typically results in a large number of point samples. Therefore, our
method chooses perspective LDIs to better distribute the samples with respect to
the view cell.

The camera viewpoints are chosen so as to form a triangle which bounds the
shaft formed by the view cell and the far-field object (see also figure 5.6). In this
way, the sampling rays from the three cameras most closely resemble the rays
possible from a viewpoint inside the view cell.

Note that three cameras are required in order to adequately sample arbitrarily
oriented surfaces. To see why this is necessary, assume for example that only the
left and right camera were used. In this case, any surface lying on a plane through
the centers of projection of the two cameras would not be sampled at all (if the

68

Chapter 5 Point-Based Impostors

�

�

s

x}

Figure 5.5: The figure shows the relation of the plenoptic function and plenoptic image
function parameters.

two cameras have the same view direction) or very sparsely—thus, a third camera
is required.

5.3.3 Appearance: the plenoptic image function

The geometric sampling step results in a set of n points p1, . . . , pn with fixed
locations in 3D space. In this section, we derive a method to determine a color
value for each of these points. We examine the meaning of a point in light of
our goal: to reconstruct slices of the plenoptic function P(s, ϕ) corresponding to
different viewing locations and camera positions in a view cell. The derivation
will take into account the rendering algorithm used to render the point.

Most rendering algorithms use a z-buffer or depth ordering to determine the
visibility of the primitives they render. A point, however, is infinitely small. Its
meaning is mainly determined by its reconstruction. In many reconstruction meth-
ods (as, for example, in hardware rendering) only one point is visible per pixel
and determines the color of the pixel. Due to finite image resolution, a point can
be visible or occluded depending only on the viewing camera orientation. The
plenoptic function is not powerful enough to model this form of occlusion.

Consequently, we introduce the plenoptic image function PIF(s, θ, x). The
parameter s represents the 3D viewer position, θ is a camera orientation, and x is
a 2D pixel coordinate in the local camera coordinate system. Figure 5.5 illustrates
how the domains of the PIF and the plenoptic function relate to each other: any
pair (θ, x) corresponds to one ray orientation ϕ(θ, x) from the plenoptic function,
so under ideal conditions (i.e., infinitely precise displays etc.), the PIF is related
to the plenoptic function P via

69

Chapter 5 Point-Based Impostors

PIF(s, θ, x) = P(s, ϕ(θ, x))

Note that this mapping is many to one. The PIF with its additional parameters
will allow us to incorporate the visibility term inherent to current reconstruction
techniques directly into our calculations.

We now interpret points via the images they produce (their image functions)
when rendered with a specific rendering algorithm—in our case, z-buffered hard-
ware rendering.

If we consider only one point p j alone, the point defines an image function
r j (s, θ, x). This function specifies a continuous image for each set of camera
parameters (s, θ). Each of those images is set to the typical reconstruction filter of
a monitor, a Gaussian centered at the pixel which the point projects to. However,
it is very crucial to see a point p j in relation to the other points in the point set. We
have to take into account a visibility term v j which evaluates to 1 if the point p j is
visible in the image defined through the camera parameters (s, θ) and 0 otherwise.
This gives us the actual image function Q j of a point:

Q j (s, θ, x) = v j (s, θ)r j (s, θ, x)

From an algebraic point of view, we can regard the functions Q j , 1 ≤ j ≤ n,
as basis functions spanning a finite dimensional subspace 1 of the space of all
PIFs. One element PIFfinite of this finite dimensional subspace can be written as
a weighted sum of the basis functions of the points:

PIFfinite(s, θ, x) =
∑

j

c j Q j (s, θ, x)

Note that the weight c j is the color value assigned to the point p j . The weights
c j should be chosen so as to make PIFfinite as close as possible to PIF. This can be
achieved by minimizing ‖PIFfinite − PIF‖ (with respect to the Euclidean norm on
the space of functions over (s, θ, x)), and the resulting weights can then be found
via the dual basis functions as

c j =
∫∫∫

q j (s, θ, x)PIF(s, θ, x)ds dθ dx

where q j (s, θ, x) is the dual basis function (the dual basis functions are de-
fined via 〈q j , Qk〉 = δ jk).

1The finite dimensional subspace describes all different images that can be produced by the
particular set of geometric samples (points) from the geometric sampling step.

70

Chapter 5 Point-Based Impostors

This representation only assigns one color value per point, regardless of the
location s in the view cell. However, because of view-dependent shading effects
and micro-geometry as discussed in section 5.3.1, a point might need to show
very different appearance from different viewing locations. Thus, we make the
model more powerful by replacing the weights c j by functions c j (s). In order to
represent those functions, they are discretized with respect to the space of possible
viewing locations (this is similar in spirit to the camera aperture necessary when
sampling light fields). Given a basis Bi (s) for this space, we can write each c j (s)
in terms of this basis, with coefficients found via the dual basis bi (s):

c j (s) =
∑

i

ci j Bi (s), where ci j =
∫

c j (s)bi (s)ds

One possible choice for the basis Bi (s) is to use a regular subdivision of a
plane with a normal directed from the view cell towards the objects. The weights
ci j for each point p j can then be stored in a texture map. This means that c j (s)
will be looked up in a texture map, which is typically reconstructed with a bilinear
kernel, so Bi (s) is actually just a bilinear basis.

Putting all parts together, the rendering process is described with the formula

PIFfinite(s, θ, x) =
∑
i, j

ci j Q j (s, θ, x)Bi (s)

and the weights to make the PIFfinite resemble most closely the PIF are calcu-
lated as

ci j =
∫∫∫

PIF(s, θ, x)q j (s, θ, x)bi (s)ds dθ dx (5.1)

The final task is finding the dual basis functions. If our basis functions Q j Bi

were orthogonal, we would have q j = Q j and bi = Bi (apart from normalization
issues). In the non-orthogonal case, however, calculating the real duals is tedious:
geometric occlusion means each one would be different; one would really have
to invert a large matrix for each one to find a (discretized) version of the dual.
We have opted for an approximate approach inspired by signal theory: both the
bilinear basis Bi and the monitor reconstruction filter r j can be regarded as an ap-
proximation to the ideal (and orthogonal) reconstruction filter, a sinc-function. As
is common practice, we approximate the ideal lowpass filter (the signal-theoretic
version of dual basis functions) using Gaussians.

71

Chapter 5 Point-Based Impostors

The integral (5.1) can be estimated using Monte Carlo integration with bi and
q j as importance functions. Samples PIF(s, θ, x) = P(s, ϕ(θ, x)) are calculated
with a simple ray tracer.

5.4 Implementation

In this section we describe the choices made in our particular implementation of
the method.

5.4.1 Obtaining geometric samples

Before placing the three LDI cameras used to obtain geometric samples, we choose
a sampling plane to parameterize viewer positions within the view cell: as in light
fields, we use a plane with a normal oriented from the view cell towards the far
field. The supporting planes [Coor99] of view cell and far-field object bound-
ing box form a shaft between the two. The supporting planes can be found for
example by iteratively creating planes between an edge of the view cell and a ver-
tex of the far-field bounding box, and testing whether both the view cell and the
bounding box lie on the same side of the plane (and vice versa with an edge of the
bounding box and a vertex of the view cell).

Then, we calculate the intersection of the shaft with the sampling plane. The
resulting polygon on the sampling plane can be tightly bounded with a triangle
(we use the triangle with the top edge parallel to the ground and minimum cir-
cumference). The three LDI cameras are now placed at the corners of this triangle
(see figure 5.6). Note that camera placement is generally well behaved, as long
as the view cell does not intersect the far-field bounding box (which should never
occur).

In order to determine the LDI resolution necessary to avoid holes in the re-
projection of the sampled points, our method offers a sampling mechanism based
on a 2D observation: Suppose we have two cameras on both ends of a segment
of possible viewing locations in 2D, and a short edge viewed by the two cameras.
These two cameras are used to sample the endpoints of the edge. Resampling hap-
pens from a camera placed anywhere on the segment between the two cameras.
It can now be shown that the “worst” discrepancy between the resampling angle
α and the sampling angle β appears if the edge is parallel to the segment joining
the two cameras, and if the center of the edge is equidistant to both cameras (see
figure 5.7).

72

Chapter 5 Point-Based Impostors

Figure 5.6: A screenshot showing the arrangement of an impostor object, the view cell,
camera placement and the sampling plane. The view cell is a box. The red rectangle is
the sampling plane which is directed towards the impostor. The cameras are placed at the
corners of the triangle that tightly surrounds the sampling plane. The green rectangles on
the object bounding box constitute the actual projection planes used by the cameras.

� �
�

�

Figure 5.7: The left figure shows an arbitrary configuration of sampling (green) and re-
sampling (red) cameras. In the right configuration the ratio β/α is maximized. This
means that to obtain an angular resolution of at β when resampling, the object has to be
sampled using an angular resolution of at least α.

73

Chapter 5 Point-Based Impostors

s}

� }

�

r

Figure 5.8: Sampling resolution caused by rotation and perspective cameras: a feature
seen under the angle α can project to r at the corner of the screen and s at the center of
the screen. To ensure the projection for resampling is not larger than r , the pixel size for
sampling has to be chosen smaller than s.

Inspired by this, we have developed a heuristic in 3D which takes the following
effects into account:

• Movement within the view cell: for three cameras looking at a plane parallel
to the sampling plane, the worst mutual sampling resolution occurs at the
point on the plane that is equidistant from the three cameras. This point
is the circumcenter of the triangle defined by the three cameras, projected
on the plane in question. The sampling angle of the three cameras has to be
chosen so that neighboring samples project to less than a pixel when viewed
directly from the circumcenter (where the maximum projection occurs).

• Perspective: perspective cameras have varying angular resolutions in space:
a feature projects to more pixels at the border of the viewing frustum than
in the center when seen under the same viewing angle α. The sampling
resolution has to be increased accordingly by the factor between angular
resolution in the center of the camera and at the border of the viewing frus-
tum. For a field of view of 45◦ for example, this factor is about 1.17 (see
figure 5.8).

• Sampling pattern orientation: if perspective cameras are used for sampling,
the sampling pattern on objects in space is tilted with respect to the viewing
camera. Therefore, given a minimum sampling angle from a point, the res-
olution has to be calculated from the pixel diagonal and not the pixel edge.
This accounts for a factor of

√
2.

74

Chapter 5 Point-Based Impostors

Figure 5.9: The left side shows a false color image of a point-sampled building front after
removing all points better sampled by a different camera. Red points are from the left
camera, green points from the right camera, and blue points from the bottom camera. The
right side shows the geometry together with the three camera image planes. Note that for
the windows, left-facing surfaces are sampled best with the left camera and right-facing
surfaces with the right camera.

Sampling resolution is chosen according to these factors. In practice, we em-
ploy a simple heuristic to reduce the number of points: many points are sampled
sufficiently already by a single camera. This means that a triangulation of the sam-
pling pattern from this camera in a small neighborhood contains no edge which
projects to more than a pixel in any view. If a point recorded by one camera lies in
a region which is sampled better and sufficiently by another camera, we remove it.
This typically reduces the number of points by 40–60% (see figure 5.9), leading to
a ratio of about 2–2.5 points projected to a screen pixel (see section 5.5 for more
detailed results).

5.4.2 Monte Carlo integration of radiance fields

The goal of the Monte Carlo integration step is to evaluate integral (5.1) to obtain
the weights ci j of the reconstruction basis functions. The domain in s is a rect-
angle on the sampling plane. The index ci j corresponds to one point p j and one
rectangle on the sampling plane represented by a texel ti in the texture map for
point p j .

We select a viewpoint s on this rectangle (according to bi (s), a Gaussian dis-
tribution), a random camera orientation θ in which the point is in the frustum, and
shoot an occlusion ray to test whether this point is visible in the selected camera
(this corresponds to an evaluation of v j (s, θ)). If it is visible, we select a ray ac-
cording to q j (s, θ, x) (a Gaussian distribution centered over the pixel which the
point projects to in the selected camera) and add its contribution to ti . Rays are
shot until the variance of the integral falls below a user-selectable threshold.

75

Chapter 5 Point-Based Impostors

5.4.3 Compression and Rendering

Points can be rendered with z-buffered OpenGL hardware. For each point, the di-
rectional appearance information is saved in a texture, parameterized by the sam-
pling plane. The texture coordinates of a point are calculated as the intersection
of a viewing ray to the point with the sampling plane. This can also be interpreted
as the perspective projection of the sampling point into a viewing frustum where
the apex is defined by the viewpoint and the borders of the projection plane by the
four sides of the bounding rectangle on the sampling plane (see figure 5.10).

Perspective projections can be expressed using the 4x4 homogeneous texture-
matrix provided by OpenGL. However, since switching textures for every point is
costly, we pack as many point textures into one bigger texture as the implementa-
tion allows (see figure 5.11). This requires adding a fixed offset per point to the
final texture coordinates, which, although not available in standard OpenGL, can
be done using the vertex program extension [NVID00a].

Interpolation between the texture samples (which corresponds to evaluating
the basis function Bi (s)) is done using bilinear filtering. A lower quality, but
faster preview of the representation can be rendered by using only one color per
point and no texture. However, directional information will be lost in this case.

To compress our representation, we calculate the variance of the color infor-
mation of a texture to identify points that only require one color for the whole
view cell. Further compression can be obtained by using hardware supported vec-
tor quantization [NVID00b], which provides for a fixed compression ratio of 8:1.
Note that this adapts to the scene complexity: regions with low perceived geomet-
ric complexity will always be represented by simple colored points.

5.5 Results

We used an 800 MHz Pentium III with a GeForce II GTS graphics card for our
tests. The vertex program used to calculate texture coordinates is simulated in
software. To give an impression of the expected performance of a hardware im-
plementation, we also rendered simple textured points.

Three different test scenes are used to demonstrate the behavior of point-based
impostors. Table 5.1 shows results for each scene, based on an output screen
resolution of 640x480 pixels. It includes the number of points in the impostor, the
approximate number of pixels covered by the impostor for a view in the center
of the view cell (based on the screen bounding box), and the resulting number of
points per projected pixel. The table also shows the time required for computing

76

Chapter 5 Point-Based Impostors

view cell

sampling plane

point-sampled far field geometry

supporting planes
(on far field and view cell)

virtual frustum

Figure 5.10: The texture coordinates for a point can be found using the off-axis frustum
shown in the figure: the texture matrix is set to implement this frustum, and the current
point is used as source texture coordinate. After transformation with the texture matrix,
the texture coordinates correspond to the correct location on the sampling plane.

77

Chapter 5 Point-Based Impostors

Figure 5.11: A 232x128 pixel (29x64 points) part of the packed texture for the impostor
in figure 5.13. For each point, there is an 8x2 block in this packed texture. Note the bright
blocks from the specular highlight. The inlay in the lower right corner is a zoomed 24x16
pixel part of the texture, showing the blocks for 24 points.

the impostor, and the memory requirements. The last two rows represent average
frame rates achieved for some positions within the view cell.

Generally, it can be observed that it takes about 80,000 points to cover a screen
area of about 300x100 pixels.

Although an unoptimized ray tracer (based on regular grid acceleration) is
used, preprocessing times are still reasonable. For each point, an 8x2 texture map
is used. The memory requirements are listed without applying the variance-based
reduction of textures to single colors.

One of the strong points of our representation is high rendering quality in the
presence of detailed geometry. Figure 5.13 shows the filtering of many thin tree
branches in front of a moving specular highlight. Figure 5.14 demonstrates correct
antialiasing even for extreme viewing angles on building fronts.

Figure 5.15 shows how a point-based impostor can be used to improve the
rendering quality of the far field in an urban scene which contains several poly-
gons per pixel. It should be noted that the improvement over geometry is even
more noticeable when moving the viewpoint. Furthermore, the impostor in fig-
ure 5.15 replaces a geometric model of about 95,000 vertices, but consists only
of about 30,000 points. This shows that the impostor not only improves the ren-
dering quality of the far field, but also reduces the rendering load on the graphics

78

Chapter 5 Point-Based Impostors

Results scene1 scene2 scene3
#points 80,341 87,665 31,252
#points/screen pixel 2.35 2.42 2.8
approx. #screen pixels 34,000 36,000 11,000
Preproc. time (min) 22 41 31
Memory (MB) 1.6 1.75 0.6
Rendering performance SW (Hz) 36 32 98
Rendering performance HW (Hz) 60 54 160

Table 5.1: The table shows results from impostors of three scenes, calculated for a screen
resolution of 640x480 pixels. Hardware rendering is emulated by rendering simple tex-
tured points.

hardware. Figure 5.12 shows the placement of this impostor and its view cell in
the city model and gives an impression of the typical relative sizes of view cells
and impostors.

In the current experimental system, view cells are formed from street seg-
ments, and impostors placed at the ends of street segments, in a fashion similar to
previous impostor systems [Sill97, Deco99]. Our test scene is 4 square kilometers
large and consists of 2.1 million polygons. After the application of a conservative
region-visibility algorithm [Wonk00], we identified view cells with too many visi-
ble polygons (as was demonstrated in a previous system [Alia99b]). A rough esti-
mate of the memory requirements using a brute force impostor placement strategy
results in about 165 MB used for 437 impostors.

Note, however, that the development of good impostor placement strategies
is not straightforward and subject to ongoing research. Future work also aims at
reducing memory requirements by sharing information between neighboring view
cells, and finding guarantees to ensure a minimum frame rate.

5.6 Discussion

This chapter introduced point-based impostors, a new high-quality image-based
representation for real-time visualization.

The value of this representation lies in the separation between the geometric
sampling problem and the representation of appearance. Sampling is performed
by combining layered depth images to obtain proper coverage of the image for
the entire view cell. Based on the mathematical analysis of point-based models,
we compute the rendering parameters using Monte Carlo integration, eliminating

79

Chapter 5 Point-Based Impostors

Figure 5.12: The figure shows the impostor from scene 3 placed in the city. The view
cell shown in blue is 63 meters wide and 120 meters long. The impostor shown in red is
about 700 meters long and placed 200 meters from the view cell.

80

Chapter 5 Point-Based Impostors

Figure 5.13: Note the correct filtering of the trees against the building front and the spec-
ular highlight in the windows for the impostor (top), and severe aliasing in the trees for
geometry (bottom).

most of the aliasing artifacts. Rendering information is compactly encoded and
can be rendered on contemporary hardware. Point-based impostors show great
promise for all situations in which a geometrically very complex model consti-
tutes the far field, such as in urban walkthroughs of detailed models. The render-
ing times indicate that this representation is applicable to real-time visualization
applications, where frame times above 60 Hz are required.

81

Chapter 5 Point-Based Impostors

Figure 5.14: An impostor for a number of buildings. The inset shows the aliasing that
would result if geometry were used.

Figure 5.15: One frame of a city walkthrough. Note the correct filtering of the impostor
(top) compared to geometry (bottom).

82

Chapter 6

Conclusions and Future Work

Although computers continue to get faster and faster, real-time rendering is far
from being a solved problem. As long as the geometric model of a car or a sim-
ple mechanical part is able to overwhelm the rendering capabilities of the fastest
available graphics hardware, this situation is not going to change. Currently, it is
possible to render small urban models, but at the expense of visual richness—we
are therefore still striving for bigger models, and more visual detail at the same
time.

The quest for true real-time rendering on arbitrary models is marked by the ne-
cessity to identify opportunities to reduce complexity. This automatically brings
the human visual system and its interface to the computer—images—into play:
Details can only be omitted if they are not important to the viewer, wherever he
is located. Purely image-based techniques follow this road to the end and equate
perceived complexity with the resolution of an image, and totally abandon geom-
etry. Such approaches have their limitations, however, because viewer locations
cannot be easily predicted in a real-time application, and the complexity of many
images can quickly be disproportionate to the complexity inherent to the geomet-
ric model.

In this thesis, we take a different approach. Instead of being bound to the
complexity of the underlying model, or the complexity of an image, we exploit
a general property of several types of scenes: due to perspective viewing, com-
plexity per screen area increases with increasing distance, but at the same time,
the importance of distant objects diminishes. Distant objects are therefore per-
fectly amenable to simplification. This thesis presents two ways to do exactly
that: simplify distant geometry.

83

Chapter 6 Conclusions and Future Work

6.1 Synopsis

The topic of this thesis is a set of algorithms for fast and high quality display
of distant geometry. Two major algorithms were presented: an online method
that requires no preprocessing, and an offline method that offers very high visual
quality.

The online method is based on the observation that in many walkthrough sce-
narios, only a small area of the screen is covered by actual distant geometry. The
pixels in that area are found via an opacity buffer, and a horizon map is used to
include only pixels which belong to actual geometry and not to sky. A panoramic
image cache allows rotational motion with correct reprojection. Translational
movement exploits the coherence between successive images to keep errors low.
Finally, incorrect pixels are traced via a fast ray caster.

The offline method uses precomputed point-based impostors to represent dis-
tant geometry. The impostors are calculated so that they provide a good approx-
imation to the real geometry for a specific view cell. Point samples are obtained
by carefully sampling the geometry with three perspective LDIs, ensuring a well-
distributed density of point samples over the range of valid viewpoints. Holes are
avoided by tightly oversampling the LDIs depending on the desired output reso-
lution. A new mathematical formulation for the appearance of a point is shown,
based on the plenoptic image function. This allows us to encode directionally
dependent appearance information in a texture map for each point. The texture
values are chosen so as to provide the best possible appearance of the impostor for
any viewpoint located in the view cell. The result is an antialiased representation
for distant geometry that can be fully rendered with current graphics hardware.

The remainder of this chapter will deal with the specific advantages and disad-
vantages of the two methods. Some limitations are discussed, and finally, a range
of suggestions for future research is presented.

6.2 Advantages

Distant geometry can be enormously complex, and both methods presented result
in a drastic reduction of geometric primitives that have to be rendered overall. This
can be used twofold: It can make a scene practical that was originally too complex
to be rendered interactively. For other scenes that can be rendered interactively
already, it allows adding visual detail to the near field and making the environment
much more appealing.

84

Chapter 6 Conclusions and Future Work

Both methods introduce the notion of output sensitivity into the setting of large
scenes. While the distinction between near field and far field is not adaptive, it is
still valid to assume that near-field geometry is of bounded complexity. In the
first method, far-field geometry is recognized directly in the image, therefore the
rendering time for the far field only depends on the number of pixels covered by it.
The complexity of point-based impostors, on the other hand, can not be expressed
in terms of the pixels of a single frame, as such an impostor has to be valid for
all viewpoints of a view cell. Their complexity is, however, output sensitive in
the sense that only “relevant” pixels are taken into account when constructing the
representation, i.e., pixels visible in any possible view from the view cell.

While output sensitivity is usually touted as a desirable feature of image-based
methods, the algorithms in this thesis avoid a common pitfall associated with this:
if there is too much “output”, then a strictly “output-sensitive” method will still
be slow, even if the underlying scene complexity is little. By concentrating on
geometry that inherently covers only few pixels on the screen (i.e., little “output”),
we make sure that output sensitivity is really desirable.

The ray casting method from chapter 4 is easy to set up and integrate into an
existing rendering system. There is no preprocessing overhead, so the scene may
be changed often or even dynamically. Furthermore, the technique is amenable to
parallelization and can profit from a wealth of ray tracing acceleration research.

6.2.1 Specific advantages of point-based impostors

Point-based impostors, on the other side, require preprocessing and are there-
fore limited to applications with little changing scenery. They blend with tra-
ditional rendering techniques, so dynamic objects can always be rendered using
polygons, even in the far field. Two significant advantages of point-based impos-
tors are that they provide much higher quality rendering, and that they do this in
much less time, because no online calculations are necessary. More precisely, the
small amount of computations left for each frame can be offloaded to the graphics
hardware, incurring almost no additional cost. Point-based impostors are particu-
larly suited for distant geometry, because the mathematical formulation of points
specifically considers microgeometry, i.e., geometric features that project to less
than a pixel. For distant geometry, several triangles usually project to a single
pixel.

We are aware of no other computer graphics method that can simplify distant
geometry in such a way, i.e. with:

• correct warping of geometry (so parallax effects are not lost)

85

Chapter 6 Conclusions and Future Work

• capturing of view-dependent effects such as specular highlights

• correct representation of microgeometry

• inherent antialiasing

• fast, hardware-accelerated rendering

For the purpose of real-time rendering, point-based impostors can be seen
as the missing link between purely image-based representations such as light
fields, and purely geometry-based representations. Directional radiance infor-
mation is stored where it is needed, i.e., at the geometric location of the real
object. Unlike surface light fields, however, no restriction on the type of geome-
try exists—for example, trees can be nicely captured and rendered using point-
based impostors. Unlike other approaches to incorporate geometry into light
fields [Gort96, Chai00], this parameterization of light fields (i.e., via points) can
exploit the coherence in directional radiance usually found for many object lo-
cations. On a diffuse surface point, only one value is necessary to store all the
information. In the presence of microgeometry, the directionally dependent ap-
pearance information can help to create the correct view of the “soup” of polygons
from different viewpoints.

6.3 Disadvantages and limitations

The techniques presented do have some limitations and offer ample room for fu-
ture research. Both methods are not fully general, i.e., they do not work for arbi-
trary scenes. A certain amount of occlusion is required to make the distribution
between near field and far field work. This is to be expected, most acceleration
algorithms are designed to exploit certain features of some class of scenes.

The ray casting method, in particular, suffers from a considerable amount of
online computation, which reduces the time available to render triangles. This
could be alleviated by using multiple CPUs to compute the opacity map, image
cache lookups and the rays themselves. The ray casting approach also depends
on the efficiency of the ray caster for a particular scene. While most ray tracing
optimization schemes achieve sublinear performance with many scenes, severely
non-uniform scenes or other worst-case scenarios can easily thwart any optimiza-
tion scheme.

The image quality of ray casting is at best equal to rendering geometry. If too
many pixels are in the far field and the method resorts to graceful degradation, not
all necessary rays can be cast every frame. The result is a kind of cross-dissolve

86

Chapter 6 Conclusions and Future Work

effect on edges that move in the image (due to translational movement of the
observer). The effect looks similar to frameless rendering [Bish94], a technique
where pixels are updated independently of the display refresh signal. We observed
graceful degradation mainly if the border between near and far field was set too
near, and in wide open spaces.

Point-based impostors can be said to lie at the other end of the spectrum. They
offer vastly superior image quality to the ray casting technique and even to stan-
dard geometry rendering, and almost no overhead during runtime. The cost for
this quality and efficiency is a significant amount of preprocessing time. To com-
pute all impostors for a larger urban scene, several hours of precomputation might
be common.

Furthermore, point-based impostors cannot be used simply as a drop-in com-
ponent to an existing rendering system. They require a good partitioning of the
viewing space into view cells. Such a partitioning might be straightforward in the
case of some urban environments, but in general, the size and location for good
view cells is not obvious.

As in any offline method, there is the issue of storage space. Impostors for
a larger city model might take up several hundreds of megabytes, depending on
visibility: if wide open views exist in many locations, more impostors have to
be used. If only a few locations offer views that stretch far away, the number
of impostors will be limited. This problem is directly related to the partitioning
into view cells. Since impostor information is not shared between view cells, a
fine-grained view space partition can significantly increase storage requirements.

Finally, points might not be the ultimate answer to far-field rendering. Since
we rely on a sufficiently dense sampling of objects to avoid holes during recon-
struction, an impostor usually requires twice as many points than pixels in a pro-
jection from the view cell. This adds up to a lot of points, given that many of those
points will not significantly enhance the depth effect of the impostor. Neither is it
possible to approach the impostor nearer than the view cell allows, for example if
a close-up view is required and a new model (e.g., a new impostor for a different
view cell or simply geometry) is not yet available. In such a case, the representa-
tion would show holes. Splatting with a kernel greater than a pixel could be used
in such a case, but only square splat kernels are available in hardware, providing
only mediocre quality.

A representation of the far field using triangles might be more desirable be-
cause it maps better to current graphics hardware and has the ability to exploit
hardware interpolation and rasterization. Indeed, such representations have been
proposed [Sill97] for city models. However, we are aware of no triangle-based
far-field representation that correctly captures geometry and appearance attributes

87

Chapter 6 Conclusions and Future Work

of the far field and that can deal with microgeometry. Point-based impostors can
deal with arbitrarily complex geometry and do not rely on coherence of depth
values from any viewpoint. They avoid common artifacts like rubber-sheet trian-
gles, occlusion and disocclusion errors and others. Still, a triangle-based solution
should be more efficient to render and take up less storage space.

6.4 Future work

In this section, future research directions and potential derivations from this work
are discussed.

6.4.1 Triangle-based impostors

First and foremost, we believe that future research should concentrate on doing
for triangles what this thesis did for points. As already hinted at in the previous
section, triangles map better to current hardware (and this situation is not likely
to change in the near future). Triangles could exploit the rasterization capabilities
of graphics cards, while points only make use of geometry acceleration. The
following problems would have to be solved:

• Geometric sampling of the far field (the geometric sampling method pre-
sented in this thesis would serve as a good starting point).

• Creation of connectivity (i.e., decide where to put triangles): this is actually
a difficult task, because no unique solution exists. The triangles would have
to faithfully represent the depth structure of the object from all points of the
view cell.

• Simplification of the resulting triangle mesh. Standard polygonal simplifi-
cation tools could be used for this step, but it is likely that better results
can be achieved if the error metric used in the simplification process is
adapted to the possible views on the object—this could be called “view
cell-dependent” simplification.

• Calculation and storage of appearance information in the resulting mesh,
preferably with textures. This might of course influence the simplification
step as well.

Point-based impostors avoid having to deal with these problems, at the cost of
increased complexity (in terms of number of points) of the representation.

88

Chapter 6 Conclusions and Future Work

6.4.2 View cell partitioning

This thesis has introduced point-based impostors, a primitive destined to replace
distant geometry, providing fast and high quality rendering of such geometry. We
have, however, not dealt with the question where to place these impostors in an
actual city model. This leads directly to the second open question, how to partition
the view space into view cells?

Both of these questions warrant closer attention in future research, not only
for point-based impostors, but for many impostor-based methods. Sillion et al.
[Sill97] have proposed basing the view-space partitioning on the street graph. In
this thesis, we have loosely followed this suggestion and obtained good results, but
a serious fully automated system would have to tackle some unaddressed issues:

• If no street graph is available, what other a priori information about the
scene can be used to aid the partitioning?

• How can impostor information be shared among adjacent view cells in order
to reduce storage requirements?

• What part of the far field should be converted to impostors, and what part
should be rendered using triangles? One suggestion is to set a polygon bud-
get for each view cell and render the rest as impostors [Alia99b]. However,
the size of the generated impostor should probably also enter into the cal-
culation.

• Should view cells be rather large or small? How does the size of the chosen
impostor affect the efficiency of the representation?

At the moment, a semi-automatic process depending on the street graph is
viable for medium-sized urban scenes. Larger and more general scenes require
an automatic process that places impostors where they are needed, optimizing
rendering speed for all view cells and at the same time reducing overall storage
requirements.

6.4.3 Near-field and far-field distance

The ray casting and image caching technique would profit from studying the be-
havior of the system with respect to scene complexity, overall “type” of the scene
and to the algorithm parameters. In particular, it would be interesting to automat-
ically determine such parameters as back plane distance, number of rays to trace

89

Chapter 6 Conclusions and Future Work

per frame and grid resolution, so as to always provide near optimal performance.
Determining the border between near field and far field automatically would adapt
the algorithm perfectly to different hardware systems. Buying a better graphics
card would allow to increase the far-field distance, while it could be decreased
if a faster CPU were used. The automatic level-of-detail management system by
Funkhouser and Séquin [Funk93] provides valuable hints on how to do this.

Another interesting avenue of research for the ray casting method is the use of
graphics hardware for the image-based operations that were introduced. With sys-
tems that allow access to frame buffer and texture memory with the same speed as
to the system memory, it might be possible to let the hardware do the reprojection
of the environment map onto the screen. For example, a simple extension to the
current system would be to use graphics hardware to create the opacity buffer.

6.5 Conclusion

We have presented two algorithms capable of considerably speeding up rendering
of large virtual environments. Both algorithms are in their nature image-based.
Both make some assumptions about the scenes they handle. We believe that
image-based techniques such as the ones presented here are the way to go for
the simplification of distant geometry. We have also demonstrated that distant
geometry is indeed a very good candidate for simplification. What’s more, the
second method even significantly improves the image quality of such geometry.

This thesis demonstrates clearly the tradeoff between online and offline tech-
niques. Each of the two methods presented has its individual advantages, but none
of the two comes without a cost. It is up to the application to decide where the
focus lies: whether online or offline calculation is more important.

We have also shown that points are a valuable rendering primitive, but they
cannot be used indiscriminately. Rendering points, especially for distant geome-
try, requires a terse mathematical treatment. Decoupling geometry and appearance
has proven crucial for high-quality rendering of distant geometry, and points are
well suited to this particular task.

Concerning chapter 4, it seems that ray tracing is not to be discounted as a tool
in real-time rendering. Supported by other image-based rendering techniques like
a panoramic image cache or the horizon map, ray casting has proven to accelerate
walkthroughs of large virtual environments by an order of magnitude.

In conclusion, we observe that the last words on real-time rendering are not
spoken, but we think that this thesis is a step in the right direction towards achiev-
ing this valuable goal.

90

Bibliography

[Adel91] Edward H. Adelson and James R. Bergen. The Plenoptic Function
and the Elements of Early Vision. Computational Models of Visual
Processing, 1991. 20

[Aila01] Timo Aila and Ville Miettinen. Sur-
Render Umbra – Reference Manual.
http://www.surrender3d.com/umbra/index.html,
2001. 15

[Aire90] John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. Towards
Image Realism with Interactive Update Rates in Complex Virtual
Building Environments. In Rich Riesenfeld and Carlo Sequin, edi-
tors, Computer Graphics (1990 Symposium on Interactive 3D Graph-
ics), volume 24, pages 41–50, March 1990. 11

[Alia97] Daniel G. Aliaga and Anselmo A. Lastra. Architectural Walk-
throughs Using Portal Textures. In Roni Yagel and Hans Hagen,
editors, Proceedings of the conference on Visualization ’97, pages
355–362. IEEE, October 1997. 24, 60

[Alia99a] Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Han-
song Zhang, Carl Erikson, Keny Hoff, Tom Hudson, Wolfgang
Stürzlinger, Rui Bastos, Mary Whitton, Fred Brooks, and Dinesh
Manoclia. MMR: An Interactive Massive Model Rendering Sys-
tem Using Geometric and Image-Based Acceleration. In Stephen N.
Spencer, editor, 1999 Symposium on interactive 3D Graphics, pages
199–206. ACM SIGGRAPH, ACM Press, April 1999. ISBN 1-
58113-082-1. 19

[Alia99b] Daniel G. Aliaga and Anselmo Lastra. Automatic Image Placement
to Provide a Guaranteed Frame Rate. In Alyn Rockwood, editor,
SIGGRAPH 99 Conference Proceedings, Annual Conference Series,

91

http://www.surrender3d.com/umbra/index.html

Bibliography

pages 307–316. ACM SIGGRAPH, Addison Wesley, August 1999.
79, 89

[Aman87] John Amanatides and Andrew Woo. A Fast Voxel Traversal Algo-
rithm for Ray Tracing. In G. Marechal, editor, Eurographics ’87,
pages 3–10. North-Holland, August 1987. 31, 48

[Appe68] Arthur Appel. Some Techniques for Shading Machine Renderings
of Solids. In AFIPS 1968 Spring Joint Computer Conference, vol-
ume 32, pages 37–45, 1968. 30

[Arvo87] James Arvo and David Kirk. Fast Ray Tracing by Ray Classification.
In Maureen C. Stone, editor, Computer Graphics (SIGGRAPH 87
Proceedings), volume 21, pages 55–64, July 1987. 32

[Arvo89] James Arvo and David Kirk. A survey of ray tracing acceleration
techniques. In Andrew S. Glassner, editor, An introduction to ray
tracing, pages 201–262. Academic Press, 1989. 30

[Bish94] Gary Bishop, Henry Fuchs, Leonard McMillan, and Ellen J. Scher
Zagier. Frameless Rendering: Double Buffering Considered Harm-
ful. In Andrew Glassner, editor, SIGGRAPH 94 Conference Proceed-
ings, Annual Conference Series, pages 175–176. ACM SIGGRAPH,
ACM Press, July 1994. ISBN 0-89791-667-0. 87

[Bitt98] Jiri Bittner, Vlastimil Havran, and Pavel Slavı́k. Hierarchical Vis-
ibility Culling with Occlusion Trees. In Franz-Erich Wolter and
Nicholas M. Patrikalakis, editors, Proceedings of the Conference on
Computer Graphics International 1998 (CGI-98), pages 207–219,
Los Alamitos, California, June 22–26 1998. IEEE Computer Soci-
ety. ISBN 0-8186-8445-3. 13

[Blin76] James F. Blinn and Martin E. Newell. Texture and Reflection in Com-
puter Generated Images. Communications of the ACM, 19(10):542–
547, October 1976. ISSN 0001-0782. 23

[Blin78] J. F. Blinn. Simulation of Wrinkled Surfaces. In Richard L.
Phillips, editor, Computer Graphics (SIGGRAPH 78 Proceedings),
volume 12, pages 286–292. ACM SIGGRAPH, ACM Press, August
1978. 23

[Catm74] Edwin E. Catmull. A Subdivision Algorithm for Computer Display of
Curved Surfaces. Ph.D. Thesis, University of Utah, December 1974.
28

92

Bibliography

[Catm75] Edwin E. Catmull. Computer Display of Curved Surfaces. In Pro-
ceedings of the IEEE Conference on Computer Graphics, Pattern
Recognition, and Data Structure, pages 11–17, May 1975. 11

[Caza95] Frédéric Cazals, George Drettakis, and Claude Puech. Filtering,
Clustering and Hierarchy Construction: a New Solution for Ray-
Tracing Complex Scenes. Computer Graphics Forum (Proc. Euro-
graphics ’95), 14(3):371–382, August 1995. ISSN 1067-7055. 32

[Cert96] Andrew Certain, Jovan Popović, Tony DeRose, Tom Duchamp,
David Salesin, and Werner Stuetzle. Interactive Multiresolution Sur-
face Viewing. In Holly Rushmeier, editor, SIGGRAPH 96 Confer-
ence Proceedings, Annual Conference Series, pages 91–98. ACM
SIGGRAPH, Addison Wesley, August 1996. held in New Orleans,
Louisiana, 04-09 August 1996. 17

[Chai00] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-Yeung
Shum. Plenoptic Sampling. In Kurt Akeley, editor, SIGGRAPH 2000
Conference Proceedings, Annual Conference Series, pages 307–318.
ACM SIGGRAPH, Addison Wesley, 2000. 21, 64, 86

[Cham96] Bradford Chamberlain, Tony DeRose, Dani Lischinski, David
Salesin, and John Snyder. Fast Rendering of Complex Environ-
ments Using a Spatial Hierarchy. In Wayne A. Davis and Richard
Bartels, editors, Proceedings of Graphics Interface ’96, pages 132–
141. Canadian Information Processing Society, Canadian Human-
Computer Communications Society, May 1996. ISBN 0-9695338-
5-3. 39

[Chan99] Chun-Fa Chang, Gary Bishop, and Anselmo Lastra. LDI Tree: A
Hierarchical Representation for Image-Based Rendering. In Alyn
Rockwood, editor, SIGGRAPH 99 Conference Proceedings, An-
nual Conference Series, pages 291–298. ACM SIGGRAPH, Addison
Wesley, August 1999. 25, 26

[Chen93] Shenchang Eric Chen and Lance Williams. View Interpolation for
Image Synthesis. In James T. Kajiya, editor, SIGGRAPH 93 Confer-
ence Proceedings, Annual Conference Series, pages 279–288. ACM
SIGGRAPH, Addison Wesley, August 1993. ISBN 0-201-51585-7.
22, 25

[Chen95] Shenchang Eric Chen. Quicktime VR - An Image-Based Approach
to Virtual Environment Navigation. In Robert Cook, editor, SIG-
GRAPH 95 Conference Proceedings, Annual Conference Series,

93

Bibliography

pages 29–38. ACM SIGGRAPH, Addison Wesley, August 1995.
held in Los Angeles, California, 06-11 August 1995. 22, 49

[Clar76] James H. Clark. Hierarchical Geometric Models for Visible Surface
Algorithms. Communications of the ACM, 19(10):547–554, October
1976. ISSN 0001-0782. 11, 16

[Clea88] John G. Cleary and Geoff Wyvill. Analysis of an algorithm for fast
ray tracing using uniform space subdivision. The Visual Computer,
4(2):65–83, July 1988. 33

[Cohe98a] Jonathan Cohen, Marc Olano, and Dinesh Manocha. Appearance-
Preserving Simplification. In Michael Cohen, editor, SIGGRAPH 98
Conference Proceedings, Annual Conference Series, pages 115–122.
ACM SIGGRAPH, Addison Wesley, July 1998. ISBN 0-89791-999-
8. 18

[Cohe98b] Daniel Cohen-Or, Gadi Fibich, Dan Halperin, and Eyal Zadicario.
Conservative Visibility and Strong Occlusion for Viewspace Parti-
tioning of Densely Occluded Scenes. Computer Graphics Forum
(Proc. Eurographics ’98), 17(3):243–254, September 1998. ISSN
1067-7055. 14

[Coor97] Satyan Coorg and Seth Teller. Real-Time Occlusion Culling for
Models with Large Occluders. In Michael Cohen and David Zeltzer,
editors, 1997 Symposium on Interactive 3D Graphics, pages 83–90.
ACM SIGGRAPH, April 1997. ISBN 0-89791-884-3. 13

[Coor99] Satyan Coorg and Seth Teller. Temporally Coherent Conservative
Visibility. Computational Geometry: Theory and Applications, 12(1-
2):105–124, February 1999. 13, 72

[Corp01] NVIDIA Corporation. NVIDIA OpenGL
Specifications, 2001. available at
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/Program
10, 25

[Dars97] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating
Static Environments Using Image-Space Simplification and Morph-
ing. In Michael Cohen and David Zeltzer, editors, 1997 Symposium
on Interactive 3D Graphics, pages 25–34. ACM SIGGRAPH, ACM
Press, April 1997. ISBN 0-89791-884-3. 27

94

http://www.nvidia.com/Marketing/Developer/DevRel.nsf/ProgrammingResourcesFrame

Bibliography

[De F97] Leila De Floriani, Paola Magillo, and Enrico Puppo. Building and
Traversing a Surface at Variable Resolution. In Roni Yagel and Hans
Hagen, editors, Proceedings of the conference on Visualization ’97,
pages 103–110. IEEE, October 1997. 18

[Deco99] Xavier Decoret, François Sillion, Gernot Schaufler, and Julie Dorsey.
Multi-layered impostors for accelerated rendering. Computer Graph-
ics Forum (Proc. Eurographics ’99), 18(3):61–73, September 1999.
ISSN 1067-7055. 27, 79

[Dura97] Frédo Durand, George Drettakis, and Claude Puech. The Visibility
Skeleton: A Powerful and Efficient Multi-Purpose Global Visibility
Tool. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceed-
ings, Annual Conference Series, pages 89–100. ACM SIGGRAPH,
Addison Wesley, August 1997. ISBN 0-89791-896-7. 14

[Dura99] Fredo Durand. 3D Visibility: Analytical Study and Applications. PhD
thesis, Universite Joseph Fourier, Grenoble, France, July 1999. 15

[Dura00] Frédo Durand, George Drettakis, Joëlle Thollot, and Claude Puech.
Conservative Visibility Preprocessing Using Extended Projections.
In Kurt Akeley, editor, SIGGRAPH 2000 Conference Proceedings,
Annual Conference Series, pages 239–248. ACM SIGGRAPH, Ad-
dison Wesley, July 2000. 14

[Eck95] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe,
Michael Lounsbery, and Werner Stuetzle. Multiresolution Analysis
of Arbitrary Meshes. In Robert Cook, editor, SIGGRAPH 95 Confer-
ence Proceedings, Annual Conference Series, pages 173–182. ACM
SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles,
California, 06-11 August 1995. 17

[Ecke98] George Eckel, Renate Kempf, and Leif Wennerberg. OpenGL Opti-
mizer Programmer’s Guide: An Open API for Large-Model Visual-
ization. SGI techpubs library, 1998. Document Number 007-2852-
002. 10

[Ecke00] George Eckel and Ken Jones. OpenGL Performer Programmer’s
Guide. SGI techpubs library, 2000. Document Number 007-1680-
060. 10

[Fuch80] Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On Visible Sur-
face Generation by a Priori Tree Structures. In James J. Thomas, ed-

95

Bibliography

itor, Computer Graphics (SIGGRAPH 80 Proceedings), volume 14,
pages 124–133. ACM SIGGRAPH, ACM Press, July 1980. 11

[Fuji86] Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. ARTS: Accel-
erated Ray Tracing System. IEEE Computer Graphics and Applica-
tions, 6(4):16–26, 1986. 31

[Funk93] Thomas A. Funkhouser and Carlo H. Séquin. Adaptive Display Al-
gorithm for Interactive Frame Rates During Visualization of Com-
plex Virtual Environments. In James T. Kajiya, editor, SIGGRAPH
93 Conference Proceedings, Annual Conference Series, pages 247–
254. ACM SIGGRAPH, Addison Wesley, August 1993. ISBN 0-
201-51585-7. 16, 90

[Fuss88] Donald S. Fussell and K. R. Subramanian. Fast Ray Tracing Us-
ing K-d Trees. Technical Report CS-TR-88-07, University of Texas,
Austin, March 1, 1988. 32

[Garl97] Michael Garland and Paul S. Heckbert. Surface Simplification Using
Quadric Error Metrics. In Turner Whitted, editor, SIGGRAPH 97
Conference Proceedings, Annual Conference Series, pages 209–216.
ACM SIGGRAPH, Addison Wesley, August 1997. ISBN 0-89791-
896-7. 18

[Garl98] Michael Garland and Paul S. Heckbert. Simplifying Surfaces with
Color and Texture using Quadric Error Metrics. In David Ebert, Hans
Hagen, and Holly Rushmeier, editors, Proceedings of the conference
on Visualization ’98, pages 263–270. IEEE, October 1998. ISBN
1-58113-106-2. 18

[Giga90] Michael Gigante. Accelerated Ray Tracing Using Non-Uniform
Grids. In Proceedings of Ausgraph ’90, pages 157–163, Melbourne,
Australia, September 1990. 32

[Gigu91] Ziv Gigus, J. Canny, and R. Seidel. Efficiently computing and rep-
resenting aspect graphs of polyhedral objects. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 13(6):542–551, 1991.
14

[Glas84] Andrew S. Glassner. Space Subdivision For Fast Ray Tracing. IEEE
Computer Graphics and Applications, 4(10):15–22, October 1984.
ISSN 0272-1716. 32

96

Bibliography

[Glas95] Andrew S. Glassner. Principles of Digital Image Synthesis. Morgan
Kaufmann, San Francisco, CA, 1995. 8, 33

[Gold87] Jeffrey Goldsmith and John Salmon. Automatic Creation of Object
Hierarchies for Ray Tracing. IEEE Computer Graphics and Appli-
cations, 7(5):14–20, May 1987. ISSN 0272-1716. 32

[Gort96] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F. Cohen. The Lumigraph. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 43–54. ACM SIGGRAPH, Addison Wesley, August 1996.
held in New Orleans, Louisiana, 04-09 August 1996. 21, 86

[Gree86] Ned Greene. Environment Mapping and Other Applications of World
Projection. IEEE Computer Graphics and Applications, 6(11):21–
29, November 1986. ISSN 0272-1716. 23

[Gree93] Ned Greene and Michael Kass. Hierarchical Z-Buffer Visibility. In
James T. Kajiya, editor, SIGGRAPH 93 Conference Proceedings,
Annual Conference Series, pages 231–238. ACM SIGGRAPH, Ad-
dison Wesley, August 1993. ISBN 0-201-51585-7. 12

[Gros98] J. P. Grossman and William J. Dally. Point Sample Rendering. In
George Drettakis and Nelson Max, editors, Rendering Techniques
’98 (Proceedings of the Eurographics Workshop on Rendering 98),
pages 181–192. Eurographics, Springer-Verlag Wien New York,
June 1998. 28, 68

[Hain86] Eric A. Haines and Donald P. Greenberg. The Light Buffer: A Ray
Tracer Shadow Testing Accelerator. IEEE Computer Graphics and
Applications, 6(9):6–16, September 1986. 32

[Hain91] Eric A. Haines and John R. Wallace. Shaft Culling for Efficient Ray-
Cast Radiosity. In Pere Brunet and Frederik W. Jansen, editors, Pho-
torealistic Rendering in Computer Graphics (Proceedings of the Eu-
rographics Workshop on Rendering 91), pages 122–138. Eurograph-
ics, Springer-Verlag Berlin Heidelberg New York, 1991. 32

[Heck89] Paul S. Heckbert. Fundamentals of Texture Mapping and Image
Warping. M.Sc. Thesis, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, June 1989.
23

97

Bibliography

[Heid98] Wolfgang Heidrich, Jan Kautz, Philipp Slusallek, and Hans-Peter
Seidel. Canned Lightsources. In George Drettakis and Nelson
Max, editors, Rendering Techniques ’98 (Proceedings of the Euro-
graphics Workshop on Rendering 98), pages 293–300. Eurographics,
Springer-Verlag Wien New York, June 1998. 22

[Helm94] James L. Helman. Architecture and Performance of Entertainment
Systems, Appendix A. ACM SIGGRAPH 94 Course Notes - Design-
ing Real-Time Graphics for Entertainment, 23:1.19–1.32, July 1994.
7, 8, 9

[Hopp93] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
Werner Stuetzle. Mesh Optimization. In James T. Kajiya, editor,
SIGGRAPH 93 Conference Proceedings, Annual Conference Series,
pages 19–26. ACM SIGGRAPH, Addison Wesley, August 1993.
ISBN 0-201-51585-7. 17, 18

[Hopp96] Hugues Hoppe. Progressive Meshes. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 99–108. ACM SIGGRAPH, Addison Wesley, August 1996.
held in New Orleans, Louisiana, 04-09 August 1996. 18

[Hopp97] Hugues Hoppe. View-Dependent Refinement of Progressive Meshes.
In Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pages 189–198. ACM SIGGRAPH, Ad-
dison Wesley, August 1997. ISBN 0-89791-896-7. 18

[Huds97] T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang.
Accelerated Occlusion Culling using Shadow Frusta. In Proceedings
of the 13th Annual ACM Symposium on Computational Geometry,
pages 1–10. ACM Press, 4–6 June 1997. ISBN 0-89791-878-9. 13

[Isak00] Aaron Isaksen, Leonard McMillan, and Steven J. Gortler. Dynam-
ically Reparameterized Light Fields. In Kurt Akeley, editor, SIG-
GRAPH 2000 Conference Proceedings, Annual Conference Series,
pages 297–306. ACM SIGGRAPH, Addison Wesley, 2000. 22

[Jeva89] David Jevans and Brian Wyvill. Adaptive voxel subdivision for ray
tracing. In Proceedings of Graphics Interface ’89, pages 164–172,
June 1989. 32

[Jone94] Michael Jones. Lessons Learned from Visual Simulation. ACM SIG-
GRAPH 94 Course Notes - Designing Real-Time Graphics for Enter-
tainment, 23:2.1–2.34, July 1994. 8

98

Bibliography

[Kapl87] Michael R. Kaplan. The Use of Spatial Coherence in Ray Tracing.
In David E. Rogers and Ray A. Earnshaw, editors, Techniques for
Computer Graphics, pages 173–193. Springer Verlag, 1987. 32, 33

[Kay86] Timothy L. Kay and James T. Kajiya. Ray Tracing Complex Scenes.
In David C. Evans and Russell J. Athay, editors, Computer Graphics
(SIGGRAPH 86 Proceedings), volume 20, pages 269–278, August
1986. 32

[Kilg97] Mark J. Kilgard. Realizing OpenGL: Two Implementations of One
Architecture. In Steven Molnar and Bengt-Olaf Schneider, editors,
1997 SIGGRAPH / Eurographics Workshop on Graphics Hardware,
pages 45–56, New York City, NY, August 1997. ACM SIGGRAPH /
Eurographics, ACM Press. ISBN 0-89791-961-0. 55

[Klim97] Krzysztof S. Klimaszewski and Thomas W. Sederberg. Faster Ray
Tracing Using Adaptive Grids. IEEE Computer Graphics and Appli-
cations, 17(1):42–51, January 1997. 32

[Lave94] Stéphane Laveau and Olivier Faugeras. 3-D Scene Representation
as a Collection of Images and Fundamental Matrices. In Twelfth
International Conference on Pattern Recognition (ICPR’94), pages
689–691. IEEE Computer Society Press, October 1994. 25

[Leht00] Lasse Lehtinen. 3Dfx Voodoo and Voodoo 2 FAQ, 2000. available
at http://user.sgic.fi/˜blob/Voodoo-FAQ/. 2

[Levo85] Marc Levoy and Turner Whitted. The Use of Points as Display Prim-
itives. Technical Report TR85-022, Department of Computer Sci-
ence, University of North Carolina - Chapel Hill, October 1 1985.
28

[Levo96] Marc Levoy and Pat Hanrahan. Light Field Rendering. In Holly
Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual
Conference Series, pages 31–42. ACM SIGGRAPH, Addison Wes-
ley, August 1996. held in New Orleans, Louisiana, 04-09 August
1996. 21

[Lind00] Peter Lindstrom and Greg Turk. Image-Driven Simplification. ACM
Transactions on Graphics, 19(3):204–241, July 2000. 18

[Lipp80] Andrew Lippman. Movie-Maps: An application of the optical
videodisc to computer graphics. In James J. Thomas, editor, Com-
puter Graphics (SIGGRAPH 80 Proceedings), volume 14, pages 32–
42. ACM SIGGRAPH, ACM Press, July 1980. 23

99

http://user.sgic.fi/~blob/Voodoo-FAQ/

Bibliography

[Lisc98] Dani Lischinski and Ari Rappoport. Image-Based Rendering for
Non-Diffuse Synthetic Scenes. In George Drettakis and Nelson
Max, editors, Rendering Techniques ’98 (Proceedings of the Euro-
graphics Workshop on Rendering 98), pages 301–314. Eurographics,
Springer-Verlag Wien New York, June 1998. 29, 68

[Loun97] Michael Lounsbery, Tony D. DeRose, and Joe Warren. Multireso-
lution Analysis for Surfaces of Arbitrary Topological Type. ACM
Transactions on Graphics, 16(1):34–73, January 1997. ISSN 0730-
0301. 17

[Lueb95] David P. Luebke and Chris Georges. Portals and Mirrors: Simple,
Fast Evaluation of Potentially Visible Sets. In Pat Hanrahan and
Jim Winget, editors, 1995 Symposium on Interactive 3D Graphics,
pages 105–106. ACM SIGGRAPH, ACM Press, April 1995. ISBN
0-89791-736-7. 11

[Lueb97] David Luebke and Carl Erikson. View-Dependent Simplification
of Arbitrary Polygonal Environments. In Turner Whitted, editor,
SIGGRAPH 97 Conference Proceedings, Annual Conference Series,
pages 199–208. ACM SIGGRAPH, Addison Wesley, August 1997.
ISBN 0-89791-896-7. 17

[Maci95] Paulo W. C. Maciel and Peter Shirley. Visual Navigation of Large
Environments Using Textured Clusters. In Pat Hanrahan and Jim
Winget, editors, 1995 Symposium on Interactive 3D Graphics, pages
95–102. ACM SIGGRAPH, ACM Press, April 1995. ISBN 0-89791-
736-7. 23

[Mark97] William R. Mark, Leonard McMillan, and Gary Bishop. Post-
Rendering 3D Warping. In Michael Cohen and David Zeltzer, edi-
tors, 1997 Symposium on Interactive 3D Graphics, pages 7–16. ACM
SIGGRAPH, ACM Press, April 1997. ISBN 0-89791-884-3. 27

[Max96] Nelson Max. Hierarchical Rendering of Trees from Precomputed
Multi-Layer Z-Buffers. In Xavier Pueyo and Peter Schröder, editors,
Rendering Techniques ’96 (Proceedings of the Eurographics Work-
shop on Rendering 96), pages 165–174. Eurographics, Springer-
Verlag Wien New York, June 1996. ISBN 3-211-82883-4. 25

[McMi95a] Leonard McMillan. Computing Visibility Without Depth. Technical
Report TR95-047, Department of Computer Science, University of
North Carolina - Chapel Hill, October 1 1995. 26

100

Bibliography

[McMi95b] Leonard McMillan and Gary Bishop. Plenoptic Modeling: An
Image-Based Rendering System. In Robert Cook, editor, SIG-
GRAPH 95 Conference Proceedings, Annual Conference Series,
pages 39–46. ACM SIGGRAPH, Addison Wesley, August 1995.
held in Los Angeles, California, 06-11 August 1995. 20, 25

[McMi97] Leonard McMillan. An Image-based Approach to Three-
Dimensional Computer Graphics. Ph.D. Thesis, University of North
Carolina at Chapel Hill, 1997. also available as UNC Technical Re-
port TR97-013. 25

[Meye98] Alexandre Meyer and Fabrice Neyret. Interactive Volumetric Tex-
tures. In George Drettakis and Nelson Max, editors, Rendering Tech-
niques ’98 (Proceedings of the Eurographics Workshop on Rendering
98), pages 157–168. Eurographics, Springer-Verlag Wien New York,
June 1998. 26

[Mill98] Gavin Miller, Steven Rubin, and Dulce Ponceleon. Lazy Decom-
pression of Surface Light Fields For Precomputed Global Illumina-
tion. In George Drettakis and Nelson Max, editors, Rendering Tech-
niques ’98 (Proceedings of the Eurographics Workshop on Rendering
98), pages 281–292. Eurographics, Springer-Verlag Wien New York,
June 1998. 22

[Möll97] Tomas Möller and Ben Trumbore. Fast, Minimum Storage Ray-
Triangle Intersection. Journal of Graphics Tools, 2(1), 1997. ISSN
1086-7651. 31

[Möll99a] Tomas Möller and Eric Haines. Real-Time Rendering, 1999. Web-
page for book at http://www.realtimerendering.com.
31

[Möll99b] Tomas Möller and Eric Haines. Real-Time Rendering. A. K. Peters
Limited, 1999. 31

[NVID00a] NVIDIA Corporation. NV vertex program ex-
tension specification, 2000. available at
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/Program
76

[NVID00b] NVIDIA Corporation. Using Texture Com-
pression in OpenGL, 2000. available at
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/Whitepa
76

101

http://www.realtimerendering.com
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/ProgrammingResourcesFrame
http://www.nvidia.com/Marketing/Developer/DevRel.nsf/WhitepapersFrame

Bibliography

[Ohta87] Masataka Ohta and Mamoru Maekawa. Ray Coherence Theorem
and Constant Time Ray Tracing Algorithm. In Tsiyasu L. Kunii,
editor, Computer Graphics 1987 (Proceedings of CG International
’87), pages 303–314. Springer-Verlag, 1987. 32, 33

[Oliv00] Manuel M. Oliveira, Gary Bishop, and David McAllister. Relief Tex-
ture Mapping. In Kurt Akeley, editor, SIGGRAPH 2000 Conference
Proceedings, Annual Conference Series, pages 359–368. ACM SIG-
GRAPH, Addison Wesley, July 2000. 26

[Park99] Steven Parker, William Martin, Peter-Pike J. Sloan, Peter Shirley,
Brian Smits, and Charles Hansen. Interactive Ray Tracing. In
Stephen N. Spencer, editor, 1999 Symposium on interactive 3D
Graphics, pages 119–126. ACM SIGGRAPH, ACM Press, April
1999. ISBN 1-58113-082-1. 33

[Pfis00] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, and Markus
Gross. Surfels: Surface Elements as Rendering Primitives. In
Kurt Akeley, editor, SIGGRAPH 2000 Conference Proceedings, An-
nual Conference Series, pages 335–342. ACM SIGGRAPH, Addison
Wesley, 2000. 29, 65

[Plan90] Harry Plantinga and Charles R. Dyer. Visibility, Occlusion, and the
Aspect Graph. International Journal of Computer Vision, 5(2):137–
160, November 1990. ISSN 0920-5691. 14

[Pope00] Voicu Popescu, John Eyles, Anselmo Lastra, Joshua Steinhurst, Nick
England, and Lars Nyland. The WarpEngine: An Architecture for
the Post-Polygonal Age. In Kurt Akeley, editor, SIGGRAPH 2000
Conference Proceedings, Annual Conference Series, pages 433–442.
ACM SIGGRAPH, Addison Wesley, July 2000. 26

[Powe01] PowerVR Technology Overview and Roadmap. PowerVR
Technology Overview and Roadmap, 2001. available at
http://www.powervr.com/WhitePapers/Whitepapers.htm.
24

[Raff97] Matthew M. Rafferty, Daniel G. Aliaga, and Anselmo A. Lastra. 3D
Image Warping in Architectural Walkthroughs. Technical Report
TR97-019, Department of Computer Science, University of North
Carolina - Chapel Hill, September 03 1997. 24

102

http://www.powervr.com/WhitePapers/Whitepapers.htm

Bibliography

[Rohl94] John Rohlf and James Helman. IRIS Performer: A High Perfor-
mance Multiprocessing Toolkit for Real–Time 3D Graphics. In An-
drew Glassner, editor, SIGGRAPH 94 Conference Proceedings, An-
nual Conference Series, pages 381–395. ACM SIGGRAPH, ACM
Press, July 1994. ISBN 0-89791-667-0. 10

[Ronf96] Remi Ronfard and Jarek Rossignac. Full-range Approximation of
Triangulated Polyhedra. Computer Graphics Forum (Proc. Euro-
graphics ’96), 15(3):67–76, September 1996. ISSN 0167-7055. 18

[Ross93] Jarek Rossignac and Paul Borrel. Multi-resolution 3D approxima-
tions for rendering complex scenes. In B. Falcidieno and T. Ku-
nii, editors, Modeling in Computer Graphics: Methods and Appli-
cations (Proc. Second Conference on Geometric Modelling in Com-
puter Graphics, pages 455–465, Berlin, June 1993. Springer-Verlag.
17

[Rubi80] Steven M. Rubin and Turner Whitted. A 3-Dimensional Representa-
tion for Fast Rendering of Complex Scenes. In James J. Thomas, ed-
itor, Computer Graphics (SIGGRAPH 80 Proceedings), volume 14,
pages 110–116. ACM SIGGRAPH, ACM Press, July 1980. 32

[Rusi00] Szymon Rusinkiewicz and Marc Levoy. QSplat: A Multiresolution
Point Rendering System for Large Meshes. In Kurt Akeley, editor,
SIGGRAPH 2000 Conference Proceedings, Annual Conference Se-
ries, pages 343–352. ACM SIGGRAPH, Addison Wesley, July 2000.
30, 65

[Same89] Hanan J. Samet. Design and Analysis of Spatial Data Structures:
Quadtrees, Octrees, and other Hierarchical Methods. Addison–
Wesley, Redding, MA, 1989. 11

[Scha95a] Gernot Schaufler. Dynamically Generated Impostors. In Dieter W.
Fellner, editor, GI Workshop on Modeling, Virtual Worlds,, pages
129–135, November 1995. 23

[Scha95b] Gernot Schaufler and Wolfgang Stürzlinger. Generating Multiple
Levels of Detail for Polygonal Geometry. In M. Göbel, editor, Virtual
Environments ’95 (Second Eurographics Workshop in Virtual Envi-
ronments 1995), pages 33–41. Springer Verlag, January 1995. 17

[Scha96] Gernot Schaufler and Wolfgang Stürzlinger. A Three-Dimensional
Image Cache for Virtual Reality. Computer Graphics Forum (Proc.

103

Bibliography

Eurographics ’96), 15(3):227–235, September 1996. ISSN 0167-
7055. 23

[Scha97] Gernot Schaufler. Nailboards: A Rendering Primitive for Image
Caching in Dynamic Scenes. In Julie Dorsey and Philipp Slusallek,
editors, Rendering Techniques ’97 (Proceedings of the Eurograph-
ics Workshop on Rendering 97), pages 151–162. Eurographics,
Springer-Verlag Wien New York, June 1997. ISBN 3-211-83001-4.
25

[Scha98] Gernot Schaufler. Per-Object Image Warping with Layered Impos-
tors. In George Drettakis and Nelson Max, editors, Rendering Tech-
niques ’98 (Proceedings of the Eurographics Workshop on Rendering
98), pages 145–156. Springer-Verlag Wien New York, June 1998. 26

[Scha00] Gernot Schaufler, Julie Dorsey, Xavier Decoret, and François X. Sil-
lion. Conservative Volumetric Visibility with Occluder Fusion. In
Kurt Akeley, editor, SIGGRAPH 2000 Conference Proceedings, An-
nual Conference Series, pages 229–238. ACM SIGGRAPH, Addison
Wesley, July 2000. 14

[Schi00] Hartmut Schirmacher, Wolfgang Heidrich, and Hans-Peter Seidel.
High-Quality Interactive Lumigraph Rendering Through Warping.
In Proceedings of Graphics Interface 2000, pages 87–94. Morgan
Kaufman, May 2000. 22

[Schr92] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.
Decimation of triangle meshes. In Edwin E. Catmull, editor, Com-
puter Graphics (SIGGRAPH 92 Proceedings), volume 26, pages 65–
70. ACM SIGGRAPH, ACM Press, July 1992. ISSN 0097-8930.
17

[Sega92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul
Haeberli. Fast Shadows and Lighting Effects Using Texture Map-
ping. In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH
92 Proceedings), volume 26, pages 249–252. ACM SIGGRAPH,
ACM Press, July 1992. ISSN 0097-8930. 23

[Seit96] Steven M. Seitz and Charles R. Dyer. View Morphing: Synthesizing
3D Metamorphoses Using Image Transforms. In Holly Rushmeier,
editor, SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 21–30. ACM SIGGRAPH, Addison Wesley, August
1996. held in New Orleans, Louisiana, 04-09 August 1996. 23

104

Bibliography

[Shad96] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and
John Snyder. Hierarchical Image Caching for Accelerated Walk-
throughs of Complex Environments. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 75–82. ACM SIGGRAPH, Addison Wesley, August 1996.
held in New Orleans, Louisiana, 04-09 August 1996. 23

[Shad98] Jonathan W. Shade, Steven J. Gortler, Li-wei He, and Richard
Szeliski. Layered Depth Images. In Michael Cohen, editor, SIG-
GRAPH 98 Conference Proceedings, Annual Conference Series,
pages 231–242. ACM SIGGRAPH, Addison Wesley, July 1998.
ISBN 0-89791-999-8. 25

[Sill97] François Sillion, G. Drettakis, and B. Bodelet. Efficient Impostor
Manipulationfor Real-Time Visualization of Urban Scenery. Com-
puter Graphics Forum (Proc. Eurographics ’97), 16(3):207–218,
August 1997. ISSN 1067-7055. 27, 79, 87, 89

[Simm00] Maryann Simmons and Carlo H. Séquin. Tapestry: A Dynamic
Mesh-based Display Representation for Interactive Rendering. In
Bernard Péroche and Holly Rushmeier, editors, Rendering Tech-
niques 2000 (Proceedings of the Eurographics Workshop on Ren-
dering 2000), pages 329–340. Eurographics, Springer-Verlag Wien
New York, June 2000. ISBN 3-211-83535-0. 24

[Sloa97] Peter-Pike Sloan, Michael F. Cohen, and Steven J. Gortler. Time
Critical Lumigraph Rendering. In Michael Cohen and David Zeltzer,
editors, 1997 Symposium on Interactive 3D Graphics, pages 17–24.
ACM SIGGRAPH, ACM Press, April 1997. ISBN 0-89791-884-3.
22

[Snyd87] John M. Snyder and Alan H. Barr. Ray Tracing Complex Mod-
els Containing Surface Tessellations. In Maureen C. Stone, editor,
Computer Graphics (SIGGRAPH 87 Proceedings), volume 21, pages
119–128, July 1987. 32

[Subr91] K. R. Subramanian and Donald S. Fussell. Automatic Termination
Criteria for Ray Tracing Hierarchies. In Proceedings of Graphics
Interface ’91, pages 93–100, June 1991. 32

[Suda96] Oded Sudarsky and Craig Gotsman. Output-Sensitive Visibility Al-
gorithms for Dynamic Scenes with Applications to Virtual Reality.

105

Bibliography

Computer Graphics Forum (Proc. Eurographics ’96), 15(3):249–
258, August 1996. ISSN 0167-7055. 44

[Sung91] Kelvin Sung. A DDA Octree Traversal Algorithm for Ray Tracing. In
Werner Purgathofer, editor, Eurographics ’91, pages 73–85. North-
Holland, September 1991. 32

[Tell91] Seth J. Teller and Carlo H. Séquin. Visibility Preprocessing for In-
teractive Walkthroughs. In Thomas W. Sederberg, editor, Computer
Graphics (SIGGRAPH 91 Proceedings), volume 25, pages 61–69.
ACM SIGGRAPH, ACM Press, July 1991. 11

[Tell92] Seth J. Teller. Computing the antipenumbra of an area light source.
In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH 92
Proceedings), volume 26, pages 139–148. ACM SIGGRAPH, ACM
Press, July 1992. ISSN 0097-8930. 14

[Torb96] Jay Torborg and Jim Kajiya. Talisman: Commodity Real-time 3D
Graphics for the PC. In Holly Rushmeier, editor, SIGGRAPH 96
Conference Proceedings, Annual Conference Series, pages 353–364.
ACM SIGGRAPH, Addison Wesley, August 1996. held in New Or-
leans, Louisiana, 04-09 August 1996. 24

[Turk92] Greg Turk. Re-tiling polygonal surfaces. In Computer Graphics
(SIGGRAPH 92 Proceedings), volume 26, pages 55–64. ACM SIG-
GRAPH, ACM Press, July 1992. ISSN 0097-8930. 17

[Walt99] Bruce Walter, George Drettakis, and Steven Parker. Interactive Ren-
dering using Render Cache. In Dani Lischinski and Greg Ward Lar-
son, editors, Rendering Techniques ’99 (Proceedings of the Euro-
graphics Workshop on Rendering 99), pages 19–30. Eurographics,
Springer-Verlag Wien New York, June 1999. ISBN 3-211-83382-X.
24

[Ward99] Gregory Ward and Maryann Simmons. The holodeck ray cache: an
interactive rendering system for global illumination in nondiffuse en-
vironments. ACM Transactions on Graphics, 18(4):361–398, Octo-
ber 1999. ISSN 0730-0301. 24

[Wegh84] Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved
Computational Methods for Ray Tracing. ACM Transactions on
Graphics, 3(1):52–69, January 1984. ISSN 0730-0301. 32

106

Bibliography

[Whit80] Turner Whitted. An improved illumination model for shaded display.
Communications of the ACM, 23(6):343–349, June 1980. 30

[Will83] Lance Williams. Pyramidal Parametrics. In Computer Graphics
(SIGGRAPH 83 Proceedings), volume 17, pages 1–11. ACM SIG-
GRAPH, ACM Press, July 1983. 23

[Wimm99a] Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast
Walkthroughs with Image Caches and Ray Casting. In Michael
Gervautz, Dieter Schmalstieg, and Axel Hildebrand, editors, Virtual
Environments ’99. Proceedings of the 5th Eurographics Workshop
on Virtual Environments, pages 73–84. Springer-Verlag Wien, June
1999. 5

[Wimm99b] Michael Wimmer, Markus Giegl, and Dieter Schmalstieg. Fast
Walkthroughs with Image Caches and Ray Casting. Computers and
Graphics, 23(6):831–838, December 1999. ISSN 0097-8493. 5

[Wimm01] Michael Wimmer, Peter Wonka, and François Sillion. Point-Based
Impostors for Real-Time Visualization. Eurographics, Springer-
Verlag Wien New York, June 2001. 5

[Wolb90] George Wolberg. Digital Image Warping. IEEE Computer Society
Press, 10662 Los Vaqueros Circle, Los Alamitos, CA, 1990. IEEE
Computer Society Press Monograph. 23

[Wonk99] Peter Wonka and Dieter Schmalstieg. Occluder Shadows for Fast
Walkthroughs of Urban Environments. Computer Graphics Forum
(Proc. Eurographics ’99), 18(3):51–60, September 1999. ISSN
1067-7055. 12

[Wonk00] Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Visibil-
ity Preprocessing with Occluder Fusion for Urban Walkthroughs.
In Bernard Péroche and Holly Rushmeier, editors, Rendering Tech-
niques 2000 (Proceedings of the Eurographics Workshop on Render-
ing 2000), pages 71–82. Eurographics, Springer-Verlag Wien New
York, June 2000. ISBN 3-211-83535-0. 6, 14, 79

[Wonk01] Peter Wonka, Michael Wimmer, and François Sillion. Instant Visi-
bility. Computer Graphics Forum (Proc. Eurographics 2001), 20(3),
September 2001. 6, 15

[Wood00] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom
Duchamp, David H. Salesin, and Werner Stuetzle. Surface Light

107

Bibliography

Fields for 3D Photography. In Kurt Akeley, editor, SIGGRAPH 2000
Conference Proceedings, Annual Conference Series, pages 287–296.
ACM SIGGRAPH, Addison Wesley, 2000. 22, 64

[Xia96] Julie C. Xia and Amitabh Varshney. Dynamic View-Dependent Sim-
plification for Polygonal Models. In Roni Yagel and Gregory M.
Nielson, editors, Proceedings of the conference on Visualization ’96,
pages 327–334. IEEE, October 1996. ISBN 0-7803-3673-9. 18

[Zhan97] Hansong Zhang, Dinesh Manocha, Thomas Hudson, and Kenneth E.
Hoff III. Visibility Culling Using Hierarchical Occlusion Maps. In
Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, An-
nual Conference Series, pages 77–88. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN 0-89791-896-7. 12

108

Curriculum vitae

Name: Dipl.-Ing. Michael Wimmer

Date of birth: December 23, 1973 in Vienna, Austria

Nationality: Austria

Email: wimmer@cg.tuwien.ac.at

Languages: German, English, French, Spanish

Education

Sep. 1980–June 1984: Primary school (Volksschule) in Vienna.

Sep. 1984–June 1992: Secondary school (AHS) in Vienna, BGXVIII.

June 6, 1992: Graduation (Matura) with distinction.

Oct. 1992–Jan. 1997: Studies of computer science (Informatik) at the Vienna University
of Technology.

Oct. 1992–Jan. 1994: Studies of economics (Handelswissenschaften) at the Vienna Uni-
versity of Economics and Business Administration.

Jan. 30, 1997: Graduation (with distinction) to “Diplom-Ingenieur der Informatik”
(computer science). Diploma thesis: “Interactive Techniques in
Three-dimensional Modeling” at the Institute of Computer Graph-
ics.

Since March 1997: Doctoral program (Ph.D.) in computer science at the Vienna Uni-
versity of Technology. Member of the scientific staff of the Insti-
tute of Computer Graphics.

Since Oct. 1998: Studies of Technical Mathematics at the Vienna University of
Technology (completed first part in June 2000).

Jobs

Oct. 1993–June 1997: Working part-time for Vobis Austria.

1992–1997: Various technical consulting activities for IBM Austria.

Summer 1993: Implementation of a student management system for the ÖAD.

1995: 2 database projects for 2 different departments at IBM Austria.

Mar. 1997–June 2000: Research assistant at the Institute of Computer Graphics.

July 2000–Feb. 2001: EU Research position (TMR project “PAVR”) at iMAGIS, Greno-
ble, France.

Since March 2001: Universitätsassistent (assistant professor) at the Institute of Com-
puter Graphics, Vienna University of Technology.

109

