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Abstract
The paper presents a new mutation strategy for the Metropolis light transport algorithm, which works in the space
of uniform random numbers used to build up paths. Thus instead of mutating directly in the path space, mutations
are realized in the infinite dimensional unit cube of pseudo-random numbers and these points are transformed
to the path space according to BRDF sampling, light source sampling and Russian roulette. This transformation
makes the integrand and the importance function flatter and thus increases the acceptance probability of the new
samples in the Metropolis algorithm. Higher acceptance ratio, in turn, reduces the correlation of the samples,
which increases the speed of convergence. When mutations are calculated, a new random point is selected usually
in the neighborhood of the previous one, but according to our proposition called “large steps”, sometimes an
independent point is obtained. Large steps greatly reduce the start-up bias and guarantee the ergodicity of the
process. Due to the fact that some samples are generated independently of the previous sample, this method can
also be considered as a combination of the Metropolis algorithm with a classical random walk. Metropolis light
transport is good in rendering bright image areas but poor in rendering dark sections since it allocates samples
proportionally to the pixel luminance. Conventional random walks, on the other hand, have the same performace
everywhere, thus they are poorer than Metropolis method in bright areas, but are better at dark sections. In order
to keep the merits of both approaches, we use multiple importance sampling to combine their results, that is,
the combined method will be as good at bright regions as Metropolis and at dark regions as random walks. The
resulting scheme is robust, efficient, but most importantly, is easy to implement and to combine with an available
random-walk algorithm.

1. Introduction

The fundamental idea of Monte-Carlo quadrature is to con-
vert an integral to an expected value, which is then estimated
by the average of samples:
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where p(z) is a probability density inP, the zi points are
selected according to this probability density, andσ is the
variance of random variableF(z)=p(z). Probability density

p(z) should be selected to minimize the variance. As can
be shown easily, the variance can be minimized ifp(z) is
proportional to the integrandF(z). Thus in Monte-Carlo in-
tegration it is worth applying probability distributions that
are large where the integrand is large and small where the
integrand is negligible. This variance reduction technique is
called theimportance sampling 8.

In the context of the rendering equation, importance sam-
pling prefers useful paths along which significant radiance
is transferred. Since a path carries radiance on several dif-
ferentwavelengths, the integrandF(z) is a vector, thus the
selection of a “proportional” probability density requires fur-
ther considerations. In order to express where the elements
of vectorF(z) are large, a scalar importance functionI(z)
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is defined. This importance function can, for example, rep-
resent the luminance of the carried light.

Although the contribution on the image is a function of
the complete path, it is not possible to construct an explicit
sampling scheme that samples with this probability, thus ran-
dom walk algorithms usually assign estimated importance to
individual steps of this path. In a single step the importance
is usually selected according to the BRDF3; 4, or according
to the direction of the direct lightsources7.

The adaptive character of Metropolis sampling, however,
offers a different approach. Unlike other methods, Metropo-
lis sampling can assign importance to a complete walk not
just to the steps of this walk, and it explores important re-
gions of the domain adaptively11. Thus no a-priori knowl-
edge is required about the important rays to construct a prob-
ability density function in advance. Instead, the algorithm
converges to this probability density automatically.

1.1. Metropolis sampling

The Metropolis algorithm5 converges to the optimal prob-
ability density that is proportional to the importance, that is
in the limiting caseI(z) = b � p(z): Scalarb comes from the
requirement of normalization:

b =

Z

P
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However, this probability density cannot be stored, thus
in the Monte-Carlo formula the importance should be used
instead, in the following way:
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To generate samples according top(z) = 1=b � I(z), a
Markovian process is constructed whose stationary distribu-
tion is justp(z). The next statezi+1 of this process is found
by letting an almost arbitrarytentative transition function
T (zi ! zt) generate atentative sample zt which is either ac-
cepted as the real next state or rejected making the next state
equal to the actual state. The decision uses the “acceptance
probability” a(zi ! zt) that expresses the increase of the im-
portance (if this “acceptance probability” is greater than 1,
then the sample is accepted deterministically). The formal
definition of this Markovian processfz1;z2; : : :;zi; : : :g is as
follows:

for i = 1 to M do
Based onzi, choose a tentative pointzt usingT (zi ! zt )

a(zi ! zt ) =
I(zt )�T (zt!zi)
I(zi)�T (zi!zt )

// accept with probability a(zi ! zt )

Generate random numberr in [0;1].
if r < a(zi ! zt ) then zi+1 = zt

else zi+1 = zi

endfor

When it comes to the global illumination problem,z is a
path connecting the light sources to the eye, possibly includ-
ing several reflections or refractions, the integration domain
P is the space of light paths andF(z) is the contribution of
pathz onto a given pixel.

Veach and Guibas11 recognized that the basic Metropolis
algorithm needs to be modified to make it suitable for the
solution of the global illumination problem. Such modifica-
tions allowed the integrals of all pixels to be simultaneously
evaluated, the reduction of the start-up bias and the utiliza-
tion of the rejected samples, and also guaranteed the required
ergodicity of the Markov chain. Let us examine these modi-
fications separately.

The global illumination solution requires the evaluations
of integrals for each pixel of the screen. For a single pixel
j, this integrand is the product of the measurement function
Wj(z) of this pixel and the radiance functionL(z) that is also
obtained as a large dimensional integral of the Neumann se-
ries:

Φ j =
Z

P

Wj(z) �L(z) dz:

The radiance is independent of the measurement function of
the given pixel, thus can be reused for all pixels. To exploit
this, importanceI is made “proportional” only toL(z), and
for pixel j formula 2 becomes:
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Metropolis sampling adaptively converges to the desired
probability distribution. It also means that at the beginning
of the process, the samples are not selected with the required
probabilities, which introduces some error in the estimation.
This error is generally called as thestart-up bias9. In their
original paper Veach proposed the following solution of the
problem. In a preprocessing phase random samples are gen-
erated and the initial seed of the Metropolis algorithm is se-
lected from this random population with a probability that
is proportional to the importance. Since in this case even the
first sample follows the desired destribution, the start-up bias
problem is said to be eliminated. Of course, this is only true
in the statistical sense, i.e. when many Metropolis algorithms
are initiated from different seeds and their results are aver-
aged. If the Metropolis algorithm is started from a single or
a few samples, the start-up bias occurs no matter how the
initial path has been selected.

The next problem comes from the requirement that the
Markovian process should be ergodic, i.e. the stationary dis-
tribution should exists and be independent of the initial seed.
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This requires the mutations to lead to everywhere. This prob-
lem is proposed to be handled by using a candidate generated
from scratch when the process identified a path of zero con-
tribution.

Finally, it is worth using also the rejected samples since
they also provide illumination information. Note that the ten-
tative sample is accepted with probabilitya, while the origi-
nal sample is kept with probability 1�a. Replacing this ran-
dom variable by its mean, both locations can be contributed
but the contributions of the tentative sample and the old sam-
ple should be weighted witha and 1�a, respectively.

Summarizing, the pseudo-code of the Metropolis light
transport algorithm is as follows:

Generate path seeds
Approximateb =

R
I dz from the seeds

Find z1 from the seeds usingI(zi)

for i = 1 to M do
Based onzi, choose a tentative pointzt usingT (zi ! zt )

a(zi ! zt ) = min
n
I(zt )�T (zt!zi)
I(zi)�T (zi!zt )

;1
o

Select pixelj to whichzi contributes

Φ j += b
M �Wj(zi) �

L(zi)
I(zi)

� (1�a(zi ! zt ))

Select pixelk to whichzt contributes

Φk += b
M �Wk(zt) �

L(zt )
I(zi)

� a(zi ! zt))

// accept with probability a(zi ! zt )

Generate random numberr in [0;1].
if r < a(zi ! zt ) then zi+1 = zt

else zi+1 = zi

endfor

When one implements this seemingly simple algorithm,
he has to face crucial design decisions and several dangers.
The vital part of a Metropolis algorithm is the used muta-
tion strategy and setting their parameters. Regions of low im-
portance, i.e. which has positive but very little contribution,
might also pose problems. These are accepted by some low
probability, thus in theory the Metropolis algorithm is able to
walk through them and find other important regions. How-
ever, the low acceptance probability will greatly decrease the
speed, and we always be far from the asymptotically correct
result.

Metropolis light transport method places samples propor-
tionally to the importance, i.e. to the luminance or brighness
of the pixel. This seems reasonable if some absolute error
measure is used. However, the human eye is sensitive to rel-
ative errors, which means that targeting perceptual accuracy
we should use approximately the same number of samples
no matter how bright the pixel is. This requirement is met by
conventional random walk algorithms, thus the combination
of them with Metropolis would be desireable.

In the following subsections, we briefly review the main
problems and address what kind of mutation strategies can
eliminate them.

1.2. Correlated samples

Unlike other Monte-Carlo algorithms, Metropolis sampling
generates not statistically independent, but correlated sam-
ples. The statistical independent sampling of Monte-Carlo
quadrature guarantees that if the standard deviation of ran-
dom variableF(z)=p(z) is σprimary, then the standard devi-
ation of the Monte-Carlo quadrature will beσprimary=

p
M

after evaluatingM samples (the standard deviation is a good
measure of the integration error). Since Metropolis method
uses statistically correlated samples, the standard deviation
of the quadrature can be determined using the Bernstein the-
orem6, which states that the standard deviation of the differ-
ence between the average and the mean is bounded by

σprimary �

s
1+2∑M

k=1R(k)
M

(3)

where σprimary is the standard deviation of the primary
estimator andR(k) is an upperbund of the correlation
betweenF(zi)=p(zi) and F(zi+k)=p(zi+k). This formula
clearly shows that the correlation of the samples increase the
error.

Taking into account the specific properties of Metropo-
lis light transport Ashikhmin et. al.1 obtained the following
formula:

σ�

s
bQI
M

�
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2R(1)
p(1� p)�R(1)

�
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whereQ is the number of pixels,I is the average importance
of the paths associated with this pixel,p is the probability
that the path contributes to the pixel under consideration and
R(1) is the correlation between random variables indicating
that two subsequent paths go through the same pixel.

According to the analysis, strong correlation increases the
variance of the integral estimate. Let us consider what it
means from the point of view of good mutation strategies.
Clearly, if the mutations are small, then the next sample has
no chance to be relatively independent of the previous one,
thus the correlation will be high. Interestingly, large muta-
tions can also lead to highly correlated samples (figure 1).
Suppose that the process has found a peak of the integrand.
Having made a large perturbation, the importance of the ten-
tative sample will be much lower, thus the chance of accept-
ing it will also be low. The point on the peak remains to be
the sample points for many steps, which is responsible for
the high correlation.

Considering these, we can conlcude that a single, constant
mutation strategy cannot provide an effective algorithm. In-
stead we need a mutation strategy that is generally large but
gets smaller around the peaks of the integrand. The original
Metropolis light transport algorithm proposes the random
combination of several strategies, each of them is tailored
for a particular type of light transfer11. The construction
of a single strategy requires care and usually involves the
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small perturbations large perturbations

rejected
accepted

Figure 1: Both large and small mutations can result in large
correlation

tuning of a lot of parameters. Having established the basic
idea, the determination of the tentative transition probabili-
ties from both directions poses mathematical problems, not
to mention the implementation difficulties of these compli-
cated path manipulation techniques. If the randomly selected
mutation cannot generate an important tentative sample, then
it will be rejected by the Metropolis sample, and the next
random selection possibly finds another mutation type and
sample. However, the badly selected and thus rejected per-
turbations also increase the computation time and increase
the correlation.

2. Finding a good space for making mutations

The conclusions of the previous section immediately lead to
the following question. Is it possible to adapt the mutation
strategy itself, and when we are around the peak and thus
anticipate that larger perturbations will be rejected, then the
perturbation gets automatically smaller? At the first glance,
the answer is negative since to construct the tentative tran-
sition probabilites explicite knowledge of the importance
function would be needed, which is not available. However,
if the domain and consequently the integrand is transformed
in a way that the integrand is much smoother, the number
of rejections can greatly be reduced (note that the rejection
probability is proportional to the ratio of importances). Such
transformation would obviously expand the domain where
the original integrand is large and shrink it when the origi-
nal integrand is small. If constant size perturbations are used
in the transformed domain, they would correspond to larger
steps where the original integrand is large and smaller steps
where it is small.

Furthermore, such transformation is for free if the random
paths are built using importance sampling, e.g. BRDF sam-
pling, lightsource sampling and Russian roulette. Note that
when importance sampling or Russian roulette are applied,
we start with uniformly distributed pseudo-random numbers
generated in the unit interval and transform them to obtain
the directions, points, termination, etc. of the particular path.
Those random numbers from which a complete path is gen-
erated can be considered as points in a high-dimensional unit
cube. Let us call this cube as theprimary sample space. Im-

portance sampling means that transforming the points uni-
formly distributed in the cube we place more samples in path
regions where the path are expected to have significant con-
tribution. This is exactly what we need. Thus the perturba-
tion strategy that works in the primary sample space will
adapt to the properties of the integral and reduces the pertur-
bation size where the integral is large.

The contribution to a pixel is an integral over the space of
the possible light pathsP:

Φ=

Z

P

W (z) �L(z) dz

In order to obtain the samples ofz from random samples
in the unit cube, the path spaceP is transformed to the unit
cubeU by a transformationu = T (z). Thus the pixel contri-
bution is:

Φ=
Z

U

W (T�1(u)) �L(T�1(u)) �

�����dT�1(u)
du

����� du;

where �����dT�1(u)
du

�����= 1
t(u)

is the Jacobi determinant of the inverse mapping. Intu-
itively, the Jacobi determinant expresses the local expan-
sion between two corresponding spaces. Considering this,
the meaning oft(u) is the density of the sample points in the
neighborhood ofz = T�1(u). If u is a uniformly distributed
random variable, then the probability density ofz = T�1(u)
will be t(u). If importance sampling is used, then the Ja-
cobi determinant is approximately inversely proportional to
the pixel independent part of the original integrandL, plac-
ing dense samples whereL is large and also making the new
integrand

L�(u) = L(T�1(u)) �

�����dT�1(u)
du

�����= L(T�1(u))
t(u)

relatively flat. The importance function gets similarly flatter:

I�(u) =
I(T�1(u))

t(u)
:

Let us take an example to show how the pertubation in the
primary sample space affects the path. The example can also
be followed in figure 2.

Assume that we use bi-directional path tracing to find a
light-path (the proposed algorithm can work with any ran-
dom walk algorithm). Using two pseudo-random numbers
u1;u2 a random point on the window is found and a ray is
traced through this point, which finds surface point~x1. At
~x1 we takeu3 to randomly select a BRDF of the elemen-
tary BRDFs composing the reflection function at~x1 and to
decide whether or not the walk has to be terminated accord-
ing to Russian roulette. Assume that we decided to continue
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Figure 2: A sample path

the walk, thus we use another two random numbersu4;u5
to sample the direction with a density that is approximately
proportional to the selected elementary BRDF. The obtained
direction with starting point~x1 define a new ray that is traced
to find the new point~x2. Here we again decide on the termi-
nation usingu6. Suppose that now, the random numberu6
and the albedo at~x2 are such that the walk is terminated. In
order to make the shooting part of the bi-directional path,
a point and a direction is obtained on the surface of the
light source. Sampling a~y1 point can be done with num-
bersu7;u8, similarly, the direction sample is obtained with
u9;u10. This again defines a ray which hits a new point~y2.
Here a random decision is made with pseudo-random num-
ber u11. Suppose that the shooting part is terminated here,
and finally the end points of the eye walk and the light walk
are connected. If the end points are not occluded, we have
established the following light path:z = (~y1;~y2;~x2;~x1; ~eye).
Clearly, this path is unambigously defined by the vector
u= (u1; : : :;u11). The mappingz = T�1(u) is defined by the
bi-directional ray-tracing scheme that involves BRDF sam-
pling, Russian roulette and light source sampling.

Let us now perturb the elements of the vectoru =
(u1; : : :;u11) a little. Decision parametersu3;u6 andu11 are
used to terminate the walks and to select from elementary
BRDFs. If the perturbations of these values fit in the range
allowed by the albedos, then the new values lead to the same
decisions, thus the structure of the path is not altered (for
example, the new path will also connect 5 points). However,
when one of the new value steps over the albedo boundaries,
then the remaining part of the sub-path is cut or the previ-
ously terminated walk now has to be continued. The other
parameters responsible for changing the directions of steps
of the walk.

3. Large steps

The next problem that needs special care comes from the
regions of zero importance. The Markovian process used
in Metropolis algorithm should be ergodic, i.e. all samples
of non-zero importance should be generated with positive
probability. In the global illumination setting it is very likely
that light-paths of non-zero importance form islands in the
path space. If the mutations are not big enough to jump from

one island to the other, then the ergodicity condition can-
not be met. In order to solve this problem, we include com-
pletely independent steps in the algorithm, which obtain the
tentative sample without considering what the actual state
is. These independent steps are calledlarge steps. Large
steps have three different merits. These large steps gener-
ate any point non-zero point with positive probability, thus
the ergodicity, i.e. the problem of zero importance regions,
is solved. If the large steps is accepted, then the Metropo-
lis process start from a new random seed, which signifi-
cantly reduces the start-up bias error. Finally, the probability
density of the tentative samples obtained with large steps is
known, which allows for their sophisticated secondary uniti-
zation according to the concept of multiple importance sam-
pling.

Let us consider how the tentative sample worth generat-
ing in these large steps. In order to reduce correlation, the
acceptance probability should be maximized. Note that the
tentative probability depends now only on the target state,
that isT (zi ! zt) = T (zt). Considering this, the acceptance
probability is:

a(zi ! zt) =
I(zt) �T (zi)

I(zi) �T(zt)

This probability can be set to 1 ifT (z) is proportional
to the importance. However, this would require the explicit
knowledge of the importance function. If the large steps are
examined in the primary sample space the acceptance prob-
ability has the following form:

a(ui ! ut) =
I�(ut) �T (ui)

I�(ui) �T (ut)
:

Due to importance samplingI�(ut) is usually quite flat.
More precisely, it is as flat as BRDF sampling, light source
sampling and Russian roulette can describe the importance
of a path. Using this approximation that the transformed im-
portance is constant:

a(ui ! ut)�
T (ui)

T (ut)
:

The acceptance probability will be 1 if the mutation function
of the large steps are realized with a uniform probability.

4. Designing mutation strategies in the infinite
dimensional cube: lazy evaluation

So far, we neglected the fact that the primary sample space,
i.e. our cube where the sample points are perturbed is infinite
dimensional, where it is impossible to unambigously define
a point with finite numbers. However, this is not a problem
if the coordinates of each point are evaluated in a lazy way.
Note that a point unambigously defines a bi-directional path
according to BRDF sampling, Russian-roulette and light
source sampling, however, only the first few coordinates are
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window

primary sample spacepath space

Figure 3: The correspondance between the mutations in the primary sample space and in the path space

used until the paths are terminated according to Russian-
roulette. Let us evaluate, store and perturb only those co-
ordinates of the current point, which has been needed by the
longest path happened so far. If it turns out that the current
path is longer than the longest path encountered so far and
thus we need new coordinates, then we have repeat the life
history just for these new coordinates. We have to go back to
its last use or if it has not used before, to the last large step
since the last step generated all coordinates randomly and in-
dependently of the former states (in this sense accepted large
steps are those critical time instances beyond which we do
not have to remember). If the point has never been used, then
its initial value is obtained randomly as the large step would
have obtained it. Then the history happened since the last
use is played again, i.e. the point is perturbed by the times of
the mutated perturbations happened since the last use. Note
that the number of accepted mutations counts since rejected
mutations do not affect the future.

un

ku

last use 
of

new use 
of accepted 

mutations
un un

postponed (lazy)
mutations

Figure 4: Lazy evaluation of the coordinates

The implementation of this scene is quite straigtforward.

Let us define a counter for the global time of the process
which counts the number of accepted mutations and call
it succ_mutation. Each coordinate is associated with a lo-
cal time-stamp calledlast_modify that stores the global time
when it was modified. The time of the last accepted large
step is also stored in variableslarge_step_time. When a new
coordinate is needed, first it is checked whether or not this
coordinate has been used before. If it has not been used, it is
initialized as a random number and its time stamp is set to
large_step_time. If it has already been used, the value of the
coordinate is associated with its state at timelast_modify. In
both cases, the coordinate is perturbed bysucc_mutation �
last_modify times.

5. Utilization of rejected samples

The original Metropolis light transport algorithm makes use
of rejected samples by replacing the random variable of the
random acceptance by its mean, which is a common vari-
ance reduction technique and multiplies the original and ten-
tative values by the rejection and acceptance probabilities.
However, large steps allow us to do it even better. Merging
large steps can also be viewed as a combination of two sam-
pling techniques, also called multiple importance sampling
10. Multiple importance sampling is capable to combine two
methods in a way that the strengths of the methods are pre-
served.

According to the results of multiple importance sampling
10, if we use two sampling techniques, and the first sampling
technique generatesM1 number ofu samples with probabil-
ity p1(u), while the second sampling techniqueM2 samples
with probability p2(u), then a quasi-optimal combination
would weight theF(u)=p1(u) samples of the first method
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by

w1(u) =
M1p1(u)

M1p1(u)+M2p2(u)

and would weight theF(u)=p2(u) samples of the second
method by

w2(u) =
M2p2(u)

M1p1(u)+M2p2(u)
:

Metropolis generates a sequence of tentative samples, but
sometimes rejects them and replaces them with the previ-
ous sample before using it in the quadrature. Applying mean
value substitution, no matter whether or not the sample is
rejected, both the original and the new values are substi-
tuted into the integral quadrature weighting their contribu-
tion with their acceptance probabilites. A secondary reuse
of these samples can be found, if we consider their sequence
coming from a different sampling technique and use multiple
importance sampling to combine its results with that of the
Metropolis sampling. The combination requires the knowl-
edge of the generation probabilities of both methods, which
is generally not easy to find. However, for the uncorrelated
samples of the large steps this probability is trivial. Let us
thus consider the sequence of all uncorrelated tentative sam-
ples as a separate sampling technique, and let us determine
the probability of generating a given sample by the Metropo-
lis method and by this alternative sequence of uncorrelated
samples.

Metropolis sampling generates a sample with the proba-
bility that is proportional to the importance:

p1(u) =
I(u)

b
:

For the large steps, the uniform point selection is used, thus:

p2(u) = 1:

If the probability of large steps isplarge, then the number of
samples of the second method is expected to beplarge times
the number of samples of the first method, thusM2=M1 =
plarge.

Finally we should take into account that due to the mean
value substitution the new samples of the Metropolis will
be weighted bya, while the old samples are also used with
weight 1� a. Putting these altogether, the weight of a new
Metropolis sample is:

wnew
1 (u) =

a � I(u)=b
I(u)=b+ plarge

:

The weight of the old sample is:

wold
1 (u) =

(1�a) � I(u)=b
I(u)=b+ plarge

:

The weight of the uncorrelated samples is:

w2(u) =
plarge

I(u)=b+ plarge
:

Thus when a large step is made, the weight of the new sam-
ple is derived from both sampling strategies:

wnew
1 (u) �

F(u)
p1(u)

+w2(u) �
F(u)
p1(u)

=
a+1

I(u)=b+ plarge
�F(u):

Small steps can stem only from the Metropolis method, thus
for small steps the weight is:

wnew
1 (u) �

F(u)
p1(u)

=
a

I(u)=b+ plarge
�F(u):

Note that Metropolis method is good in generating bright
image sections while poor at dark regions since the number
of samples is proportional to the luminance. The perceptual
error, on the other hand, depends on the relative error, which
is thus small at bright and large at dark image areas. Con-
ventional random walk uses the same number of samples in
all pixels, thus the perceptual error will be roughly uniform.
The proposed combination can thus improve dark image ar-
eas.

5.1. Theoretical analysis of the power of large steps to
reduce the start-up bias

In order to theoretically evaluate the start-up bias, let us ex-
amine a simplified, 1-dimensional case when the importance
is constant, thus the transition proposed by the tentative tran-
sition function is always accepted.

In this case, the probability densitypn(x) in the equilib-
rium is constant. The question is how quickly the Metropolis
method approaches to this constant density (figure 5).

p p pp
210

Figure 5: Evaluation of the uniform distribution

Metropolis method can generate samples following a
given probability density in a closed interval. Since random
mutations may result in points that are outside the closed in-
terval, the boundaries should be handled in a special way.

If the variable of an integrand denotes “angle of direc-
tion”, then the interval can be assumed to be “circular”, that
is, the external points close to one boundary are equivalent
to the internal points of the other boundary. Using this as-
sumption, let us suppose that the domain of the integration
is [�π;π] and the integrand is periodic with 2π.

In 9, the analysis of error of the distribution resulted in the
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following formula:

jjpn� p1jj2 =

vuut 1

∑
k=�1;k 6=0

jP�(k)j2n (5)

where P�(k) is the Fourier transform of the perturbation
functionP(x). This perturbation function defines the proba-
bility of generating pointx as the perturbation of point zero.
If large steps are also implemented the perturbation function
is a composition of the large steps and the perturbation func-
tion of the small steps:

P(x) = plarge �
1

2π
+(1� plarge) �S(x)

whereS(x) is the perturbation function of the small steps.
Substituting this into equation 5 we obtain:

jjpn� p1jj2 = (1� plarge)
n �

vuut 1

∑
k=�1;k 6=0

jS�(k)j2n

Note that even with lowerplarge values the start-up bias
quickly disappears.

Let the perturbation be the selection of a point following
uniform distribution from an interval of size∆ centered by
the current point. Formally the transition probability is

S(x ! y) =

(
1=∆ if jx� yj< ∆;

0 otherwise:
(6)

The Fourier transform of this function is

S�(k) =
sinkπ∆

kπ∆
(7)

which can be rather big even for largek values. This formula,
together with equation (5) allows to generate the graph of the
start-up errors for different sample numbers and for different
perturbation size (figure 6). Note that the probability density
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Figure 6: Start-up error for different perturbation size ∆

is not accurate for many iterations if the perturbation size is

small compared to the size of the domain. This situation gets
just worse for higher dimensions.

5.2. Numerical simulation

In order to demonstrate the proposed transformation, we
took a simple integrand of figure 7. The function is piece-
wise linear its mimimum is 0.01 and its two peaks have 4 and
3 values, respectively. Such integrand is typical in rendering
where the peaks represent importance light path sets and the
minimum just the diminishing multiple reflections. Note that
the also piece-wise linear importance function only mimics
the original integrand, it is flatter. Again, this corresponds
to the fact that in rendering the luminance is used as impor-
tance which averages the radiances on differentwavelengths.
The probability density is even less accurate, and consists
of piece-wise constant section. Recall, that these probabil-
ity densities are constructed in a way to allow importance
sampling, just they should be analytically integrable. This
requirement contradicts the accurate approximation of the
importance function.

The right of figure 7 also shows the transformed integrand
and importance function.

To simulate the fact that in rendering many integrals are
evaluated simultaneously, let us suppose that the unit domain
is decomposed intoN = 10 intervals and we are interested in
the integral values in each interval. The error measure will be
the RMS error between the real and approximated integrals
in all intervals. The functions in the original and transformed
spaces are shown in figure 7.

5.3. Comparing the integration in the original and in
the primary sample space

Note that in figure 7 the transformed function is much flat-
ter at high importance regions, thus here the mutations are
accepted with higher probability than in the original space.
This change significantly increases and acceptance probabil-
ity if the perturbations are large enough to step out from the
support of the peaks. Indeed, the average acceptance prob-
ability of the mutations increased from 18% to 67% due to
the transformation when we used[�0:5;0:5] perturbation in-
terval. Higher acceptance probability, on the other hand, re-
duces the start-up bias and also the variance of the algorithm
as shown in figure 8. However, when the perturbation size
is small, the gain received from the transformation becomes
negligible. For example, the average acceptance probability
increased from 62% to 84% when the interval of perturba-
tion was[�0:05;0:05]. Thus we can conclude that large mu-
tations can benefit from the transformation.

5.4. Performance evaluation of the large steps

In order the evaluate the efficiency of large steps, we took
three different settings. This first one applied no large steps
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Figure 8: RMS error curves of the Metropolis methods working in the original and the transformed spaces for large perturba-
tions in [�0:5;0:5] (left), and small perturbations in [�0:05;0:05] (right)

and both the original and the tentative samples were used
in the quadrature. This first case corresponds to the orig-
inal metropolis light transport. In the second example, we
allowed large steps but still used the original combination
of old and tentative samples. Finally, the large steps were
taken into consideration with the proposed multiple impor-
tance sampling concept. The results are shown in the left of
figure 9.

Note that the large steps improved the convergence but the
benefits of the multiple importance sampling is not obvious
yet. The reason is that we used the RMS error, which is not
really good at expressing the image differences. For exam-
ple, if a dark pixel has someσ2 variance, then it would mean
the same RMS error as if a bright pixel had it. However, this
variance is much more noticable on the dark pixel.

To overcome this problem, a perceptual error measure will

be used. For instance, according to Weber law, the human
eye is sensitive to relative rather than absolute errors. Thus
let us compute the relative error in each slot and sum up the
errors. The right of figure 9 has been made with this met-
ric, which clearly emphasizes the benefits of multiple im-
portance sampling.

If we consider relative errors due to their superior-
ity in perceptual sense, the complementary advantages of
Metropolis sampling and normal random walks can be iden-
tified. Note that Metropolis will use more samples at high
intensity regions and less at dim regions. For instance, ac-
cording to equation 4, the relative error of a pixel will be
proportional toI�1=2 which is good for bright and bad for
dark pixels. Random walks, on the other hand, provide pixel
values with approximately the same relative error if they use
the same number of samples in each pixel. Thus random
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Figure 9: Error curves of the Metropolis method in the original domain with and without large steps, supposing RMS measure
(left), and using a perceptual error measuere (right)

walks are better for darker regions. The large steps also have
a drawback, that they may decrease the average acceptance
ratio. However, working in the primary sample space solves
this problem as we concluded in the previous section. From
the combination of the two techniques, we expect a method
that is as good as Metropolis sampling in bright sections, but
can also handle dark regions as well as random walks.

The relative importance of the two techniques can be con-
trolled by the probability of the large steps (plarge). In order
to set this probability, several contradicting criteria should
be taken into consideration. For example, if we increase the
large step probability, then the start up bias will quickly van-
ish and the dark regions will be better. However, large proba-
bility values also increase the correlation of samples. For in-
stance, the average acceptance probability is decreased from
87% to 50% if the large step probability increased from 0.1
to 0.9.

We took different large step probabilities and compared
the error curves in figure 10. Note that the given integrand
the optimal probability is about 0:7. This high value is due
to the fact that the integrand is relatively flat in the primary
sampling space. The question of the optimal setting of the
large step probability is not solved yet for the general case.
According to our experiences, it is worth increasing until the
average acceptance probability does not drop significantly.

6. Performance evaluations in the global illumination
setting

7. Conclusions

This paper presented a new mutation method for Metropo-
lis light transport algorithm. The mutations are computed in
the primary sample space where usually the pseudo-random
numbers are obtained. If importance sampling is used, this

strategy smoothes the integrand, and thus increases the aver-
age acceptance probability and thus reduces the correlation.
The other main advantage of this approach is that it does
not require sophisticated techniques and dubious tricks to set
parameters. In this way, any random walk algorithm can be
equippped with Metropolis sampler, just the random number
generation and the averaging scheme should be modified.
We also proposed the application of large steps to include
independent samples in the sequence. These large, indepen-
dent steps have threefold benefits. They reduce the start-up
bias, guarantee the ergodicity and allow a more sophisticated
reuse of tentative samples in the integral quadrature, based
on the concepts of multiple importance sampling.
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Figure 11: Images rendered by the proposed algorithm using multiple importance sampling with different large step probabili-
ties. We used 30 mutations per pixel.
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Figure 12: Images rendered without (left) and with (right) multiple importance sampling. We used 30 mutations per pixel.
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