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Abstract
The global illumination or transport problems can also be considered as a sequence of integrals, while its Monte-
Carlo solutions as different sampling techniques. Multiple importance sampling takes advantage of different sam-
pling strategies and combines the results obtained with them. In this paper we propose the combination of very
different global illumination algorithms in a way that their strengths can be preserved. To do this, we generalize
the fundamental theory of multiple importance sampling for sequences of integrals and also take into account the
computational cost associated with individual sampling techniques. The theoretical results are used to combine
bi-directional path tracing and ray-bundles based stochastic iteration.

Keywords: Multiple importance sampling, stochastic itera-
tion, random walk.

1. Introduction

Global illumination algorithms find the light paths connect-
ing light sources to eye via reflections and compute the im-
age as the integral of the contribution of these paths. For-
mally, they estimate integral:

R
P

l(z) dz whereP is the do-

main of the paths andl(z) is the contribution of a pathz.
Within this context, different path building strategies have
been published, and each of them is good for certain path
types. Thus it is worth mixing existing algorithms of differ-
ent strengths and weaknesses together in order to combine
their merits1; 2; 4.

2. Multiple importance sampling

In this section we recall the fundamental theory of multiple
importance sampling7. Assume that integralL =

R
P

l(z)dz

needs to be evaluated. Monte-Carlo quadratures generate
samples with certain probability density. Suppose that the
ith sampling method uses densitypi(z), and denote the pri-
mary estimator of the methodi by l(z)=pi(z). The secondary

estimator of a methodi is obtained by takingNi samples and
averaging the results. The estimator combined fromn sam-
pling techniques is then calculated by weighting samples by
appropriate functionswi(z), and summing the results:

hLic =
n

∑
i=1

1
Ni

Ni

∑
j=1

wi(zi; j) �
l(zi; j)

pi(zi; j)
: (1)

The combined estimator is unbiased if for allz values
∑n

i=1 wi(z) = 1: In order to find an optimal weighting, the
variance of the combined estimatorhLic should be mini-
mized by setting the weights appropriately and also taking
into account the constraint of unbiasedness. Unfortunately,
this optimization problem cannot be solved analytically, but
different quasi-optimal solutions can be obtained. One such
approximative solution is called thebalance heuristics6:

wi(z) =
Ni � pi(z)

∑n
k=1 Nk � pk(z)

: (2)

3. A cost driven approach

Multiple importance sampling assumes that the numbers of
samples of the different sampling techniques are known a-
priori. However, the definition of these numbers is not at all
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trivial. One of the objectives of this paper is to incorporate
the sampling cost in multiple importance sampling.

Substituting the weights of balance heuristic into the vari-
ance formula we get the following variance for the multiple
importance sampling method:

Var[hLic] =

Z

P

n

∑
i=1

w2
i (z) � l

2(z)
Ni � pi(z)

dz�
n

∑
i=1

1
Ni

E2[Li1] =

Z

P

n � l2(z)

∑k Nk � pk(z)
dz�

n

∑
i=1

1
Ni

�

0
@Z

P

Ni � pi(z) � l(z)

∑k Nk � pk(z)
dz

1
A

2

:

(3)
This variance is further minimized by finding the optimum
Ni sample numbers under the constraint of the total compu-
tation time. This constraint be expressed asC =∑n

i=1 ci �Ni,
whereci is the cost of a sample in methodi. In order to carry
out this optimization procedure, the integrals of equation (3)
should be computed. However, we do not have the explicit
form of the path contribution functionl(z) and can use only
the point samples. Suppose that one method (say method 1)
has been executed to obtain some initialN�1 samples, and the
variance is estimated empirically:

Var[hLic]�
1

N�1
�

N�1

∑
j=1

n � l2(z j)

∑k Nk � pk(z j) � p1(z j)
�

 
1

N�1
�

N�1

∑
j=1

Ni � pi(z j) � l(z j)

∑k Nk � pk(z j) � p1(z j)

!2

:

Unfortunately, this function cannot be analytically mini-
mized. However, its derivatives can be easily computed, thus
a gradient search can provide quick approximations of the
optimum. The optimization is an iteration where each step
consists of a gradient step and a projection to the plane of
the cost constraint.

4. Multiple importance sampling for the global
illumination problem

Let us now examine how the general concepts can be applied
to solve transport problems and particularly the global illu-
mination problem. The solution of the global illumination
problem can be obtained in the form of a Neumann series:

L =
1

∑
i=0

T iLe = Le +T (Le +T (Le +T (Le + : : :))):

whereT is the integral operator of the light transport andLe

is the emission function. Note that here not a single integral,
but a sequence of integrals should be computed. Due to the
recursive formulation of the Neumann series, these integrals
can be evaluated simultaneously and the samples of the first
few variables of a higher dimensional integrand can be used
for the integrands of the lower dimensional terms in the se-
ries. When the sampling process results in a sample and the

integrand at this point is computed, the integrand value will
represent the sum of the direct contribution, single reflection,
double reflection etc. In many methods, the separation of the
contributions of different reflections would be too cumber-
some, thus we look for weighting techniques, which weight
the total contribution of all terms.

The integrand is an infinite series which should be trun-
cated to terminate the computation in finite time. When Rus-
sian roulette is used the computation of this series terminated
randomly assuming that the sum of the rest of the terms is
zero. This means that the probability of computing all terms
is also zero. Looking at the formula of weights in multiple
importance sampling, this means that those samples of light
paths that have been truncated by Russian roulette always get
zero weight, thus multiple importance sampling is not appro-
priate for integral series computed with Russian roulette.

In order to find a solution for this problem, let us consider
a very simple case. Suppose that

I =
Z

[0;1)

2
64 f (x)+

Z

[0;1)

g(x;y) dy

3
75dx (4)

is approximated. In theith method we useNi samples. First
we decide whether or not we take any samples with proba-

bility s(x)i . If a sample is taken, thenx is obtained with prob-

ability densityp(x)i (x) and f (x)=s(x)i is computed. If no sam-
ple is generated, we assume thatx = 1 and f (1) = 0 and
g(1; �) = 0. Note that with this assumption the domains of
f andg are extended to represent those cases when they are
not sampled. This random termination can also be described
by the following density:

p̃(x)(x) =

8<
:

s(x) � p(x)(x) if x 6= 1,

(1� s(x)) �δ(x�1) if x = 1.

where δ(x) is the Dirac-delta function. Having samplex

computed, we decide with probabilitys(y)i (x) whether or not
a y sample is obtained. Sampley is generated with density

p(y)i (yjx) and g(x;y)=s(y)i (x) is computed. If no sample is
generated, we assume thaty = 1 andg(x;y) = 0. The ran-
dom termination and sampling ofy can also be described by
the following modified density:

p̃(y)(yjx) =

8<
:

s(y)(x) � p(y)(yjx) if y 6= 1,

(1� s(y)(x)) �δ(y�1) if y = 1.

These modified densities allow methods incorporating Rus-
sian roulette to be handled as the normal case. The proba-
bility of obtaining anx;y pair is the product of probabilities
of samplingx, the continuation and then samplingy, that is
p̃(y)(x;y) = p̃(x)(x) � p̃(y)(yjx).

Using the modified density, the primary estimator ofI in
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equation (4) is

Ii j = wi(xi j;yi j) �

 
f (xi j)

p̃(x)i (xi j)
+

g(xi j;yi j)

p̃(y)i (xi j;yi j)

!
:

The combined estimate ishIic = ∑n
i=1

1
Ni

∑Ni
j=1 Ii j. Ignoring

the covariance between the samples off andg, the variance
of the estimate can be obtained in the following form:

Var[hIic] =
n

∑
i=1

1

N2
i

Ni

∑
j=1

Var[Ii j] =
n

∑
i=1

1
Ni

Var[Ii1]�

Z

[0;1]2

n

∑
i=1

w2
i (x;y)
Ni

�

 
f 2(x)

p̃(x)i (x)
+

g2(x;y)

p̃(y)i (x;y)

!
dxdy�

n

∑
i=1

1
Ni

E2[Ii1]:

This function should be minimized with the constraint
∑n

i=1 wi(z) = 1. Unfortunately, this optimization problem
cannot be solved analytically, thus quasi-optimal solutions
are found. For example, we can aim at minimizing just the
integrand of the above integral. Using the Lagrange multi-
plier method to incorporate the constraint, the minimum of

n

∑
i=1

w2
i (x;y)
Ni

�

 
f 2(x)

p̃(x)i (x)
+

g2(x;y)

p̃(y)(x;y)

!
�

λ � (
n

∑
i=1

wi(x;y)�1)

is needed, which can be obtained by making the partial
derivatives bywi andλ equal to zero. The final result is

wi(x;y) =
vi(x;y)

∑n
k=1 vk(x;y)

;

where

vi(x;y) =
Ni

f 2(x)

p̃(x)
i (x)

+
g2(x;y)

p̃(y)
i (x;y)

: (5)

We shall call vi(x;y) as theun-normalized weight since
weightswi are obtained as their normalization. Let us inter-
pret this formula. When the second integral ofg is relevant,
that isg is large, thenf can be ignored, thus we have

wi(x;y)�
Ni � p̃(y)i (x;y)

∑n
k=1 Nk � p̃(y)k (x;y)

:

This is basically the original multiple importance sampling
strategy applied for the integral ofg.

However, when the second integral is negligible, i.e.g is
small, then it can be omitted, thus

wi(x;y)�
Ni � p̃(x)i (x)

∑n
k=1 Nk � p̃(x)k (x)

;

Note that we got back the original scheme as applied only to
the first integral.

Let us try to apply this concept to the solution of the
global illumination problem. The generalization of equa-
tion (5) for the Neumann series is straightforward, thus the
un-normalized weights are as follows:

vi(ω1;ω2; : : :) =
Ni

∑ j
L2

j (ω1;:::;ωj)

p̃i(ω1;:::;ωj)

; (6)

where Lj(ω1; : : :;ωj) is the contribution of a path which
containsj reflection points and the light goes parallel toωk
after thekth reflection. In the following sections, we com-
bine bi-directional path tracing and ray-bundle based itera-
tion using this formula.

5. Bi-directional path tracing

Random walk algorithms build up light paths connecting the
light sources with the eye according to a random simulation
of light scattering at the surfaces. At light-surface interaction
points, the continuation direction is obtained with a probabil-
ity density that is approximately proportional to probability
density of photon reflectionw(ωin;ωout). Russian roulette
uses the integral of this function as the probability of termi-
nation. Bi-directional path tracing3 simultaneously builds
up an eye-subpath starting from the eye and a light-subpath
initiated from the lightsources, and the two subpaths are con-
nected deterministically. The strength of bi-directional path
tracing is that it treats specular effects such as specular high-
tlights mirrors and caustics well and renders accurate shad-
ows. The weakness of the algorithm is that it cannot exploit
coherence thus it requires very many samples to get a noise
free image.

window

x

x y

y

eye path

deterministic step

light path

1

2

2

1

Figure 1: Bi-directional path tracing

6. Global ray-bundle iteration

Iteration algorithms are based on the fact that the solution of
the rendering equation is the fixed point of the following it-
eration schemeLi+1 = Le +T Li. Iteration requires the com-
plete radiance function to be stored that results in astronom-
ical storage requirements. To solve this problem, stochastic
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iteration replaces the determininistic operatorT by a ran-
dom operatorT �, which behaves as the original light trans-
port operator in the average case:

Li+1 = Le +T
�

i Li; E[T �L] = T L:

In this stochastic iteration scheme the radiance function and
its functionals do not converge. However, if the estimates
of subsequent iteration steps are averaged, this average will
converge to the real solution5.

image plane

direction 1

direction 2

direction 3

Figure 2: A path of ray-bundles

In ray-bundle iteration the randomization happens by
choosing a random direction using a uniform distribution,
and the radiance of all points is transferred parallel to this
direction, then the transferred radiance is reflected towards
the eye and to the next random direction. The strength of
ray-bundle iteration is that the algorithm exploits coherence,
therefore it is very fast. Combining with Gouraud or Phong
shading the generated images are not noisy. The weakness
of the algorithm is that by sampling global directions uni-
formly over the bounding sphere, it cannot take into account
locally important directions. For example, it is very unlikely
to sample near ideal mirror reflection directions.

7. The combined algorithm

According to equation (6), when computing the weight of
a contribution of methodi from the un-normalized weight,
we should be able to determine the un-normalized weights
for all methods to be combined. Let us denote bi-directional
path tracing as method 1 and stochastic iteration as method
2. Consider pathz = (ω1;ω2; : : :;ωJ).

When a sample with random walk is obtained, we need
the un-normalized weight of this sample which would be
obtained with stochastic iteration. The probability of gener-
ating pathω1; : : :;ωJ by random walk can be approximated
as:

p̃1(ω1; : : :;ωJ) = w(ωeye;ω1) �w(ω1;ω2) � : : : �w(ωJ�1;ωJ):

The radiance carried by the same path is:

L j(ω1; : : :;ωj) =

Le(ω1; : : :;ωj) �w(ωeye;ω1) �w(ω1;ω2) � : : : �w(ωj�1;ωj):

whereLe(ω1; : : :;ωj) is the emission at the end of the path
in direction�ωJ. Thus the un-normalized weight is:

v1(ω1; : : :;ωJ) =

N1

∑J
j=1 L2

e(ω1; : : :;ωj) �w(ωeye;ω1) � : : : �w(ωJ�1;ωJ)
:

The probability of generating a path of lengthj by stochastic
iteration isp̃2(ω1; : : :;ωj) = (1=2π) j, and the carried power
is obviously the same as before, thus the un-normalized
weight of stochastic iteration is

v2(ω1; : : :;ωJ) =

N2

∑J
j=1(2π) j � (Le(ω1; : : :;ωj) �w(ωeye;ω1) � : : : �w(ωj�1;ωj))2

:

Let us now consider the other case when the primary sample
is obtained with ray-bundle iteration. The denominator of the
un-normalized weight

vi(ω1;ω2; : : :;ωJ) =

Ni

∑J
j=1

L2
e(ω1;:::;ωj)�(w(ω1;ω2)�:::�w(ωj�1;ωj))

2

p̃i(ω1;:::;ωj)

is computed recursively backwards at each iteration step. In
order to compute these values, the so calledincoming term

Ii(ω1; : : :;ωJ) =

J

∑
j=1

L2
e(ω1; : : :;ωj) � (w(ω1;ω2) � : : : �w(ωj�1;ωj))

2

p̃i(ω1; : : :;ωj)

is also transferred by the rays. When the stochastic iteration
generates new directionω01, then these terms are multiplied
by w(ω01;ω1)=pi(ω01) and those patches are identified which
are in directionω01 from this patch. The identified patches
will have this new incoming term.

Assuming the probability densities of random walk, the
incoming term is:

I1(ω1; : : :;ωJ) =

J

∑
j=1

L2
e(ω1; : : :;ωj) �w(ω1;ω2) � : : : �w(ωj�1;ωj):

For stochastic iteration:

I2(ω1; : : :;ωJ) =

J

∑
j=1

L2
e(ω1; : : :;ωj) � (2π) j

� (w(ω1;ω2) � : : : �w(ωj�1;ωj))
2:

From the incoming term, the un-normalized weights are
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computed by the following formulae. For random walk:

v1(ω1;ω2; : : :;ωJ) =
N1

w(ωeye;ω1) � I1(ω1; : : :;ωJ)
:

For stochastic iteration:

v2(ω1;ω2; : : :;ωJ) =
N2

2π� (w(ωeye;ω1))2 � I2(ω1; : : :;ωJ)
:

When combining ray-bundle iteration and bi-directional
path tracing, we start with an initial ray-bundle iteration
phase withN�1 samples. At the end of this phase, the vari-
ances of the pixels are evaluated and we determine how
many additional bi-directional samples per pixel and global
ray-bundle steps are needed using the proposed cost-driven
approach.

8. Implementation and Results

In order to demonstrate the proposed weighting technique,
two scenes are used. The first is called the Cornell Chickens
scene (25K patches), where the floor and the back wall has
dominant specular characteristics (figure 3).

Ray-bundle iteration is particularly powerful at diffuse
and glossy surfaces but get poorer at highly specular objects.
On the other hand, bi-directional path tracing handles the
specular objects well but results in high noise at diffuse and
glossy surfaces. Thus the automatic weighting will down-
scale the results of ray-bundle iteration at highly specular
surfaces and the results of bi-directional path tracing at dif-
fuse or glossy surfaces. The final image is the sum of the
weighted images.

The second example is an architectural scene modelled
in ArchiCAD. The images in figure 4 are snapshots of an
architectural walk-through.

9. Conclusions

This paper proposed a combination of bi-directional path
tracing and global ray-bundle iteration using an efficient
strategy determining the weights of the different passes. The
resulted algorithm exploits the advantages of both under-
lying algorithms, namely the fast image generation of ray-
bundle iteration, and the precise specular artifact calculation
of path tracing.
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bi-dir path trace weighted bi-dir path trace combined

ray-bundle weighted ray-bundle

Figure 3: The evolution of images for the Cornell chickens scene

Figure 4: An architectural scene rendered with the combined method
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