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Rötzergasse 20/5,

A-1170 Wien, Österreich,
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Abstract

Volume data refer to sampled three-dimensional spatial signals. The tools
which handle them can broadly be divided into two categories: visual tools
which aim at an output interpretable by a human user and analytic tools
which prepare the data for further machine processing. Although it would
be natural that the two related disciplines, i.e., volume visualization and
volume processing closely collaborate, they are still rather separated. The
work presented here contributes to bridge the gap in between.

This thesis addresses classification of volume samples based on observa-
tions of how the scalar values vary in their vicinity. We investigate the first
three terms of a Taylor series expansion of the corresponding scalar field at
the inspected points. An important issue arising with such an analysis in
higher dimensions are the directions to be examined. In order to find an
answer to this problem we study the eigensystems of algebraic structures
composed of the first- and second-order partial derivatives.

After a survey on derivative-based classification in volume visualiza-
tion and processing we present new contributions which apply to three dis-
tinct problems: specification of transfer functions, content-based retrieval of
volume-data features, and shape-based interpolation.
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Kurzfassung

Der Begriff Volumsdaten beschreibt diskrete drei-dimensionale räumlichen
Signale. Verfahren, welche auf diesen Daten arbeiten, können grob in zwei
Kategorien unterteilt werden: Visuelle Verfahren, welche das Ziel haben,
eine für den Menschen interpretierbare Ausgabe zu liefern. Analytische Ver-
fahren bereiten die Daten für weitere maschinelle Bearbeitungen auf. Ob-
wohl beide Disziplinen (Volumsvisualisierung und Volumsverarbeitung) große
Ähnlichkeiten aufweisen, werden Themenstellungen oft getrennt behandelt.

Diese Dissertation behandelt die Klassifikation von Volumsdaten
basierend auf der Beobachtung von Unterschieden der skalaren Werte in
einer lokalen Umgebung. Ein übliche Ansatz solcher Untersuchungen ist es,
die Taylor-Entwicklung skalare Datensätze zu untersuchen. Als ein wichtiges
Thema stellt sich bei der Analyse in höheren Dimensionen die zu untersuchen-
den Richtungen heraus. Gewisse Antworten können Eigensysteme von alge-
braischen Strukturen liefern, welche Ableitungen erster oder zweiter Ordnung
beinhalten.

Nach einem kurzen Überblick über, auf Ableitungen basierenden
Klassifizierungen in der Volumsvisualisierung und Volumsverarbeitung,
präsentieren wir neue Beiträge, welche auf drei verschiedene Probleme an-
wendbar sind: Spezifizierung von Transferfunktionen, Bestimmung der rele-
vanten Merkmale im Volumendatensatz und merkmalgesteuerte Rekonstruk-
tion durch Interpolation.
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Chapter 1

Introduction

Volume data is an expression for sampled three-dimensional scalar fields. To
understand their content, visualization tools are being developed for more
than a decade:

. . . in 10 years all rendering will be volume rendering
Jim Kajiya at SIGGRAPH ’91 [9]

Why is real-time volume rendering no longer a year away?
Because it is more than two years away!

Bill Lorensen at IEEE Visualization ’98 [36]

Why is real-time volume rendering no longer a year away?
Because it is a half a year away!

Hanspeter Pfister at IEEE Visualization ’98 [36]

. . . full screen volume rendering may arrive in 25 years, not 5
years. And full eye in 70 years!

David Nadeau at WSCG 2001 [68]

Though the prophecy of Kajyia has not been fulfilled, we nowadays can
visualize volumes of moderate resolutions, say 256× 256× 256, in real-time
at a reasonable quality level. The amount of the data, however, tends to in-
crease far beyond of what we are able to interactively display nowadays and,
according to Nadeau, much faster than the capabilities of hardware which
could process them. It therefore still will be that the hardware solutions
can not substitute good algorithms. To achieve easily interpretable results,

11



Chapter 1. Introduction 12

the computer assistance in deciding on important features of the data, spec-
ification of visualization parameters, and corresponding user interfaces will
remain indispensable and will require an ongoing research in 3D-data analy-
sis.

The visualization of volume data, however, is only one part of the research
interest – we would like to expect more from computers. The situation is more
clearly articulated in 2D imaging where, in most cases, we are able to under-
stand the images without computer assistance. In this case the research is
essentially triggered by the requirement that we want the computers to “have
a look” at our images, process them and understand them. The importance
of processing and recognition tasks increases with the dimensionality and size
of the data.

What this thesis is about

The motivation for work addressed by this thesis comes from 2D image pro-
cessing. Here, one of several approaches to classify pixels is based on filters
which utilize differentiation. This yields tools for, e.g., detection of ridges,
corners, T-junctions, and cross-junctions. This thesis addresses a similar
problem in 3D – a classification of volume voxels based on observations of
how the scalar values vary in their vicinity.

A usual approach for such an investigation is to consider the terms of
a Taylor series expansion of the scalar function at the inspected points. In
higher dimensions, an important question which arises with such an analysis
is in which directions should be the Taylor series examined. A particular
answer can be found studying the eigensystems of algebraic structures com-
posed of the derivatives. Chapter 2 provides a concise reference to those
theorems of linear algebra which are related to real symmetric matrices and
their eigensystems.

We deal with sampled 3D signals which are thus discontinuous and non-
differentiable. In section 3.1 of chapter 3 we briefly summarize the concepts
which make differentiation on discrete grids possible. In the remainder of
this chapter, in sections 3.2 and 3.3 we summarize the areas where deriva-
tives, related structures and their eigensystems are already used in volume
visualization and processing. These two sections are intended as the state of
the art.

Chapter 4 is based on our work [25] on transfer functions which are an
integral part of a volume visualization pipeline. The classifications of vox-
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els presented here reflects the magnitudes of the principal curvatures of an
underlying surface.

The work [26, 23, 27, 24] assembled in chapter 5 also exemplifies the
link between volume visualization and analysis. To understand the content
of a volume, it is usually not necessary to display each and every voxel.
An advantage of object-based volume-rendering techniques is that they may
concentrate only on the salient parts of the data. Our approach to identify
content-carrying voxels is based on an analysis of the second derivatives of
the scalar field.

High-quality image-based visualization techniques require resampling,
i.e., an interpolation within the scalar field. The interpolation methods can
broadly be divided into two categories: signal-based and shape-based. In
chapter 6 we describe our contribution [22] to the class of shape-based in-
terpolation algorithms which is based on an eigen-analysis of the structure
tensors.

As chapters 4–6 deal with distinct problems, we finish them separately
with short conclusions, comments, and hints for possible ongoing research.
An overall summary of this thesis can be found in chapter 7.

What this thesis is not about

The title of this work indicates three well-separated topics which one might
expect to be explained in great detail. This, however, is not the purpose of
this thesis which rather concentrates on our own contributions. So what is
actually missing?

Firstly, this thesis avoids an introduction to volume visualization and
processing. We believe that both topics are well covered by books published
in recent years [35, 47, 5, 12, 51, 70].

Secondly, the thesis deals with derivatives of volume data. We do not
address, however, the filter-design issues which are crucial for an accu-
rate differentiation. Instead, we base our implementations on existing re-
search [71, 60, 61, 62, 63, 87, 89] and concentrate especially on the applica-
bility of the information coming from differentiation.

Finally we only address eigensystems of algebraic structures which are
based on derivatives. Thus we do not deal with those structures which are
composed of the actual data values as it is, for instance, the case of the inertia
tensor [51, Chap. 3],[34, Chap. 15] or the diffusion tensor [40].
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We conclude the introductory part of the thesis with a comment to the
following two quotations:

Volume graphics today is where surface graphics was fifteen
years ago.

David Nadeau at WSCG 2001 [68]

The more dimensions are processed, the more important it
is that computer graphics and computer vision come closer
together.

Bernd Jähne [34]

In our opinion, the time delay between volume processing and volume vi-
sualization is still of a similar order as the difference between volume graphics
and surface graphics. This thesis contributes to bridging the gap between
these two fields.



Chapter 2

Eigensystems and quadratic
forms

In this chapter we recall the definitions and theorems from linear algebra
which are related to this thesis. They are intended to highlight the prop-
erties of real symmetric matrices and the related quadratic forms as well as
their eigensystems. In order to allow the reader to refresh the underlying re-
lationships we repeat the theorems together with proofs. In the last section
of this chapter we give several hints on effective implementation.

2.1 Eigensystems

Definition 2.1.1. Let A be an n× n matrix.
An eigenvector of A is a nonzero vector v such that

A v = λ v (2.1)

for some scalar λ. An eigenvalue of A is a scalar λ with the property that
Av = λv for some nonzero vector v. If Av = λv for some λ and v �= 0 we
say that v is the eigenvector corresponding to the eigenvalue λ.

Solving eigenvalues of an n× n matrix reduces to finding the roots of an
n-th degree polynomial (section 2.4). A real n × n matrix, therefore, will
generally have n complex, not necessarily distinct eigenvalues. The eigen-
systems of real symmetric matrices exploited in this thesis, however, feature
several useful relationships which are summarized in the next section.

15



Chapter 2. Eigensystems and quadratic forms 16

2.2 Real symmetric matrices

Definition 2.2.1 (Symmetric Matrix). An n×n matrix A is called sym-
metric if A = AT.

Theorem 2.2.1. Let A be a real symmetric matrix. Then the eigenvalues
and eigenvectors of A are real, i.e., λi ∈ R,vi ∈ R

n, i = 1 . . . n.

Proof. Let A be a real symmetric matrix, let λ ∈ C be an eigenvalue of A and
let v be an eigenvector of A corresponding to this eigenvalue. Conjugating
and transposing the equality Av = λv we get v∗TA∗T = λ∗v∗T and since A
is real and symmetric we have v∗TA = λ∗v∗T . Multiplying both sides by v
on the right we obtain

v∗TAv = λ∗v∗Tv ⇒ λv∗Tv = λ∗v∗Tv ⇒ (λ− λ∗)v∗Tv = 0

Since by definition v �= 0, we have λ− λ∗ = 0⇒ λ ∈ R

As A is a real matrix, coefficients of (λI−A) are real and therefore the
eigenvectors – the solutions v of (λI−A)v = 0 must be real, too.

Theorem 2.2.2. Let A be a real symmetric matrix. Then the eigenvectors
of A are mutually orthogonal.

Proof. Let A be a real symmetric matrix, let λ1, λ2 ∈ R be distinct eigenval-
ues and v1,v2 ∈ R

n be the corresponding eigenvectors of A. Then

Av1 = λ1v1 ⇒ vT1A = λ1v
T
1 ⇒ vT1Av2 = λ1v

T
1 v2 ⇒ λ2v

T
1 v2 = λ1v

T
1 v2 ⇒

(λ1 − λ2)v
T
1 v2 = 0⇒ vT1 v2 = 0

Definition 2.2.2 (Orthogonal Matrix). An n × n matrix A is called
orthogonal if AAT = ATA = I.

Theorem 2.2.3 (Principal Axes Theorem). Let A be a real symmetric
matrix. Then there exists an orthogonal matrix P such that Λ = PTAP is
a diagonal matrix.

The proof is too lengthy to show it here in all details and we refer the
reader to any book on algebra, e.g. [54]. The proof is constructive and from
the construction of matrix P it can be seen that it is assembled from the unit
eigenvectors ei of A, and that the diagonal matrix Λ contains the eigenvalues
at the diagonal, i.e., P = (e1 e2 . . . en) and Λ = diag (λ1, λ2, . . . , λn).
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2.3 Quadratic forms

Definition 2.3.1 (Quadratic Form). A real quadratic form Q(x1, . . . , xn)
is a homogeneous polynomial of degree 2 in variables x1, . . . , xn with coeffi-
cients in R.

Remark: Each quadratic form can be expressed as

Q(x1, . . . , xn) = Q(x) = xTAx

where A is an n× n real symmetric matrix.

Theorem 2.3.1. Let Q be a quadratic form associated with an n×n real sym-
metric matrix A. Let λ1 ≥ λ2 ≥ · · · ≥ λn be eigenvalues of A and e1, . . . ,en
the corresponding unit eigenvectors.
The maximum value of Q(u) for unit vectors u ∈ R

n is λ1 and is attained
at the unit eigenvector e1.
The minimum value of Q(u) for unit vectors u ∈ R

n is λn and is attained
at the unit eigenvector en.

Proof. By the Principal Axes Theorem (2.2.3) we can find an orthogonal
matrix P such that

PTAP = Λ =




λ1

. . .

λn


 .

For any vector u = (u1, . . . , un)
T ∈ R

n we write u = Pv, where v =
(v1, . . . , vn)

T ∈ R
n. Since P is orthogonal

‖u‖ =
√

uTu =
√

(Pv)TPv =
√

vTv = ‖v‖
hence ‖u‖ = 1⇒ ‖v‖ = 1.
Let u be a unit vector. Then

Q(u) = uTAu = (Pv)TAPv = vTΛv =

= λ1v
2
1 + λ2v

2
2 + · · ·+ λnv

2
n ≤

≤ λ1v
2
1 + λ1v

2
2 + · · ·+ λ1v

2
n =

= λ1(v
2
1 + v2

2 + · · ·+ v2
n) =

= λ1

On the other hand, if e1 is a unit eigenvector corresponding to λ1 then, due
to Eq. (2.1)

Q(e1) = e1
TAe1 = e1

T (λ1e1) = λ1.

Similar arguments prove the second statement about the minimum.
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2.4 Computation issues

Equation (2.1) is equivalent to the homogeneous system of equations

(λI−A)v = 0 (2.2)

which has a nontrivial solution only if

det (λI−A) = 0 (2.3)

Equation (2.3) is, after an expansion, an nth degree polynomial in λ whose
roots are the eigenvalues. Substituting the roots back to system (2.2) and
solving it gives the associated eigenvectors.

In the general case (large dimension n), the numerical root-searching
in the characteristic equation (2.3) is computationally a poor method for
finding eigenvalues and eigenvectors [77]. There are canned eigen-packages
which provide mechanisms to determine all eigenvalues and, in addition,
offer separate paths to find none, some, or all corresponding eigenvectors.
Moreover, these packages usually provide separate paths for the following
special types of matrices: real symmetric tridiagonal, real symmetric banded,
real symmetric, real non symmetric, complex Hermitian, and complex non
Hermitian. An overview of the algorithms with implementation in C can be
found, e.g., in the Numerical Recipes [77] and at the related web site [1].

For real symmetric matrices Press et al. [77] recommend the fast converg-
ing Jacobi method. The topics addressed in this thesis, however, only deal
with 2D or 3D signals and employ 2× 2 and 3× 3 real symmetric matrices.
For these two special cases it is more efficient to use the analytical solution.

Special case: Diagonal matrices

The eigenvalues of a diagonal matrix are the diagonal elements. The eigen-
vectors can be chosen to form an orthonormal basis. Note that this case also
includes the zero matrix.

Special case: 2× 2 real symmetric matrix

Equation (2.3) expands to a quadratic equation in λ

A =

(
a11 a12

a12 a22

)
det (λI−A) = λ2 − (a11 + a22)λ + (a11a22 − a2

12) = 0
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and the eigenvalues are

λ1,2 =
1

2

(
a11 ±

√
4a2

12 + (a11 − a22)2 + a22

)
(2.4)

Since the case a12 = 0 is caught by the diagonal case above, the (not nor-
malized) eigenvectors equal to

v1,2 =

[
1

2a12

(
a11 ±

√
4a2

12 + (a11 − a22)2 − a22

)
, 1

]

Special case: 3× 3 real symmetric matrix

A =


 a11 a12 a13

a12 a22 a23

a13 a23 a33




The determinant in Eq. (2.3) expands to a monic cubic polynomial in
λ:

det (λI−A) = λ3 + bλ2 + cλ + d = 0, where (2.5)

b = −a11 − a22 − a33

c = a11a22 + a11a33 + a22a33 − a2
12 − a2

13 − a2
23

d = a11a
2
23 + a22a

2
13 + a33a

2
12 − a11a22a33 − 2a12a13a23

Following the Theorem 2.2.1 the roots of the polynomial (2.5) will be real
and therefore the quantity

p =
3c− b2

9

will be nonpositive [3]. Case p = 0 indicates a triple root λ1,2,3 = −b/3. In
case p < 0 the roots can be computed as follows [3]:

q =
2b3 − 9bc + 27d

54

r =

{
+
√−p if q ≥ 0
−√−p if q < 0

(2.6)

ϕ = arccos

(
q

r3

)
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Figure 2.1: The terms λ2−λ3 and λ1−λ2 as functions of argument ϕ displayed
for r = −1. For r < 0 the terms are nonnegative on the interval 〈0, π〉.

λ1 = − b

3
− 2r cos

(ϕ

3

)

λ2 = − b

3
+ 2r cos

(
ϕ + π

3

)
(2.7)

λ3 = − b

3
+ 2r cos

(
ϕ− π

3

)

Due to the theorem 2.3.1, applications usually benefit from the ordering of
eigenvalues. While for the 2 × 2 case the ordering λ1 ≥ λ2 is trivially given
by Equation (2.4), the relationship of eigenvalues of a 3× 3 matrix is not so
evident.

We point out that the ordering of the eigenvalues from Eq. (2.7) depends
on the sign of r as follows:

r = 0⇒ λ3 = λ2 = λ1

r < 0⇒ λ3 ≤ λ2 ≤ λ1

r > 0⇒ λ3 ≥ λ2 ≥ λ1

Proof. r = 0⇔ p = 0 which indicates a triple root.
To prove the inequalities for r < 0 we show that the terms λ2 − λ3 and
λ1 − λ2 are nonnegative. Trigonometric simplifications yield λ2 − λ3 =
−2
√

3 r sin(ϕ/3) and λ1 − λ2 = −2
√

3 r cos(ϕ/3 + π/6). As ϕ is computed
as an arccos(.), the investigations are restricted to the interval ϕ ∈ 〈0, π〉
where, for r < 0, both terms are nonnegative (see also Fig. 2.1). Formally:
ϕ ∈ 〈0, π〉 ∧ r < 0⇒ 0 ≤ −2

√
3 r sin(ϕ/3) = λ2 − λ3 ⇒ λ3 ≤ λ2, and

ϕ ∈ 〈0, π〉 ∧ r < 0⇒ 0 ≤ −2
√

3 r cos(ϕ/3 + π/6) = λ1 − λ2 ⇒ λ2 ≤ λ1.
Similar arguments prove the statement for r > 0.
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The eigenvectors vi are the solutions of the homogeneous system of equa-
tions

(λiI−A)vi = 0



Chapter 3

Volume data and derivatives

In order to investigate three-dimensional signals it is necessary to mention the
nature of the domain and the dimensionality of the range. Depending on the
acquisition, the devices may record one- or more-channel physical quantities
as a function of 2D position and time (image sequences), 2D position and
wavelength (hyperspectral images), and others.

The volumes which are the subject of this thesis, refer to monochrome
3D digital images, i.e., to the sampled versions of real-world single-channel
signals recorded as a function of a 3D position.

Being discretized by sampling, the digital signals are discontinuous and
therefore non-differentiable. This chapter addresses two issues. First, in
section 3.1 it recalls the concepts and mechanisms which allow to perform
differentiation on discrete grids. Second, sections 3.2 and 3.3 give an overview
on how the derivatives and the eigensystems of related matrices are involved
in volume analysis and visualization.

3.1 Continuous and discrete signals revisited

Mathematically, a 3D single-channel signal g is a three-dimensional scalar
function:

g : R
3 → R g = g(x) = g


 x1

x2

x3


 (3.1)

where the terms xi denote 1D spatial coordinates.

22
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Physically, a signal records an information about a physical quantity and
can be assumed to have some properties which make its mathematical han-
dling easier [34]:

Continuity. Real signals do not show any abrupt changes or discontinuities.
Mathematically this means that signals can generally be regarded as
arbitrarily often differentiable.

Finite range. The physical nature of both the signal and the imaging sensor
ensures that a signal is limited to a finite range. Moreover, some signals
are restricted to positive values: g(x) ≥ 0.

Finite energy. Normally a signal corresponds to the amplitude or to the
energy of a physical process. As the energy of the physical system is
limited, any signal must be square integrable:∫

R3

|g(x)|2 dV <∞ (3.2)

This property ensures the existence of the Fourier transform.

While the continuous representation is useful for a solid mathematical foun-
dation of signal processing, digital computers can only handle discrete data.
It is therefore required to represent the signal as a three-dimensional array
of values. This process involves two independent steps, i.e., sampling and
quantization.

3.1.1 Sampling and quantization

The task of sampling is to construct a lattice – a set P of positions p, in the
domain of the function and to take the actual values of the function at these
positions. Mathematically, the sampling gs of the signal g can be expressed
as a multiplication of g with replicas of the Dirac impulse δ:

gs(x) = g(x)
∑
p∈P

δ(x− p) (3.3)

where the (three dimensional) Dirac impulse δ is defined by the two following
conditions:

δ(x) = 0 x �= 0∫
R3 δ(x) dV = 1

(3.4)

The result gs of sampling (3.3) is a function which is zero everywhere except
for the grid points where the original scalar values are preserved.
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There are two principal questions concerning the lattice P :

Firstly the pattern of P is addressed. In spite of results from christa-
lography which provide with storage-optimal irregular configurations of the
sampling points [88], there are several reasons why Cartesian grids predom-
inate. Firstly, most of contemporary scanners deliver the data as 3D arrays.
Secondly, computation on rectangular grids is easily extensible to higher
dimensions, and the orthogonality plays a crucial role in the design of sepa-
rable filters. Finally, the cubical setup due to Cartesian grids is the only one
which yields a regular partitioning of the 3D Euclidean space. Tiling with
any of the other four regular polyhedra (tetrahedron,octahedron, dodecahe-
dron, and icosahedron) is not space filling. In this thesis we only address
Cartesian grids.

Secondly, the density of P is important. The problem addressed here
is, how densely should the samples be taken such that the original signal
can later be reconstructed. For Cartesian grids the answer is given by the
sampling theorem due to Shannon [83], which states that if the signal is band-
limited then the distance between samples must be at least half the size of
the smallest detail in the signal.

There are two more outcomes from the sampling theorem for the math-
ematical foundations of signal processing. First, as long as a discrete signal
gs satisfies the sampling theorem, any analytic result valid for continuous
functions still remains valid, because the sampled signal gs is an exact rep-
resentation of the continuous signal g. Secondly the theorem also makes it
possible to distinguish between errors inherent to a chosen algorithm and
those errors that are introduced by discretization [34].

Quantization

After being sampled, the values of a signal are still continuous. For handling
by a computer, it is necessary to map the continuous range onto a limited
number Q of discrete values

q : 〈0,∞)→ {q0, q1, . . . , qQ−1} (3.5)

Again, two principal questions arise here. Firstly, how many quantization
levels are necessary? It should not be possible for the human visual system
to recognize the quantization levels. On the other hand, the number of levels
is often determined by properties of acquisition devices (scanners, CCD cam-
eras, . . . ) and usually equals to 28, 212, and 216. The second issue is whether
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quantization intervals are equidistant or not. Although the equidistant ap-
proach is far more often used, it features a low dynamical range leading
either to underexposure of dark parts or overexposure of bright parts. In
order to correspond to the human visual system which exhibits rather loga-
rithmic than linear response, it is advised to use a non-linear mapping, e.g.,
logarithmic or exponential.

3.1.2 Signal reconstruction

Reconstruction gr of a signal from the samples gs is performed by a suitable
interpolation. The appropriate mechanism for interpolation coming from
image processing is convolution.

Convolution and its properties

Mathematically, convolution is a functional, i.e., an operator on function
spaces. It is defined through an integral which ‘expresses the amount of
overlap of one function k as it is shifted over another function g’ [94]. If F
denotes the set of all square-integrable functions R

3 → R, then

⊗ : F × F → F (k ⊗ g)(x) =

∫
R3

g(y) k(x− y) dy (3.6)

For computation purposes, we will in this thesis repeatedly recall the
following properties which are evident from the Convolution theorem [34,
p. 46]. Convolution is

commutative: k ⊗ g = g ⊗ k (3.7)

associative: (k1 ⊗ k2)⊗ g = k1 ⊗ (k2 ⊗ g) (3.8)

distributive over addition: (k1 + k2)⊗ g = k1 ⊗ g + k2 ⊗ g (3.9)

Finally, convolution commutes with differentiation:

∂

∂xi
(k ⊗ g) =

∂k

∂xi
⊗ g = k ⊗ ∂g

∂xi
(3.10)

The ideal reconstruction filter

There ideal reconstruction kernel, sinc, is for 1D signals defined as follows:

sinc1D(x) = lim
ξ→x

sin(πξ)

πξ
=

{
1 if x = 0
sin(πx)/(πx) otherwise

(3.11)
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For 3D signals, one of the definitions of the ideal 3D reconstruction filter is
the product of three 1D sinc functions:

sinc3D(x1, x2, x3) = sinc1D(x1) · sinc1D(x2) · sinc1D(x3) (3.12)

Approximation versus reconstruction

The second part of the sampling theorem states that a band-limited sig-
nal g sampled above the Nyquist frequency can exactly be reconstructed by
convolving the samples gs with the sinc3D function:

g(x) = (sinc3D ⊗ gs)(x) (3.13)

The above is referred to as the ideal reconstruction. Limitations for a prac-
tical implementation arise when either the signal g is not bend-limited, or
it was not appropriately sampled. Moreover, the infinite support of the sinc
makes the reconstruction (3.13) impractical.

To avoid aliasing coming from an improper sampling and to avoid a
convolution with an infinitely wide function, other reconstruction kernels k
have been investigated which yield only an approximation of the original
signal

g(x) ≈ gr(x) = (k ⊗ gs)(x) (3.14)

The right side of Eq. (3.14) can be interpreted as a finite linear combination
of kernels k. Differentiability of the kernel k and of the approximating signal
gr is therefore of the same order: if k is a Cn function then also gr is a
Cn function. This implication provides a framework for differentiation on
discrete grids: to perform an analysis of the sampled signal gs based on n-th
order derivatives, it is necessary to reconstruct the signal with (at least) an
n-times differentiable kernel.

3.1.3 Reconstruction of derivatives

A common approach to analyze the behavior of the reconstructed signal gr in
a neighborhood of point p is to consider the initial terms of the Taylor series
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expansion [13], i.e., to investigate the changes of the signal in directions given
by unit vectors v:

gr(p + v) =
∞∑
n=0

1

n!

dn

dvn
gr(p) (3.15)

=
∞∑
n=0

1

n!
(v · ∇)ngr(p)

=
∞∑
n=0

1

n!

(
v1

∂

∂x1

+ v2
∂

∂x2

+ v3
∂

∂x3

)n
gr(p1, p2, p3)

In order to be able to perform an analysis based on Eq. (3.15) a mechanism
to compute the partial derivatives of gr

∂n

∂xa1∂x
b
2∂x

c
3

gr(p) where a + b + c = n (3.16)

is needed.

Recalling that convolution commutes with differentiation (Eq. 3.10) and
that the signal is reconstructed by convolving its samples with the recon-
struction kernel k (Eq. 3.14), Equation (3.16) rewrites as

∂n

∂xa1∂x
b
2∂x

c
3

gr(p) =
∂n

∂xa1∂x
b
2∂x

c
3

(
k ⊗ gs(p)

)
=

(
∂n

∂xa1∂x
b
2∂x

c
3

k

)
⊗ gs(p)

(3.17)
In other words, the (partial) derivatives of a sampled signal can be recon-
structed directly from the samples gs if we convolve them with the corre-
sponding derivatives of the reconstruction kernel.

3.1.4 Computation issues

The equations in the previous section provide a solid theoretical background
for processing of continuous signals. For computer implementation, the dis-
crete version of convolution is needed:

(ks ⊗ gs)(x) = (gs ⊗ ks)(x) =
∑
y∈Z3

ks(y)gs(x− y) (3.18)

Due to the discrete convolution theorem, commutativity, associativity, and
distributivity remain valid also for the discrete convolution [34, p. 56]

From Equation (3.18) it is evident that the actual computation can be
restricted only to nonzero points of the kernel and that a convolution with
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the infinitely wide discrete sinc function can not be computed. The straight-
forward truncation of sinc has been recognized as a poor solution, because it
causes ringing. The research concentrated therefore on reliable approxima-
tions of the sinc on a finite support [57, 62, 63, 87].

For discrete derivative kernels, the problem is essentially the same. The
derivatives of sinc, the cosc functions, also have an infinite support and their
truncation fails. Similarly to the sinc, the research efforts concentrated,
both in the signal-processing [71] and the volume-processing communities
[60, 61, 62, 63, 87], on an approximation of the continuous cosc on a finite,
possibly narrow support.

The research effort on the design of reconstruction filters aims at an accu-
rate reconstruction of the signal between the samples gs. The tasks addressed
in this thesis, however, are restricted only to a classification of the grid points.
This fact reasonably simplifies the previous discussions. Firstly we do not
need to reconstruct the signal at the grid points. Secondly, there are several
well-established derivative kernels coming from 2D image processing which
are optimized for computations at the grid points. Their 3D extensions can
directly be applied for 3D images.

The 2D variants of the derivative kernels used in our work are listed in
Appendix A. The most frequent choice in the literature, the central dif-
ferences (A.1), arises naturally from the definition of continuous derivatives
but is only reasonable when the spacing between samples is well below the
Nyquist limit [34, p. 411]. As this is generally not assured, the principal
problem is that a derivative operator can only be approximated. This is
the basic reason why there is such a wide variety of derivative kernels. The
common property of the Prewitt (A.2), Sobel (A.3), and the optimized So-
bel (A.4) kernels is that they simultaneously perform both smoothing and
differentiation in mutually orthogonal directions.

In computer vision, many authors use sampled Gaussian derivatives (A.5)
for two reasons. Firstly they exhibit better properties than central differences
and are less computationally expensive than the truncated or windowed cosc
functions. Secondly, later in the 90-ties, the Gaussian filter and its derivatives
was found to be a unique derivative filter for feature recognition in scale
spaces.
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Efficient convolutions

Higher-dimensional convolution with even moderately-sized kernels is usually
a time- and space-expensive process. In the following we summarize several
hints leading to an efficient implementation.

Time-complexity reduction To speed up the convolution, hardware fea-
tures on specific platforms can be used [28, 30]. The approaches to kernel-
specific software acceleration include saving multiplications by grouping equal
coefficients, selection of an optimal scale (i.e., kernel size) and use of separa-
bility. The later one belongs to the most efficient strategies: a convolution
with a separable 3D m × m × m filter k can be replaced by three subse-
quent one-dimensional convolutions with axes-aligned filters k1, k2, k3 of size
m. This strategy reduces the time complexity from O(m3) to O(3m).

The separable computation of derivatives due to the right side of Equa-
tion (3.17) rewrites as follows:

( m×m×m︷ ︸︸ ︷
∂a+b+c

∂xa1∂x
b
2∂x

c
3

k

)
⊗ gs =

m×1×1︷ ︸︸ ︷
da

dxa1
k1⊗

( 1×m×1︷ ︸︸ ︷
db

dxb2
k2⊗

( 1×1×m︷ ︸︸ ︷
dc

dxc3
k3⊗gs

))
(3.19)

The separability of frequently used derivative filters is discussed in more
details in Appendix A.

Reducing storage requirements The discrete convolution can be
thought as an operator on volumes – it takes the discrete input gs and the
discrete kernel ks, and produces an output volume which, of course, requires
additional space in memory. Sometimes it can be desirable to rewrite the
original volume with the result. This, however, is not possible directly on a
voxel-to-voxel basis because each voxel in the original volume is required for
the computation of m3 voxels in the output and its value must not be, during
their computation, rewritten. In-place convolution for general (nonrecursive)
kernels can be achieved with cyclic buffers [34, p. 120].

For separable kernels, the in-place convolution can more easily be imple-
mented with accumulation buffers. The mechanism for the 2D case and a
separable kernel is explained in Fig. 3.1. Separable 2D convolution is a two-
pass, row and column, process. Each row in the first pass is read into the
line buffer, convolved with the ‘row’ kernel and written back to the original
place. Similarly, in the second pass each column is read to the (same) buffer,
convolved with the ‘column’ kernel and written back. A disadvantage of this
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Figure 3.1: In-place computation of a 2D separable convolution. Image by
Jähne [34, p. 122].

implementation is that each pixel will be copied twice which increases the
data-flow between the main memory and cache. On the other hand, the same
algorithm for 1D convolution can be used for both directions, while only dif-
ferent routines for copying are necessary. An extension to three dimensions
is straightforward.

In the reminder of this chapter we give an overview of how derivatives
(up to second order), related structures, and their eigensystems are used in
volume processing.
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3.2 1st-order derivatives in volume analysis

3.2.1 Gradient and gradient magnitude

The gradient field of scalar function g is a vector field defined as:

∇g =


 ∂g/∂x1

∂g/∂x2

∂g/∂x3


 (3.20)

With help of the gradient, a derivative of g in a direction given by a unit
vector v is expressed as:

d

dv
g = vT∇g (3.21)

Since the right side of Eq. (3.21) is a scalar product it is evident, that the max-
imal directional derivative is in the direction of a unit vector n = ∇g/‖∇g‖.
The rate of change in direction n is equivalent to the magnitude of the gra-
dient:

d

dn
g = nT∇g =

∇gT

‖∇g‖∇g = ‖∇g‖ (3.22)

In 2D image processing the gradient magnitude provides an isotropic edge
detector (refer also to Figure 3.2(a)). Similarly, in volume processing the gra-
dient magnitude is used for boundary detection and additionally is involved
in the classification of isosurfaces [46].

Within a scalar field the vector n is parallel or anti parallel to the normal
of an implicitly defined isosurface (refer also to Figure 3.2(b)). Considering
an isolevel boundary of an object with higher intensities than the background,
vector n corresponds thus to the inner normal of the boundary while the
vector −n corresponds to the outer normal of the boundary. The orientation
of inner and outer normals swap if the object intensities are lower than the
background. To render isosurfaces without the a priori knowledge on object-
versus-background intensities, the terms in the Phong shading model [76]
which depend on the direction of the normal can be rewritten with absolute
values:

I = kA + kD|nT l|+ kS|rTv|r (3.23)

where I is the output intensity, r, l,v are the reflection vector, incoming light
direction, and viewing direction. kA, kS, kD represent the ambient, specular
and diffuse coefficients, respectively and r > 1 controls the sharpness of
reflections.
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(a) (b)

Figure 3.2: (a) A 1D profile f and its derivatives f ′, f ′′ across an ideal boundary
in g. The middle of the intensity transition corresponds to the maximum of the
first derivative and to a zero-crossing of the second derivative. (b) The same scene,
isocontours, and the gradient field. Images by Kindlmann and Durkin [39].

In non-photorealistic rendering, the contours of surfaces can be empha-
sized involving a view-dependent component. Parts of surfaces which are
perpendicular to the viewing direction are highlighted [8, 7]:

Contourness(v) =
(
1− ∣∣nTv

∣∣)m (3.24)

where m is an exponent controlling the sharpness of contours.

In most cases, the rendering results are very sensitive to the accuracy
of the gradient direction. For this reason, more sophisticated algorithms
are desirable to replace the estimation of partial derivatives, e.g., the linear
regression model introduced by Neumann et al. [69].

3.2.2 Structure tensor

For a 3D scalar field, the structure tensor introduced by Knutsson [42] is a
2nd-rank tensor of order 3. It therefore can be represented by a 3×3 matrix.

Roughly said, the structure tensor J is a weighted average of outer prod-
ucts of gradients over a neighborhood. For a neighborhood U(p0) of a specific
point p0 and a weight function h it is defined as:
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J (p0) =

∫
U(p0)

h(p0 − u)
(∇g(u) ∇g(u)T

)
du (3.25)

=

∫
U(p0)

h(p0 − u)




(
∂g(u)
∂x1

)2
∂g(u)
∂x1

∂g(u)
∂x2

∂g(u)
∂x1

∂g(u)
∂x3

∂g(u)
∂x2

∂g(u)
∂x1

(
∂g(u)
∂x2

)2
∂g(u)
∂x2

∂g(u)
∂x3

∂g(u)
∂x3

∂g(u)
∂x1

∂g(u)
∂x3

∂g(u)
∂x2

(
∂g(u)
∂x3

)2




du

J is a real symmetric matrix consisting of the following elements

Jpq =

∫
U(p0)

h(p0 − u)

(
∂g(u)

∂xp

∂g(u)

∂xq

)
du (3.26)

and so the eigenvalues λ1 ≥ λ2 ≥ λ3 are real and the corresponding eigen-
vectors e1,e2,e3 can be chosen to form an orthonormal basis (section 2.2).

In the neighborhood U(p0), the line passing through p0 in the direction of
the principal eigenvector e1 of the structure tensor exhibits the least devia-
tion from all lines in U defined by points p ∈ U and local gradients∇g(p) [33].
The principal eigenvector has therefore been proposed [42] to describe the
orientation of the neighborhood U .

There are three significant issues which make a neighborhood-orientation
analysis based on structure tensors superior to an analysis based on the
gradient field.

1. An integral of the gradient field over a neighborhood results to a
zero vector in those cases where the intensity distribution is constant,
isotropic (Fig. 3.3(a)), and ideally oriented (Fig. 3.3(b)). A distinction
among these three cases based on the gradient integration is therefore
not possible.

2. A local classification of intensity distributions is possible due to the
rank of the structure tensor. The patterns which can be identified in
this way are summarized in Table 3.1.

3. There is more information in the eigensystem of the structure tensor:
the eigenvector associated with the smallest eigenvalue gives the direc-
tion of the minimal intensity change.
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(a) (b)

Figure 3.3: An isotropic neighborhood (a) and a neighborhood with an ideal
orientation (b). The integral of the gradient field over neighborhood vanishes in
both cases. Images by Haußecker and Jähne [19].

rank (J ) 3D object 3D texture

0 constant value constant value
1 boundary layered
2 edge extruded
3 corner isotropic noise

Table 3.1: Structure-tensor-based analysis of intensity distributions.

We recall these properties in more details at a more appropriate place – in
Chapter 6.

Practical applications of the 3×3 structure-tensor analysis cover segmen-
tation [95] and 2D-motion analysis in spatio-temporal images [19, 33, 34].

3.3 2nd-order derivatives in volume analysis

In image processing, higher-order derivatives are used to design filters for
ridges (2nd-order), corners (2nd-order), T-junctions (3rd-order) and cross-
junctions (4th-order) [48, 49, 86]. Although a volume can be considered as
a direct generalization of a 2D gray-level image, there are only few methods
introduced to volume analysis which exploit second-order derivatives. To
our knowledge, there are currently no applications which use 3rd-order or
higher-order derivatives.

In the following we summarize the volume analysis techniques which
deal with 2nd-order derivatives. The applications, as grouped by applica-
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bility, aim on boundary detection (section 3.3.1), structure-filtering (sec-
tion 3.3.2) and isosurface emphasis (sections 3.3.3 and 3.3.4) and illustration
(section 3.3.5).

3.3.1 Laplacian operator

Whenever an intensity change occurs in one direction, there will be a cor-
responding peak in the first directional derivative or equivalently, a zero-
crossing in the second directional derivative. The task of detecting bound-
aries can thus be reduced to the task of finding the zero-crossings of the
second derivative in an “appropriate direction” [12, p. 81].

To find such a direction it would be necessary to compute a number of
directional derivatives which would involve several convolutions (see section
3.3.2). For performance reasons, it would be convenient if the number of
convolutions could be reduced to one orientation-independent operator. This
immediately points towards the Laplacian:

∇2g = ∇ · (∇g) = div (∇g) =
3∑
i=1

∂2g/∂x2
i (3.27)

The zero responses to the Laplacian operator correspond to the zero-
crossings, i.e., to the boundaries and historically have received a lot of atten-
tion due to the work of Marr [56].

Although in volume visualization boundaries are most-frequently detected
due to the gradient magnitude (section 3.2.1) there are several facts which
make the Laplacian-based detection interesting.

Firstly, it is the computation cost. The computation of the gradient mag-
nitude requires three convolution-passes to compute the three partial deriva-
tives, followed by three multiplications, two additions and one square root.
The term of Laplacian, on the other hand, only involves linear operations.
That means, only one convolution pass is necessary to compute the responses
to the Laplacian operator. The disadvantage of the Laplacian operator, how-
ever, arises if the input data set is too noisy. Since the response to kernels of
a small width (e.g., 3 voxels) is too sensitive to noise, a pre-smoothing with
the Gaussian filter is strongly recommended, leading to a larger kernel – the
Laplacian of Gaussian.

Secondly it is the way how the responses are further processed. Prob-
lems with the gradient-based detection arise when the boundary of an object
features variations in gradient magnitude. Thresholding in such a case may,
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depending on the actual threshold, lead to broken contours of the object.
The more costly search for the zero-crossings in responses to the Laplacian
operator, on the other hand, solves this problem and leaves the contours
closed.

3.3.2 Hessian matrix

The Hessian matrix is a matrix comprised of the 2nd-order partial derivatives:

Hg =


 ∂g2/∂x2

1 ∂g2/∂x1∂x2 ∂g2/∂x1∂x3

∂g2/∂x2∂x1 ∂g2/∂x2
2 ∂g2/∂x2∂x3

∂g2/∂x3∂x1 ∂g2/∂x3∂x2 ∂g2/∂x2
3


 (3.28)

The identity
∇2g = trace (Hg) (3.29)

means that the diagonal elements of the Hessian matrix can be used for
filtering of boundaries as explained in the previous section.

Since the order of differentiation is interchangeable, i.e., ∂g2/∂xi∂xj =
∂g2/∂xj∂xi, the Hessian matrix is symmetric and has real eigenvalues and
real orthogonal eigenvectors (see section 2.2). The associated quadratic form
yields the second derivative in a direction represented by unit vector v

d2g

dv2
= vTHg v (3.30)

In the following we show that the diagonalization of the Hessian matrix
yields more information.

Eigensystem of the Hessian matrix

The Principal Axes Theorem (2.2.3) provides the following decomposition of
the Hessian matrix:

Hg = PΛPT =
(

e1 e2 e3

) λ1 0 0
0 λ2 0
0 0 λ3





 eT1

eT2
eT3


 (3.31)

where the ei are the orthonormal eigenvectors and λ1 ≥ λ2 ≥ λ3 are the
corresponding eigenvalues.
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With this decomposition computation of the Laplacian and the second
directional derivatives is still possible. Since the trace of a matrix is an
invariant under a similarity transformation P, Equation (3.29) rewrites as

∇2g = trace
(
PΛPT

)
= trace (Λ) = λ1 + λ2 + λ3 (3.32)

that is, having only the eigenvalues stored, we can use their sum for boundary
detection (section 3.3.1).

From Theorem (2.3.1) it follows, that at a fixed point x0 the second
derivatives in all possible unit directions v are bounded by eigenvalues of the
Hessian matrix

λ3 =
d2g(x)

de2
3

≤ d2g(x)

dv2
≤ d2g(x)

de2
1

= λ1 (3.33)

Equation (3.30) for computation of a directional derivative rewrites as

d2g

dv2
= (vTP)Λ(PTv) =

3∑
i=1

λiu
2
i where u = PTv (3.34)

In the following we give an overview of further usages of Hessian’s
eigensystem.

In order to segment bright curvilinear structures in volume data, Sato
et al. [81] introduce the similarity-to-line concept – a weighting function of
eigenvalues which emphasizes the areas where

λ3 ≈ λ2 � λ1 ≈ 0 (3.35)

Frangi et al. [13] extend this condition in two ways. Firstly they also deal with
darker-than-background objects. Secondly they generalize the concept for
tubular structures to enable the detection of blob- and sheet-like structures.
Table 3.2 lists the conditions corresponding to the respective patterns.

The conditions corresponding to bright structures have been adopted in
the continued work of Sato et al. [82] which addresses the problem of tissue
classification in medical data. A 5-dimensional transfer function is introduced
including the data value g, the gradient magnitude ‖∇g‖, and the three
similarity-to-a-structure functions of eigenvalues:

Sline = |λ3| · ψ(λ2, λ3) · ω(λ1, λ2)

Sblob = |λ3| · ψ(λ2, λ3) · ψ(λ1, λ2) (3.36)

Ssheet = |λ3| · ω(λ2, λ3) · ω(λ1, λ2)
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λ3 � λ2 � λ1 � 0 bright blob-like structure
λ3 � λ2 � λ1 � 0 bright tubular-like structure
λ3 � λ2 � λ1 � 0 bright sheet-like structure

0 � λ3 � λ2 � λ1 � 0 noisy or homogeneous area

0 � λ3 � λ2 � λ1 dark sheet-like structure
0 � λ3 � λ2 � λ1 dark tubular-like structure
0� λ3 � λ2 � λ1 dark blob-like structure

Table 3.2: Classification of the blob-, tubular-, and sheet-like structures.

where the real functions ψ(λs, λt), ω(λs, λt) map pairs of eigenvalues onto the
interval 〈0, 1〉 and model the inequalities λs � λt and λs � λt � 0 occurring
in Table 3.2. The usability of such a kind of filtering is apparent when
compared to a single channel (i.e., opacity) classification (see Figure 3.4).
The drawback of the method is that the user has to specify a transfer function
in five dimensions.

Our contributions [26, 27, 23, 24] to applying the eigenvalues of Hessian
for volume analysis are discussed in Chapter 5.

3.3.3 Relative position across the boundary

Boundary detectors locate boundaries in the spatial domain. In contrast,
volume rendering applications often require to emphasize boundary regions
and isosurfaces only in dependence on the data values, that is, irrespective of
the spatial position. This problem is referred to as specification of an opacity
transfer function. With respect to the large number of possible configurations
the problem of transfer function specification is, in spite of ongoing research
(revisited in Chapter 4), known to be very complex.

An outstanding approach is the analytical method by Kindlmann and
Durkin [39]. The algorithm they proposed gained great popularity in recent
years, and for that reason we will present it in more details.

To provide the user with a convenient tool for transfer-function specifi-
cation, Kindlmann and Durkin [39, 38] introduce, for each scalar value gi,
the relative position across the boundary p. The signed value of p(gi) tells
on which side and how far from the nearest boundary the scalar value gi on
average tends to fall. This information is further passed to an easy-to-define
boundary emphasis function, b. The function b allows the user to control
whether rendered boundaries will appear thick or thin, sharp or fuzzy, and
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(a)

(b)

Figure 3.4: Classification due to 3D local structures (a) and due to only original
scalar values (b). Images show a CT-slice of a human lung in the left part and
direct volume rendering from two viewpoints in the right part. Images by Sato et
al. [82].
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to control the proximity of the rendered boundary to the object interior.
Concatenation α = b ◦ p gives the desired opacity transfer function.

The computation of the function p is based on an analysis of how the
data values change in the direction of the isosurface normal using the first
and the second directional derivatives. Along the normal, these changes can
be expressed as the derivatives f ′(x) and f ′′(x) of a real function f of one
variable x. The relationship between position, data value, first and second
derivative is shown in Figure 3.5.

(a) (b) (c)

Figure 3.5: The relationship of the derivatives across a boundary, i.e., in the
direction of the gradient. The plots in (a) and (b) include the spatial coordinate
x. The plot in (c) excludes it and demonstrates the relationship between zero-,
first-, and second-derivative of the scalar data in the gradient direction. Images
by Kindlmann and Durkin [39].

The basis for detection of boundaries resides in the position-independent
spatial parametric curve in Figure 3.5(c): if a 3D record of the relationship
between f , f ′, and f ′′ for a given data set exhibits curves of this type, it can
be assumed that these curves are manifestations of boundaries in the volume.

To track this record, Kindlmann and Durkin [39] compute a 3D histogram
with axes corresponding to f , f ′, and f ′′. Orthogonal projections of this 3D
histogram yield scatterplots as those in Figure 3.6. If there was a bound-
ary in the volume, the shapes of the scatterplots conform to the orthogonal
projections of the parametric curve in Figure 3.5(c).

The final step is an analysis of the histogram for each of the scalar values
gi. The relative position p across boundaries given by isovalues gi is defined
as p(gi) = −σ2γ2(gi)/γ1(gi) where γ1, γ2 are the average first and second
directional derivatives measured for gi over the entire data set, and σ is the
average boundary thickness, specific to the acquisition device. The quantities
γ1, γ2, and σ are easily read from the 3D histogram [39].
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(a) Cylinder (b) CT Head

(c) Two Nested Cylinders (d) Engine Block

Figure 3.6: Data set slice (left images), and the orthogonal projections of the
3D histogram volume: f ′ versus f (middle images) and f ′′ versus f (right images).
Images by Kindlmann and Durkin [39].

The method requires the computation of the directional derivatives in
the direction of the surface normal n. The first derivative is computed
due to Equation (3.21): f ′(x) = dg(x)/dn = ‖∇g(x)‖. For the second
derivative Kindlmann and Durkin discuss three possibilities, listed here in
increasing order of numerical accuracy: 1. an approximation by the Lapla-
cian: f ′′(x) ≈ ∑3

i=1 ∂
2g(x)/∂x2

i , 2. the expression for the 1st deriva-
tive applied on a scalar field of gradient magnitudes yielding f ′′(x) =
∇(‖∇g(x)‖).∇g(x) / ‖∇g(x)‖, and 3. a computation of the quadratic form
associated with the Hessian matrix (Eq. 3.30) yielding f ′′(x) = d2g(x)/dn2 =
nTHg(x)n.

3.3.4 The total gradient

In order to emphasize the isosurfaces Si given by scalars gi which not only
exhibit sharp boundaries (as measured by the gradient magnitude) but also
large areas, Bajaj et al. [2] proposed to emphasize those scalar values gi with
large total gradient (see also Fig. 3.7):

F (gi) =

∫
Si

‖∇g‖ dSi (3.37)
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To compute the values of F (.) efficiently for all scalar values, Pekar et al. [72]
exploit the divergence theorem which rewrites the previous surface integral
to a volume integral of the Laplacian:

F (gi) =

∫
Si

‖∇g‖ dSi =

∫
Si

∇gTn dSi = −
∫
Vi

div (∇g) dVi = −
∫
Vi

∇2g dVi

(3.38)
The negative sign in front of the volume integral is due to the direction of n
which is opposite to the outer normal involved in the divergence theorem.

In discrete notation the previous equation rewrites as

F (gi) = −
∑

g(x)≥gi

∇2g(x) (3.39)

and can effectively be computed using cumulative histograms [72].

(a) (b) (c)

Figure 3.7: Detection of meaningful isosurfaces due to the total gradient: One
slice of a CT head data set (a), total gradient feature curve combined with the
opacity transfer function (b) used for direct volume rendering of the data set (c).
Images by Pekar et al. [72].

3.3.5 Curvature of an isosurface

Another descriptor of an isosurface comes from differential geometry. It is
known that a regular patch can be, at a specific point P , locally described by
two orthogonal tangent vectors s1, s2 referred to as the principal directions
and by two real numbers κ1,κ2 referred to as the principal curvatures.
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Principal directions and principal curvatures

The principal directions s1, s2 in point P are the directions of the maximal
and minimal bending of a surface in P and the (signed!) values of κ1, κ2 give
the corresponding quantitative curvature measures.

They are determined as the eigensystem of the Second Fundamental Form,
IIP , of the surface in P . The second fundamental form is a quadratic form
of two variables which maps unit tangents ti, expressed in the tangent plane
as 2D vectors, to the corresponding normal curvatures:

IIP (ti) = ti
T

[
L M
M N

]
ti (3.40)

where the coefficients can be computed, with respect to any orthogonal frame
e1, e2, n as follows [11, p. 352]:

L = −e1 · (∂n/∂e1) (3.41)

M = −1
2
[e1 · (∂n/∂e2) + e2 · (∂n/∂e1)] (3.42)

N = −e2 · (∂n/∂e2) (3.43)

Probably the most impressive application of the above concepts to vol-
ume rendering is illustration of overlapping isosurfaces by Interrante [32, 31].
To increase comprehensiveness of overlapping isosurfaces coming either from
marching cubes [52] or from Levoy’s definition [46] Interrante illustrates them
with 3D texture mapping. The 3D texture consists of strokes representing
a flow defined by the first principal directions s1 (Fig. 3.8). The strokes
are generated by distributing a randomly generated spot noise through line
integral convolution (LIC) [4]. Interrante further proposes to refine the tex-
ture adjusting the lengths and/or widths of the strokes in accordance to the
magnitude of the first principal curvature |κ1|.

We propose [25] transfer functions defined in the domain of the principal
curvatures. This work is discussed in Chapter 4.

Gaussian curvature and mean curvature

Gaussian curvature
K = κ1κ2 (3.44)
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Figure 3.8: Illustrating isosurfaces using principal directions. Images by Inter-
rante [31].

and the mean curvature

H =
1

2
(κ1 + κ2) (3.45)

are an alternative way of a coordinate–independent description of a surface.
At a specific point, a surface can be locally approximated, up to the sec-
ond order, by a quadratic patch. The signs of the Gaussian curvature and
the mean curvature indicate whether this patch will (locally) be a plane
(H = K = 0), parabolic cylinder (H �= K = 0), paraboloid (K > 0), or a
hyperbolic paraboloid (K < 0).

In visualization, the information on the local surface type is usually en-
coded in color [50, 85]. Tools for isosurface emphasis may consider the curva-
tures to enhance those isosurfaces, for instance, which show up only a little
bending [72]. We introduced a novel concept of transfer functions which
involves the curvature magnitudes [25].

The Gaussian and the mean curvatures can be computed according to the
definitions (3.44) and (3.45) respectively, after computing the the eigenvalues
of the second fundamental form (3.40). Alternatively, they can be computed
directly from the scalar field due to the components of the gradient and
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Hessian matrix [51, Chap. 7]. Abbreviating the terms ∂g/∂xi with gi and
∂2g/∂xi∂xj with gij yields:

‖∇g‖4 K = g2
1 (g22g33 − g2

23) + 2g2g3 (g13g12 − g11g23) +

g2
2 (g11g33 − g2

13) + 2g1g3 (g23g12 − g22g13) + (3.46)

g2
3 (g11g22 − g2

12) + 2g1g2 (g13g23 − g33g12)

2‖∇g‖3 H = g2
1 (g22 + g33)− 2g2g3g23 +

g2
2 (g11 + g33)− 2g1g3g13 + (3.47)

g2
3 (g11 + g22)− 2g1g2g12

Since the principal curvatures are also solutions to the quadratic equation
κ2 − 2Hκ + K = 0 (compare also to Eqs. (3.44) and (3.45)), they can be
computed after enumerating the Gaussian and mean curvatures.

κ1,2 = H ±
√
H2 −K (3.48)

All of the terms require the first-, and the second-order derivatives of the
scalar field g. The numerical accuracy of the curvature-related quantities
thus crucially depends on the underlying differentiation filters. Indeed, Truco
and Fisher [92] report that qualitative curvature properties, i.e. the sign of
Gaussian and the mean curvature can be more reliably estimated than the
quantitative ones, i.e. curvature magnitude.

An alternative way of computing the curvature properties is due to ap-
proximation of the isosurface by a patch with well-known curvature charac-
teristics. In our early work [25] we proposed an algorithm which only requires
a reconstruction of eight isosurface points from the vicinity of the inspected
point P . Together with the work on curvature-based transfer functions, it is
dealt with in the next chapter.



Chapter 4

Curvature-based transfer
functions for direct volume
rendering

In this chapter we give an updated version of our early work on transfer
functions [25]. In contrast to the usual concepts, we defined the transfer
functions in the domain of principal-curvature magnitudes. Such a definition
is intended to provide the user with a tool for enhancement or suppression of
specific shape-classes and for specification of smooth color/opacity transitions
within thick surfaces and solid objects. As compared to the density-based
transfer functions, the domain of principal curvatures has a unique interpre-
tation and the transfer functions therefore require less specification and user
interaction.

4.1 Introduction

In direct volume rendering, the transfer function is responsible for the classi-
fication of the data set. Its task is to assign optical properties to values the
data set consists of. During the rendering process, the sampled and/or recon-
structed data values are passed through the transfer function to determine
their contribution to the final image.

Generally, we can think of a transfer function as a mapping from a Carte-
sian product of scalar fields F to a Cartesian product of optical properties
O (Fig. 4.1):

τ : F1 × F2 × · · · × Fn −→ O1 ×O2 × · · · ×Om

46
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OPTICALS

• opacity

• source term

• albedo

• kA, kD, kS

• ...

SCALARS F
i

O
i

•

• total gradient

g, g’, g’’

• boundary dist.

• frequency

• curvature

• ....

Reconstruction

3D volume

Transfer
function

2D image

Rendering

Figure 4.1: Transfer function: its task, domain and range.

Since a specification of transfer functions is a challenging task, the values of n
and m are usually kept small in practice. Typically, a transfer function maps
density values (n = 1) to opacity and color (m = 2), while other optical
properties are determined by an illumination model. More sophisticated
transfer functions also include the gradient magnitude (n = 2) in the domain
of the transfer function [46, 39]. From a user’s point of view, even in this
restrictive case (n,m ≤ 2), it is a problem to specify an appropriate transfer
function. The panel discussion “The Transfer Function Bake-Off” at the
IEEE Visualization 2000 conference underlined this fact again (for written
material see [74]).

There are systems which analyze the input data [2, 39, 14, 72] or output
images [10] to provide the user with an initial, easy to customize transfer-
function setup. Alternative systems generate an initial set of transfer func-
tions and pass it to an evolution mechanism [20] or arrange pre-rendered
results to provide the user with an overview of possibilities, hence an eas-
ier choice of an appropriate transfer function [55, 43]. Such an approach
requires much computational time to provide a preview image for each gen-
erated transfer function, which made these methods non-interactive for a
long time. With current rendering hardware [73], however, the usefulness
of these interfaces has increased and the specification problem is facilitated.
This progress made us thinking of alternative transfer-function types.
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According to Lichtenbelt et al. [47], the more general (m > 2) transfer
functions are those that assign opacity, color, and emittance. Other possibili-
ties to extend the range of transfer functions can be found by studying optical
models [58] (see also Fig. 4.1). Our approach attempts to extend the domain
of a transfer function. As already mentioned, the typical mapping is defined
over densities and gradient magnitudes. The possible, yet not complete list of
other choices, can be found in Fig. 4.1. To emphasize surfaces, for instance,
Kindlmann and Durkin [39] define the transfer functions with the help of
the first and the second derivatives in the direction of the gradient (see also
section 3.3.3). Three years later, Kniss et al. [41] present a powerful user
interface for this concept. Although not introduced as a transfer-function
approach, Lürig and Ertl [53] involve frequency information to visualize the
thickness of objects.

The domain of transfer functions presented in this paper is defined by
the magnitudes of the principal curvatures.

From differential geometry it is known, that the vicinity of any point
on a regular surface can be described by two tangent vectors - principal
directions and two corresponding real numbers - principal curvatures. This
description yields a unique, view-independent characterization.

Although originally developed for smooth analytic surfaces, in recent
years curvature information is also used in a variety of applications in the
field of volume visualization. An obvious application is to use Gaussian
curvature to distinguish among cylindrical, parabolic, and hyperbolic parts
of surfaces. Interrante [31, 32] has used the principal directions to define
a flow field over a surface to accentuate its shape. Trucco and Fisher [92]
segment the sampled data with the help of both Gaussian and mean
curvatures. Tang and Medioni [85] extend the tensor voting mechanism by
curvature sign information to get better densification (i.e. reconstruction)
of sparse input data.

The rest of this chapter is organized as follows. In the next section
we present our definition of transfer functions which involves the principal
curvatures. Computation of curvatures due to derivatives has been discussed
in section 3.3.5 Here, in section 4.3, we present another mechanism for their
computation. The results section 4.4 demonstrates an application of the
initial, automatically generated transfer function. Conclusions and hints for
future research are given in section 4.5.
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4.2 Curvature-based transfer functions

At a specific point P on a regular surface, the principal directions s1 and
s2 provide information on where the surface bends the most and the least,
respectively. The corresponding quantitative measure, i.e., how much the
normal vector changes in these directions is expressed by two real numbers
κ1 ≥ κ2 known as the principal curvatures.

With the help of principal directions and curvatures, the surface can be
locally approximated, up to the second order, by a quadratic patch. The
type of the patch is indicated by the signs of κ1 and κ2 as follows:

plane if κ1 = κ2 = 0.
The point P is referred to as planar.

parabolic cylinder if κ1 > κ2 = 0 or 0 = κ1 > κ2.
The point P is referred to as parabolic.

paraboloid if κ1.κ2 > 0.
The point P is referred to as elliptic.

hyperbolic paraboloid if κ1.κ2 < 0.
The point P is referred to as hyperbolic.

The transfer function we are going to design will map pairs of principal
curvatures to optical properties, e.g. color and opacity in the RGBα model:

τ : κ1 × κ2 −→ R×G×B × α

We expect such a definition to be useful to

distinguish among shapes. In specific applications, it is useful to visual-
ize surfaces with respect to their shape. This does not include only
different properties of the four different cases introduced above. Our
approach allows also to distinguish shapes of the same class employing
curvature magnitudes. In engineering for instance, it can be distin-
guished between planar (κ1 = κ2 = 0) and tubular (κ1 > κ2 = 0)
structures. In addition, within the class of tubular structures, differ-
ent properties can be specified with respect to the magnitude of κ1

(i.e with respect to the cylinder’s radius). Using the same principle, a
medical application may be able to suppress registration markers which
are typically of tubular (chord) or planar (landmarker) shape. Surgical
tools can also be selected, if they have specific shape properties. Fi-
nally, several human organs, like bones, vessels or colon polyps might
be segmented because of their specific shape.
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set smooth transitions. Thick boundaries, i.e., surfaces featuring a slow
density transition along the gradient can be understood as a set of co-
herent layers. Within such a surface it might be useful to see how the
curvature (hence shape) changes inside. To convey this, Interrante [31]
exploits principal directions to define a texture. In her approach, how-
ever, a limited number of layers can be visualized simultaneously with-
out loss of comprehensiveness. Apart of that, this method could be
hardly applicable for small structures, e.g. blood vessels. Involving
curvature magnitudes, smooth color transition within even small solid
objects (say five or six voxels in diameter) can be set, allowing to un-
derstand what happens inside. A possible application in medicine is
the identification of stenoses.

set the transfer function (semi)automatically. To enhance or suppress
a specific shape class, it is evident what combination of values κ1, κ2

has to be chosen. In order to provide flexibility with respect to shape-
by-magnitude distinction and color transition for application specific
tasks, however, a simple user interface is necessary. The setup issues
will be briefly discussed in section 4.4.

Being dependent on two real numbers it would be necessary to specify the
proposed transfer function in the entire plane R

2. Fortunately, the following
facts gradually allow us to restrict the domain:

1. For analytically defined patches, curvatures are by definition given such
that κ1 ≥ κ2 (see also section 4.3.1). The convexity or concavity of
paraboloids and parabolic cylinders is determined by the curvature
sign(s).

2. For surfaces defined implicitly, the orientation of the normal vector
is ambiguous. At a boundary, for instance, we only can decide on
whether the gradient corresponds to the outer or the inner normal if
we know whether the objects feature higher scalar values then back-
ground or vice versa. For the same reason there is ambiguity in the
convexity/concavity of paraboloids and parabolic cylinders. Without
the a priori information on object-versus-background intensities it is
impossible to distinguish the cases κ1 > κ2 ≥ 0 and 0 ≥ κ1 > κ2.
The signs of κ1, κ2 surely identify only the planar (both are zero) and
hyperbolic (they straddle zero) cases. Therefore we can rearrange the
principal curvatures such that κ1 is nonnegative and reflects the faster
bending of the surface. This is simply done by a sign change and a
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Figure 4.2: The domain of curvature-based transfer functions.

swap of curvatures in points where |κ1| < κ2. Such a rearrangement
ensures, for all possible cases, that κ1 ≥ |κ2|.

3. The principal curvature, as a curvature of a planar curve, is defined
as the reciprocal of the radius of its osculating circle. Since in unit-
distance Cartesian grids we can surely assume that circles with radius
smaller than 1/2 do not exist, the curvature magnitudes will be always
less than two.

Due to 2) and 3) the domain of transfer functions shrinks from R
2 to

|κ2| ≤ κ1 < 2 (4.1)

Referring to Fig. 4.2, the origin corresponds to planar points, the positive κ1

axis to parabolic points, and the areas to the right and the left correspond
to elliptic and hyperbolic points, respectively. This layout will serve as a
base for specification discussed in section 4.4.

For analytically defined patches, we could start a discussion on inter-
face setup. An accurate estimation of the curvature magnitudes (our
concept relies on) from digital scenes, however, is known to be a hard
problem. The troubles in equations presented in section 3.3.5 come from
numerical instabilities in the estimation of the normal and the second
derivatives.

In the following section we describe an approach which avoids computing
derivatives. The algorithm reduces the problem to a precise reconstruction
of surface points in a local neighborhood, fitting osculating circles to these
points, and fitting a central conic in the tangent plane.
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4.3 Computation of principal curvatures

Despite big efforts in research on recovery of curvature information from sam-
pled data, the results are still at least disputable. Particular success can be
seen in the estimation of qualitative properties (the principal directions and
the sign of the Gaussian curvature) rather than quantitative (the principal
curvature magnitudes) [85]. The difficulties of magnitude estimation arise
from the properties of digital scenes, mainly noise, anisotropy and related
directional dependencies.

Methods which estimate the curvature of a surface can basically be di-
vided into two groups. There are algorithms which estimate derivatives and
apply the fundamental forms (section 3.3.5). These methods strongly rely
on an accurate derivative reconstruction, are sensible to noise and require
low-pass prefiltering with a large kernel. An alternative approach is the local
fitting of a patch, from which the curvatures can be analytically computed.
McIvor and Valkenburg [59] conclude that fitting of a quadratic patch gives
better results than fitting of a surface of any other type.

In our implementation we have, for several reasons, adopted an algorithm
for triangular meshes introduced by Todd and McLeod [91]. Firstly, the au-
thors come up with a concept which gradually reduces the surface-curvature
estimation to finding a set of planar curves, to estimation of their tangents
and curvatures, and to fitting of a central conic. Neither derivative estimation
in 3D nor patch fitting are therefore necessary. Due to the two-dimensionality
of all these steps one can expect not only an easier implementation but also
more reliable results. Secondly, the authors present results which are supe-
rior to those achieved by fitting of a quadratic interpolant [59]. Finally, in
contrast to the methods which rely on the estimation of the surface normal,
the normal is computed as a side product from the estimated curve tangents.

4.3.1 From surface to planar curves

At a fixed point P of a regular surface S, an arbitrary unit tangent vector
t together with the surface normal n define a plane which in the vicinity
of P meets S in a curve of intersection. The curvature κn(t) of this curve
is referred to as normal curvature in point P and direction t. The normal
curvature as a real function of t being defined on the compact set of unit
tangent vectors reaches a maximum and a minimum. Directions in which
this happens are known as the principal directions s1, s2. The corresponding
curvatures κ1 = κn(s1), κ2 = κn(s2) are known as the principal curvatures.
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The principal curvatures κ1 and κ2, we need to estimate, can also be
found in the definition of the Dupin indicatrix. The Dupin indicatrix is either
one or a pair of conics in the tangent plane defined, assuming an arbitrary
orthonormal coordinate system in the tangent plane with origin at point P ,
by the following equation:

Lx2 + 2Mxy + Ny2 = ±1 (4.2)

Changing the coordinate system such that the eigenvectors of the quadratic
form (4.2) become its axes, however, the Dupin indicatrix will be expressed
in a more convenient form:

κ1x
2 + κ2y

2 = ±1 (4.3)

Therefore, if we know the Dupin indicatrix we also know the principal cur-
vatures κ1, κ2.

In order to reconstruct the Dupin indicatrix, it is necessary to know at
least three of its points. To compute them we define the following map:

D(t) = t /
√
|κn(t)| (4.4)

This map scales each given unit tangent vector t, in which the normal curva-
ture κn(t) is nonzero, to a positional vector of a point on the Dupin indicatrix.
This can be proven with the help of the Euler theorem, which establishes a
relation between principal curvatures and a normal curvature in an arbitrary
direction t:

κn(t) = κ1 cos2 ϕ + κ2 sin2 ϕ

where ϕ = ϕ(t) is the angle between t and s1. Taking the principal frame,
unit vector t becomes (cosϕ, sinϕ) and for its image D(t) = (Dx, Dy) holds:

κ1Dx
2 + κ2Dy

2 =
κ1 cos2 ϕ + κ2 sin2 ϕ

|κn(t)| =
κn(t)

|κn(t)| =
= sign κn(t) = ±1

which corresponds to definition (4.3).

Taking k (k ≥ 3) nonzero normal curvature estimates κn(ti) in k distinct
unit tangent directions ti, we can therefore reconstruct k points (xi, yi) on
the Dupin indicatrix and set up a system of k equations

Lxi
2 + 2Mxiyi + Nyi

2 = sign κn(ti) i = 1 . . . k (4.5)

The coefficients L,M,N are found as a solution of a linear equations system
(k = 3) or a least square fitting algorithm (k > 3). Principal curvatures
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κ1, κ2 and principal directions s1, s2 are eigenvalues and eigenvectors of the
quadratic form (4.2), i.e., of the matrix[

L M
M N

]

The estimation of the normal curvature in a given tangent vector would
require firstly a knowledge of the surface normal n in P and secondly a
reconstruction of a curve in the normal-section.

Instead, due to another result from differential geometry, we just need to
reconstruct k arbitrary planar (i.e. not necessarily normal-section) curves γi
passing through P and estimate their tangent vectors ti and curvatures κ(ti).
Averaging the cross products ti×tj of tangent vectors allows to compute the
surface normal n. Normal curvatures κn(ti) can then be enumerated due to
the Meusnier theorem:

κn(ti) = κ(ti) cosψ (4.6)

where ψ denotes the angle between the plane of the normal section (given by
vectors n, ti) and the plane of curve γi.

In this section we have shown how to reduce the problem of principal-
curvature estimation to curvature estimating of planar curves The entire
procedure is summarized in Fig. 4.3.

4.3.2 Curvature of planar curves

The computation of the curvature of a digitized curve is a non-trivial task
which should be considered with care [97]. In research on shape analysis
of digital curves, Worring and Smeulders [98] identify five essentially dif-
ferent methods for measuring curvatures of digital curves. These methods
are based on three different formulations of curvature: tangent orientation
change, second derivative of the curve considered as a path, and osculating
circle touching the curve. In their work the authors conclude, that none of the
presented methods is robust and applicable for all curve types. They advice,
however, which method outperforms the others for a specific application.

The very first aim of this work was to come up with a transfer function for
visualization of tubular structures, which feature nearly constant and large
radii. For this case, Worring and Smeulders [98] recommend to formulate
the curvature with the help of osculating circles. In the following we describe
our implementation for grid data sets.

To approximate curvatures κi of planar curves γi passing through P ,
we reconstruct points in the neighborhood of P from the isosurface defined
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Figure 4.3: Calculating principal curvatures.

by the density value of P . The triplets consisting of P and two isosurface
points will approximate the osculating circles. To avoid anisotropy typical for
rectilinear data sets, these points should lie on a unit sphere with the center
in P . In order to reduce reconstruction errors we advice to reconstruct these
points via bilinear interpolation in four planes passing through adjacent grid
points of P (Fig. 4.4). As a result we have eight surface points P1, . . . , P8 in
a small neighborhood of P . For u �= v, each triplet of points P, Pu, Pv lie on
some planar curve passing through P . There are two cases:

A) P, Pu, Pv are collinear and define a tangent vector ti to the surface at P .
The corresponding normal curvature κn(ti) is zero and can therefore
not be used to compute a point on the Dupin indicatrix according to
the map defined by equation (4.4). This case provides, however, with a
tangent vector and contributes as such to a better estimation of normal
n which is necessary for the use of equation (4.6).

B) P, Pu, Pv approximate an osculating circle with the center C. In order
to use the Meusnier theorem (4.6) we need to compute, in addition, a
tangent vector ti as a cross product ((Pu−P )×(Pv−P ))×(C−P ) and
the curvature κ(ti) as a reciprocal of the circle’s radius, i.e., 1/‖C − P‖.
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Figure 4.4: Reconstruction of neighborhood isosurface points.

4.3.3 Implementation issues

The definition of map (4.4) presumes a nonzero normal curvature κn. This
is not fulfilled, however, for case A mentioned in the previous section. Here,
such a triplet of points is of no use for the computation of a point on the
Dupin indicatrix, and consequently does not contribute to the total number
k of equations in system (4.5). In the worst case, e.g., for planar points
where all the possible triplets are collinear, the total number k of equations
can be less than three, which is not sufficient for finding the coefficients
L,M,N . To circumvent this difficulty and, at the same time, to handle
all the cases uniformly, we reassign the zero curvature κn to some small
constant ε. In order to avoid numerical problems, this constant should not
be too small. On the other hand it should sufficiently reflect the planarity
of the neighborhood of P . For low resolution (e.g. 1283) volumes we have
successfully (Fig. 4.6(d)) set ε = 10−4 which corresponds to curves of
sufficiently large radii of 10000 voxels.

The algorithm described in this section is computationally expensive.
A possible part for acceleration seems to be the reconstruction of neighbor-
hood points. As we show, the curvature estimation is very sensitive to how
this reconstruction is done, therefore this should be considered with care.
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Figure 4.5: Influence of interpolation on curvature estimation.

Having a 3×3 density matrix with the center in P in the reconstruction
plane, a first simplification might be achieved interpolating just from the
4-neighbors. The second one would be to find the isovalues on a diamond
(|x|+ |y| = 1) rather than on the unit circle with center in P .

To demonstrate the influence of improper interpolation on curvature es-
timation, we present a middle slice of the first principal curvatures κ1 recon-
structed from a 361×361×3 volume of concentric cylinders (Fig. 4.5). In
order to see the curvature isolines we depict the intensities of 1/κ1 mod 32.
Where concentric circles are expected, the left image exhibits an anisotropy
with the maximum in diagonal directions. This is a consequence of interpo-
lating just from four neighbors. The situation improves considerably using
all eight neighbors for bilinear interpolation. The remaining artifacts ap-
pearing in the diagonal direction of the right image have been caused by an
approximation of the circle by a diamond.

4.4 Results

To demonstrate our new concept we refer to Figures 4.6 and 4.7. Fig. 4.6(a)
depicts an example of a transfer-function specification scheme with respect
to the definition (4.1) of its domain (see also Fig. 4.2).

Recalling the distinction of the four shape classes introduced in section 4.2
one would expect an exact segmentation of the transfer-function domain. For
practical applications, however, we find it useful to provide the user with a
certain degree of tolerance. Consequently, the sharp borders between shape
classes change to transition areas.

The green area in the vicinity of the origin corresponds to planar
points. The blue-yellow transition area specifies the curvature change inside
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parabolic structures and is intended to reflect the diameter change within
solid cylinders present in the data sets. The red area corresponds to elliptic
points.

Slight alterations of this specification are used to render the following
density volumes, generated by the vxt library [84]:

A wire frame cube (Fig. 4.6(b)). This is a demonstration of the curva-
ture change inside solid cylinders (κ1 > κ2 ≈ 0) of a 38×38×38 cube.
Note, that the diameter of cylinders in the data set is less than six
voxels. In order to attract the user’s attention, the high values of κ1

(i.e. small diameters) have been mapped to bright yellow. The smooth
transition to blue towards lower values of κ1 corresponds to diameter in-
crease. As the axes of cylinders do not define a surface, they have been
excluded from curvature computation and therefore do not affect the
final image. The red parts correspond to elliptic points (κ1 ≥ κ2 > 0).

A wire frame octahedron (Fig. 4.6(c)). The transfer function has been
specified in the same way as for Fig. 4.6(b), with more emphasis on
smaller cylinders (depicted in yellow). A staircase effect in diagonal
directions can be noticed. The resolution of the data set is 59×59×59
voxels.

A facet cube (Fig. 4.6(d)). A 38×38×38 data set similar to that used
in Fig. 4.6(b) in this case with attached faces is shown. The transfer
function maps the corresponding (i.e. zero) curvatures to transparent
green. The joint of faces with cylinders was not smooth and exhibits
therefore high curvature depicted in yellow. Similarly as in Fig. 4.6(b),
the red areas correspond to elliptic points.

Transfer functions used for rendering of figures 4.7(a) and 4.7(b) addi-
tionally require a specification also in the area of hyperbolic points (κ2 < 0):

A torus (Fig. 4.7(a)). The transfer function has been set to distinguish
among elliptic (red), parabolic (green) and hyperbolic (blue) points of
a 59×59×20 torus. The green points on the outer side are identified as
planar due to a volume crop.

The Möbius strip (Fig. 4.7(b)). Visualization of low (green) and high
curvature (red) points of a 50×52×16 thickened Möbius strip.

The reconstruction of curvature using the method described in section 4.3
involves several steps. Its time complexity depends mainly on how many
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plane curvatures (i.e. equations of system (4.5)) are reconstructed, and how
the points on the isosurface are reconstructed. In the discussion in section
4.3.3 we gave arguments why the reconstruction of curve points should be
done as accurately as possible. Therefore we do not encourage to save time
there. Instead, time should be saved adapting the number k of equations in
the system (4.5). To demonstrate the timing we have used the minimal and
maximal possible values of k. For k = 3, the curvature has been reconstructed
in approximately 4500 voxels in a second while for k = 28 the speed was about
2000 voxels per second. The times have been measured on a PC with a 400
MHz PentiumII CPU and 512 MB of RAM.

4.5 Concluding remarks

We have proposed [25] a new class of transfer functions which assign op-
tical properties to principal curvatures reconstructed from the input data.
Such transfer functions allow to assign optical properties to objects with re-
spect to their shape. Moreover, within one shape class, the objects can be
distinguished by curvature magnitudes. As opposed to density transfer func-
tions, curvature-based transfer functions allow to see the structural changes
inside solid objects even if the density changes are small. Moreover, both
the domain and the significance of its parts are expected to be acquisition-
independent. This yields an automatic initial setup and easy specification
by the user.

On the other hand, there are several facts which make the implementation
of the presented concept difficult. Firstly, a robust algorithm for estimation
of principal curvature magnitudes is missing. The algorithm we have used re-
duces this problem to curvature estimation of planar curves and is thus only
dependent on the accuracy of methods which deal with this two-dimensional
subproblem. These methods, however, are not in all cases robust either [97]
and a specific algorithm should be chosen with care for a particular appli-
cation. Our implementation of the osculating circle method, for instance,
tends to exhibit staircase artifacts in areas where the principal directions of
the surface are not aligned to the grid axis of the input volume. Secondly, the
curvature estimation is time demanding, which makes the concept currently
unsuitable for online rendering. The curvatures can, however, be computed
in a preprocessing step and stored in separate volumes.

Further research based on work presented in this chapter should primarily
concentrate on a better estimation of curvature. For the method presented
in section 4.3, for instance, the use of a larger neighborhood or better re-
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construction filters for the description of planar curves can be taken into
consideration. A quantitative error analysis and a comparative study with
other algorithms are still necessary to establish the usability of the technique
for visualizing real data.

��

�����	�

��

(a) (b)

(c) (d)

Figure 4.6: Transfer-function specification (a) for the images of a wire-frame
cube (b), a wire-frame octahedron (c), and a facet-cube (d).
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(a) (b)

Figure 4.7: Classification of the parabolic (red), planar (green), and hyperbolic
(blue) parts of a torus (a) and a thickened Möbius strip (b).



Chapter 5

Salient representation of
volume data

In this chapter we present an algorithm for content-based retrieval of repre-
sentative subsets of volume data. Our technique [26, 27] is based on thresh-
olding of the eigenvalues of the Hessian matrix. We compare our approach
to feature detection based on the gradient magnitude and observe that our
method allows to represent volumes by smaller amounts of voxels. Practical
applications of our method include fast volume display due to object-space
oriented techniques, progressive visualization over the network and the re-
lated generation of preview data sets for web-based repositories. For these
applications, the size of the representative subset can be estimated automat-
ically with respect to the bottleneck of the visualization system or a network
bandwidth.

5.1 Introduction

With the VolumePro board [73] one might have gotten an impression that the
technology of volume graphics already matured to become a tool. “Volume
graphics today is where surface graphics was fifteen years ago” says David
Nadeau at WSCG 2001 [68], however, and emphasizes two reasons: the lack
of authoring tools which would help spreading volume graphics, and the lim-
ited display capabilities. The VolumePro board is able to display at 30 fps
just volumes of rather small resolutions, i.e., 2563. Without introducing blur,
rendering such volumes can fill only moderately-sized output images, i.e., up
to 256×256 pixels. Constrained by a 21-inch monitor with a resolution of
1280×1024 pixels, Nadeau compares a projection of a 2563 volume to as we

62
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were legally blind and of a 10243 volume to as we were visually impaired.
In order to approach the human visual capabilities determined by the den-
sity of cones at the fovea, we will need to render volumes of much higher
resolutions. The 21-inch screen usage would require a projection of a 24003

volume. Considering a 180◦ visual field in virtual/augmented reality appli-
cations, the volume resolutions necessary to satisfy the human eye increase
to 216003 voxels.

The current technology is far from able to display such resolutions at
interactive frame rates. The main advantage of volume graphics over surface
graphics, i.e., the display of all volume elements in a data set, is also its
main disadvantage – the size of data to be visualized limits the practical use.
In his talk [68], Nadeau surveys on how to cope with this phenomenon and
concludes a part of the keynote with a question: “How about changing our
data?”.

In this chapter we give one of the possible answers to this question. We
report on a newly-developed technique aiming at a content-based retrieval
of the most important areas from a volume data set. Our approach utilizes
convolution, computation of eigensystems, and thresholding. It enables rep-
resentation of volumes by crucial features contained in much smaller subsets.

5.2 Motivation and related work

A representation of volume data by just a small subset of content-carrying
voxels is desirable for and addressed by many applications.

Appropriately reorganized sparse volumes can be rendered using object-
space display techniques at interactive frame rates [65, 6]. Saito [80] in-
troduces a non-realistic previewing. Each voxel from a sparse subset of the
volume is represented by a simple 3D entity like a point, line, or a polar cross.
A list of these entities is passed to a conventional rendering pipeline achieving
real-time results. Splatting introduced by Westover [96] and enhanced over
the years [67] usually yields high-quality display results. Researchers further
optimize [37] this technique to achieve interactive frame rates for volumes of
moderate resolutions. Recently, point-based visualization of large data sets
became popular due to the work of Rusinkiewicz et al. [79] because of both
simplicity and speed. The discussions on quality aspects of this approach are
triggered by Pfister et al. [75].

Interactive volume visualization over the Internet based on a client/server
architecture profits from elaborated strategies for progressive data transmis-
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sion. Here it is desirable that the content of a volume is visually interpretable
already in the early stages of transmission to and visualization by a client. To
achieve this, the server may start transmitting salient features earlier than
the rest of the data.

Non-distributed visualization may benefit from storing a small, represen-
tative subset of the data to disk. Such a representation can be reused later
for a quick preview.

There are many techniques aiming at identifying important subsets of a
volume data set. Isosurface extraction algorithms belong to the most often
used techniques in indirect volume rendering. The choice on the iso-value(s)
can be done interactively [52] or, after a previous analysis, semi-automatically
[39], or automatically [15]. Saito [80] employs a non-uniform stochastic Pois-
son sampling. Mroz et al. [66] reduce the size of the data with respect to the
applied visualization technique, i.e., maximum intensity projection (MIP).
Gradient magnitude of the scalar field can also be considered as a priority
function because it emphasizes boundaries which mostly attract the human
attention.

Similarly to the gradient-magnitude techniques, our concept is based on
filtering. The quantity being filtered is the second-order derivative of the
scalar field. It is, after solving its eigensystem, extracted from the Hessian
matrix.

In the following we introduce an easy-to-use framework for using eigen-
values of the Hessian matrix for identification of a useful subset of a given
volume.

5.3 Symmetric thresholding of eigenvalues of

the Hessian

Given the eigenvalues λ1 ≥ λ2 ≥ λ3 of the Hessian matrix (section 3.3.2),
Equation (3.32) shows that it is possible to combine them into the Laplacian
operator and use them for boundary detection (see also section 3.3.1).

Experimenting with the eigenvalue images, however, we have found that
treating the eigenvalues separately rather than adding them is suitable for
thresholding. Figures 5.1 and 5.2 demonstrate this property on 2D examples.



Chapter 5. Salient representation of volume data 65

(a) (b) (c)

(d) (e)

Figure 5.1: An example of a 2D MRI image. (a) original image g, (b) gradient
magnitude ‖∇g‖, (c) response to the Laplacian operator, (d) λ1-image, and (e)
λ2-image. The Laplacian image corresponds to the sum of the eigenvalue images,
which are well suited for thresholding.

To extract features from a 2D image we propose a two-fold thresholding
as follows:

gnew[x1, x2] =

{
g[x1, x2] if λ2[x1, x2] ≤ T2 ∨ T1 ≤ λ1[x1, x2]
0 otherwise

(5.1)

where x1, x2 denote the spatial image-coordinates and T1, T2 are thresholds
specified by the user.

For each voxel of a 3D image there are three eigenvalues, λ1 ≥ λ2 ≥ λ3.
Fig. 5.3 shows axial slices of the eigenvalue volumes computed from a CT
head data set. Since, in our experience, images corresponding to λ2 lack good
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(d) (e)

Figure 5.2: An example of a 2D CT image. (a) original image g, (b) gradient
magnitude ‖∇g‖, (c) response to the Laplacian operator, (d) λ1-image, and (e)
λ2-image. The Laplacian image corresponds to the sum of the eigenvalue images,
which are well suited for thresholding.

contrast, we propose a two-fold (instead of three-fold) thresholding. It only
takes into account the two eigenvalues λ1 and λ3:

gnew[x] =

{
g[x1, x2, x3] if λ3[x1, x2, x3] ≤ T3 ∨ T1 ≤ λ1[x1, x2, x3]
0 otherwise

(5.2)

where x1, x2, x3 denote the spatial volume-coordinates and T1, T3 are thresh-
olds specified by the user. The task of the user is to specify the two thresholds
T1, T3 (Fig. 5.3).

5.3.1 Results

Table 5.1 and Figure 5.4 indicate that for visualization purposes Equa-
tion (5.2) allows to represent volumes by approximately 10% of the voxels.
The thresholds T1 and T3 allow the user to interactively control the trade-off
between display quality and amount of displayed information.
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Figure 5.3: Part of an interface and illustration that eigenvalues λ1 and λ3 are
suitable for thresholding. The λ2-image lacks contrast information and is therefore
from thresholding excluded.

Input Volume Sparse Volume
Data set Resolution KB T1 T3 KB %

Engine Block 256 × 256 × 110 7 040 21.953 -23.381 658 9.36
CT Head 128 × 128 × 113 1 808 16.981 -19.182 183 10.12
MRI Head 256 × 256 × 109 6 976 7.822 -6.364 871 12.48

Table 5.1: Results for some typical volume data sets. Columns from left to right:
name of the data set; its resolution; number of voxels in KB; threshold values T1,
T3 used in Equation (5.2) for the generation of a sparse volume; number of nonzero
voxels in KB in the sparse volume; and the relative size of the sparse volume to
the input volume.

Equation (5.2) defines a variant of a 2nd-order boundary detectors which
are important in bioperception [56]. This is mostly noticeable by comparing
the rendered images of the engine block data sets (top row of Fig. 5.4). In
the sparse volume, areas corresponding to boundaries are emphasized and
provide the observer with better information on structures found in the data
set.

All tested volumes have been quantized to 256 gray levels. To compare
the visual appearance, both the input and the sparse volumes have been
displayed with the shear-warp algorithm [44] implemented in the VolumePro
board [73].
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(a) Input volumes (b) Sparse volumes

Figure 5.4: Ray casting [73] of the Engine Block, CT Head, and MRI Head
data sets (a) and of the corresponding sparse volumes (b) generated due to Equa-
tion (5.2) with threshold parameters set as in Table 5.1.
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5.4 Further subset reduction

The previously introduced concept can be further extended [27] assuming
that the objects are of a higher intensity than the background.

Two statements can be made under this assumption. First, the bright
narrow structures can be identified due to responses to the 2nd-order deriva-
tive filter. Second, a 2nd-order operator responds by negative and positive
values at the inner and outer side of a boundary, respectively. We put this
fact into contrast to the gradient-based boundary detection, which yields an
equal response on both sides of a boundary and exploit this fact to represent
the objects’ boundaries only by their internal side. Compared to the gradi-
ent method such a selection requires a smaller amount of voxels for boundary
representation.

5.4.1 Motivation

The importance of boundary information for machine vision is usually mo-
tivated from the observation that under rather general assumptions about
the image formation process, a discontinuity in image brightness can be as-
sumed to correspond to a discontinuity in either depth, surface orientation,
reflectance, or illumination [48]. A line as a different type of discontinuity
is also a structure of particular interest. While in a 2D image the represen-
tatives of narrow solid structures are spots and lines, in volume data this is
more general – blobs, cylinder-like, and sheet-like structures play a crucial
role, e.g., in medical visualization [82].

Gradient magnitude is an indicator to identify object boundaries. The
identification of narrow solid structures, however, requires the use of either
special filters or 2nd-order derivative filters.

In the reminder of this chapter we propose a filtering technique for the
identification of both boundaries and narrow structures. Our algorithm is
based on the identification of areas with large-in-magnitude negative second
derivatives, and handles both of the cases in a uniform way. Defining a
salience function based on this quantity allows to identify those voxels of the
input volume which constitute the most significant content of the data set.
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5.4.2 Edge detectors and line detectors revisited

Two types of filters have been designed for edge detection – those based on
looking for maxima of the first derivative (section 3.2.1) and those based on
looking for zero-crossings of the second derivative (section 3.3.1).

While these concepts are intuitive for 1D signals, the situation in higher
dimensions gets more complicated. To use the extrema of the 1st deriva-
tives we need to know the directions in which they occur. From calculus
it is known that for the first derivative this direction is the gradient vector
∇g and the derivative in this direction is the magnitude of the gradient:
g′max = g′∇g = ‖∇g‖ = (

∑3
i=1(∂g/∂xi)

2)1/2. Looking for maxima of gradi-
ent magnitudes yields an isotropic boundary detector which equally responds
to the outer and the inner side of the object (Fig. 5.5(a)). For the second
derivative approach it is necessary to check the neighborhood of a voxel for
zero-crossings, i.e., for areas where the 2nd derivative changes its sign. The
2nd derivative is usually estimated by the rotationally invariant Laplacian
∇2g =

∑3
i=1 ∂

2g/∂x2
i . A less referred feature of the Laplacian operator is

that it responds with negative values at the inner part and by positive values
at the outer part of the object’s boundary (Fig. 5.5(b)). We put this into
contrast to the gradient-based boundary detection, which yields an equal
response on both sides of a boundary and exploit this fact to represent the
objects’ boundaries only by their internal side. Compared to the gradient
method, such a representation requires a smaller amount of voxels. From
the viewpoint of a client/server visualization system running with low band-
width, such an identification would yield a better distribution of voxels over
boundaries especially in early stages of the progressive transmission.

Considering the density profile, it is evident that the concepts of 1st
derivative maxima can not be directly applied for spot and line detection
(or, more generally speaking, for detection of narrow regions which in 3D
correspond to blobs, lines, and sheet-like structures). The response of a 1st-
order derivative filter to a line, for instance, results in two lines, which would
require a special, nontrivial mechanism for detection of the in-between area
(Fig. 5.5(a)). A 2nd-order derivative filter, on the other hand, responds to
lines by negative values in the interior (Fig. 5.5(b)).

As a result we get a twofold interpretation of areas where the 2nd-order
derivative operator responds with negative values. Firstly such areas cor-
respond to internal parts of a boundary and secondly they identify narrow
structures. To make the search for negative areas more feasible for separa-
tion by thresholding, we are interested in the directions where the 2nd-order
derivatives are minimal.
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Figure 5.5: Examples of a 1D density profile. Responses of a 1st-order derivative
filter (a) and a 2nd-order derivative filter (b) to an edge and to a line.

5.4.3 The smallest 2nd derivative

At a specific point, the eigenvalues λi of the Hessian give the second deriva-
tives in the directions of the associated eigenvectors ei: g′′ei

= d2g/de2
i =

ei
THg ei = λi (section 3.3.2). Since Hg in this context represents a quadratic

form, computing the smallest eigenvalue directly yields the minimal direc-
tional derivative, i.e., g′′min = d2g/de3

2 = λ3.

5.4.4 Salience by the smallest eigenvalue

So far we described a mechanism to find the smallest 2nd-order directional
derivative at a given grid point of a volume. As λ3 is just a special case
of a 2nd-order directional derivative, the interpretation from section 5.4.2
remains the same:

1. Areas featuring very low λ3 represent an inner part of an object’s
boundary. Unlike in the case of gradient magnitude where looking
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for the maxima yields a representation of the boundary from both the
outer and the inner side, our approach restricts the representation of
boundaries just to the inner side. Compared to the gradient magni-
tude operator, the boundary can therefore be represented by a smaller
amount of voxels.

2. Areas with very low λ3 correspond to the blobs, lines, and sheet-like
structures. Their detection with a first derivative operator would be
impossible.

3. Having the minimal second derivative is more suitable for separation
of the structures by thresholding instead of having a second derivative
in an arbitrary direction.

Due to these reasons, areas featuring low negative eigenvalues λ3 yield a
better representation of a volume than those with high positive values of the
gradient magnitude.

In order to provide a comparative study between these two approaches,
we define the two following salience functions SΓ, SΛ of a voxel v and the
two corresponding p%-subsets of the input volume g they determine:

SΓ[v] = ‖∇g‖ [v] Γ[p%] = {p% of g with the highest SΓ} (5.3)

SΛ[v] = − λ3[v] Λ[p%] = {p% of g with the highest SΛ} (5.4)

For a given percentage p, functions SΓ, SΛ determine the p% of ‘top salient’
voxels which will represent the volume. For a progressive transmission of data
through a network, these functions determine the priority of transmission:
the voxels with higher salience will be transmitted earlier.

Obviously, there are also other candidates which might succeed well in
the task of volume representation by a fraction of the data. In the following
we discuss several possible competitors and argue why we do not compare
them to our method:

Isosurface methods require user input to specify the density which deter-
mines an isosurface. The result is dependent on and yields only the
structures defined by this choice. Our method processes data automat-
ically and delivers surfaces of more than just one isolevel.

The gradient integral (section 3.3.4) proposed by Bajaj et al. [2] is in-
tended to emphasize those isosurfaces which feature both long gradients
and large area. The integral is efficiently calculated with cumulative
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histograms of the Laplacian [72], i.e., the trace of the Hessian ma-
trix. The saliency provided by the gradient integral is, however, based
on densities and is essentially inconsistent with our position-based ap-
proach.

The “position across boundary” (section 3.3.3) introduced by Kindl-
mann and Durkin [39] yields an opacity transfer function for boundary
emphasis. The algorithm performs a statistical analysis of the zero,
1st, and 2nd-order derivatives in the direction of the gradient, and finds
those densities which primarily contribute to the boundaries. Similarly
to the previous case, this analysis is density-based and therefore not
comparable with our approach.

Density distribution analysis based on all eigenvalues of the Hessian (sec-
tion 3.3.2) as proposed by Frangi et al. [13] or Sato et al. [81, 82] restricts
the search space just to structures of a particular shape and a certain
scale, and excludes boundaries of objects. In contrast, our approach
handles both boundaries and structures in a uniform way.

5.5 Implementation and complexity

5.5.1 Hessian matrix versus gradient vector

Computation of both the gradient vector and the Hessian matrix at grid
points involves an approximation of the first and the second partial deriva-
tives, respectively. For this task, the data is convolved with kernels which
are designed for a particular derivative in a specific direction (section 3.1.4).

For first derivatives, kernels of size up to three are usually found in the
textbooks: Prewitt and Sobel filters (Appendix A) are feasible for fast com-
putation [51].

Calculating the Hessian matrix requires an estimation of 2nd-order deriva-
tives which is, especially for small kernels, much more sensitive to noise. The
usual practice is to pre-smooth the input data with a Gaussian filter. Due to
the associativity of convolution, the smoothing and the differentiation steps
can be combined, resulting in a convolution of the data with a derivative of
the Gaussian filter of a bigger size.

To remain consistent for comparison of both the quality of results and
the computational costs we used filters of the same size both for 1st and 2nd
derivatives. Using the Gaussian filter requires that its size k is proportional
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to the standard deviation, so the kernels usually involved are 5, 7, or 9 voxels
wide. Convolution with even moderately-sized kernels is usually a computa-
tionally expensive process. To speed it up, we exploit the separability of the
Gaussian kernel:

( k×k×k︷ ︸︸ ︷
∂a+b+c

∂xa1∂x
b
2∂x

c
3

Gσ(x)

)
⊗g =

k×1×1︷ ︸︸ ︷
da

dxa1
Gσ(x1)⊗

( 1×k×1︷ ︸︸ ︷
db

dxb2
Gσ(x2)⊗

( 1×1×k︷ ︸︸ ︷
dc

dxc3
Gσ(x3)⊗g

))
(5.5)

where the sum a+b+c ∈ {1, 2} of nonnegative integers a, b, c determines the
order of differentiation, and σ is the standard deviation of the Gaussian fil-
ter Gσ(x) = exp(− x2

2σ2 )/
√

2πσ (see also Appendix A.5). The decomposition
according to Equation (5.5) reduces the cost for calculating a partial deriva-
tive at a grid point from convolution with a 3D kernel (complexity O(k3)) to
three convolutions with a 1D kernel (complexity O(3k)).

A direct application of Equation (5.5) would require 6 × 3 = 18 1D
convolutions for calculating the 6 distinct Hessian elements and 3 × 3 = 9
1D convolutions for calculating the gradient vector. Further speed-up can be
achieved by appropriate reorganization and caching. Three 1D convolution
passes can be saved for the computation of the Hessian matrix, (e.g., Gσ(x3)⊗
g can be reused three times and G′

σ(x3)⊗ g twice) and one convolution pass
can be saved for the gradient (e.g., Gσ(x3) ⊗ g can be reused twice). This
reduces the number of required 1D convolutions to 15 for the Hessian and to
8 for the gradient (see the corresponding entries in Table 5.2).

5.5.2 Eigenvalues of the Hessian versus magnitude of
the gradient

While computing the Euclidean norm of a 3D vector requires only three mul-
tiplications, two additions and one square root, the computation of eigenval-
ues of a 3 × 3 matrix is generally more time demanding. Fortunately, since
the Hessian matrix is real symmetric, the roots of the associated characteris-
tic polynomial are real and the analytical solution introduced in section 2.4
can be used.

Table 5.2 summarizes the overall time costs concluding that the compu-
tation of eigenvalues is on average 1.87 times more expensive as compared to
the computation of the gradient magnitude.
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Input Volume Cost of ‖∇g‖ Cost of λi Factor
Data set Resolution 8 ⊗ +norm 15 ⊗ +roots

Lobster 120× 120× 34 6.36 6.44 11.90 12.02 1.87
Vertebra 1 128× 128× 74 17.46 17.68 31.48 31.94 1.81
CT Head 128× 128× 113 26.14 26.46 48.11 48.77 1.84
MRI Head 256× 256× 109 110.93 112.25 208.43 210.96 1.88
Engine Block 256× 256× 110 112.20 113.46 210.98 213.36 1.88
Tooth 256× 256× 161 164.62 166.24 308.45 311.33 1.87
Vertebra 2 256× 256× 241 247.31 250.12 497.02 499.93 2.00

Table 5.2: Time in seconds for computing the gradient magnitude and the
eigenvalues of the Hessian matrix as measured on a Pentium II, 400 MHz. 1D
cyclic convolutions (Eq. 5.5) with kernel of size k = 7 have been used. The
meaning of columns from left to right: name of the data set and its resolution;
time for the computation of all partial derivatives for the gradient vector, and after
calculating the Euclidean norm; time for the computation of all partial derivatives
for the Hessian, and after computation of the cubic-polynomial roots; the ratio of
overall times for the eigenvalues and the gradient magnitude calculation.

5.5.3 Construction of representative subsets

To build the subsets Γ(p%) and Λ(p%) defined by Equations (5.3) and (5.4),
we first construct cumulative histograms of the quantities ‖∇g‖ and −λ3,
respectively. This is done in one pass through the volume data in linear
time. The percentage p controls the number of voxels to be included into
the respective subset. The search for adjacent histogram bins straddling this
number is logarithmic. The indices of bins correspond to a threshold which
serves for the final decision.

5.6 Results

To compare the quality of volume representations given by Equations (5.3)
and (5.4), we generate sparse volumes where the density of voxels not present
in either of the subsets Γ and Λ have been set to zero. Such volumes have been
rendered eith the OpenSplat package [29] (Figs. 5.6, 5.7) and by the shear-
warp algorithm [44] implemented in the VolumePro board [73] (Figs. 5.8,
5.9), respectively.

Lobster: (Fig. 5.6) The representation by the Λ(1%) subset provides a bet-
ter idea about the data set than the same amount of voxels in the
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representation by Γ(1%). While the legs of the lobster are visible and
well recognizable already in the Λ(3%) subset, they just start to appear
in the Γ(7%) subset. In contrast, the Λ(7%) is already close to describe
the entire topology of the data set.

Vertebra 1: (Fig. 5.7) Neither of the 1%-representations provides enough
information, though there is more content visible in the Λ(1%) subset.
At 3%, 5%, and 7% we observe that the contours in the Λ(.) subsets
close much faster than in the corresponding Γ(.) subsets. Moreover, we
estimate that the Λ(1%), Λ(3%), and Λ(5%) subsets provide approxi-
mately the same level of information as the Γ(3%), Γ(5%), and Γ(7%)
subsets, respectively.

Vertebra 2: (Fig. 5.8) Subset Γ(2%) features only high density screws.
While the ribs only begin to appear in Γ(4%), they are better visible
already in Λ(2%) due to a more even distribution of boundary voxels.
Γ(6%) and Γ(8%) provide less information than Λ(4%). In contrast,
Λ(6%) contains the most relevant features and Λ(8%) seems to provide
all the features plus aditional voxels from the noisy area surrounding
the vertebra.

Tooth: (Fig. 5.9) There are two significant features identified in this data
set: the tooth and the cylindrical shell of the medium (not displayed)
in which the tooth was set prior to scanning. The area of the shell
is comparable to the area of the tooth – about 53% of the Λ(.) and
the Γ(.) voxels contribute to the shell, on average. In spite of this
fact, the differences between the two representations are still apparent.
Since there are no narrow structures present in the input data set, this
example shows that the Λ(.) representations yield a better distribution
of the voxels over the surfaces.

5.7 Concluding remarks and future work

We proposed an easy-to-use framework for exploiting eigenvalues of the Hes-
sian matrix to represent volume data by small subsets. We showed the suit-
ability of thresholding eigenvalue volumes, and defined a two-fold threshold
operation to generate sparse data sets.

For data where it can be assumed that objects exhibit higher intensities
than background, we further improved this framework taking into account
only the smallest eigenvalue. This resulted into further reduction of the
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representative subsets. These subsets convey, in an easy and uniform way,
information contained in two essentially different modalities, the object’s
boundaries and the narrow structures.

We evaluated our method with several data sets from different modali-
ties and compared it to the feature-detection based on thresholding of the
gradient magnitude. We conclude that, for the same level of perception, our
method allows to represent data sets by reasonably smaller subsets.

The possible applications of such a compact representation are, e.g., fast
rendering due to object-space display techniques, progressive transmission
over the internet and the generation of preview data sets. The drawback of
our method is a higher computational cost. Computation of the Hessian’s
eigenvalues is on average 1.87 times more expensive than the computation of
the gradient magnitude. Speed-ups might be achieved, for instance, through
better caching strategies and exploiting hardware capabilities. The perfor-
mance issues should be addressed in future work.
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(a) original data set
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Figure 5.6: Splatting [29] of the Lobster data set (a) and its representations
due to the salience provided by eigenvalue λ3 (b) and by detection due to gradient
magnitude (c). From top to bottom the subsets comprise 7.0 %, 5.0 %, 3.0 %, and
1.0 % of the voxels of the original data set.
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Figure 5.7: Splatting [29] of the Vertebra 1 data set (a) and its representations
due to the salience provided by eigenvalue λ3 (b) and by detection due to gradient
magnitude (c). From top to bottom the subsets comprise 7.0 %, 5.0 %, 3.0 %, and
1.0 % of the voxels of the original data set.
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(a) original data set
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Figure 5.8: Ray casting [73] of the Vertebra 2 data set (a) and its representations
due to the salience provided by eigenvalue λ3 (b) and by detection due to gradient
magnitude (c). From top to bottom the subsets comprise 8.0 %, 6.0 %, 4.0 %, and
2.0 % of the voxels of the original data set.
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Figure 5.9: Ray casting [73] of the Tooth data set (a) and its representations
due to the salience provided by eigenvalue λ3 (b) and by detection due to gradient
magnitude (c). From top to bottom the subsets comprise 6.0 %, 4.0 %, 2.0 %, and
0.5 % of the voxels of the original data set.



Chapter 6

Orientation-driven shape-based
interpolation of volume data

In this chapter we recall our novel approach [22] to shape-based interpolation
of gray-level volume data. In contrast to the segmentation-based techniques
our method directly processes the scalar volume requiring no user interac-
tion. The key idea is to perform the interpolation in the directions given by
analysis of the eigensystem of the structure tensor. Our method processes a
256 × 256 slice within a couple of seconds yielding satisfactory results. We
give a quantitative and a visual comparison to the linear inter-slice interpola-
tion. Analysis of the results lead us to the conclusion that our technique has a
strong potential to compete with well-established shape-based interpolation
algorithms.

6.1 Motivation

In general, interpolation is required whenever the acquired data are not at
the same level of discretization as the level that is desired [16]. In volume
visualization by ray casting, for instance, it is necessary to acquire samples
at regular distances on a ray. The interpolation routine has to provide the
ray caster with values at any position between the grid points. Algorithms
for volume analysis are often based on filtering techniques which presume
isotropy. The input data has to be resampled in most cases to an isotropic
discretization. Medical imaging systems usually acquire the data in slice-
by-slice order resulting in different sampling rates in x1, x2, and x3 direc-
tions. For an appropriate medical treatment it is necessary that the data
at requested locations are reconstructed as precisely as possible taking into

82
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account not only the characteristics of the data as a 3D signal but also the
topological properties of the explored structures.

6.2 Related work

Interpolation algorithms can broadly be divided into two categories – scene-
based (image-based) and object-based (shape-based). Although scene-based
filters received a lot of attention in the visualization community in recent
years [62, 45, 90, 87], there is repeated evidence in the literature of the
superior performance of object-based over scene-based interpolation tech-
niques [17].

From the beginning, shape-based algorithms required a segmented vol-
ume, i.e., an identification of objects to be interpolated. The first approaches
are based on contour interpolation.

Raya and Udupa [78] proposed an interpolation of distance fields com-
puted from binary slices. Higgins et al. [21] also focus on the problem of
interpolating binary objects rather then high-resolution gray-scale images.
They extend the approach of Raya and Udupa [78] employing the original
density information to avoid inconsistencies in the transition of objects’ cross
sections and their centroids. Turk and O’Brien [93] exploit both contour de-
scriptions and distance fields encoded as implicit functions. They come up
with a powerful framework for interpolation of analytically given objects.

Moshfegi [64] proposes a technique aiming at removing staircase effects in
a manner that is consistent with maximum-intensity projection (MIP). The
direction of interpolation is aligned adaptively with the axes of the vessels.
The proposed template matching considers a pair of scan-lines iteratively
looking in reference windows for the best match due to mean square error
and a correlation coefficient. The interpolation method is, however, applied
after the projection providing thus a solution only for 2D scenes.

The first purely gray-level-based approach yielding reasonable results
seems to be the three-pass algorithm proposed by Grevera and Udupa [16].
In order to adopt the previously introduced technique [78], the n-dimensional
gray scene is lifted to a [n+1]-dimensional binary scene in the first step. Then
binary shape-based interpolation [78] is applied. Finally, the newly interpo-
lated [n + 1]-binary scene is collapsed back to n dimensions. A drawback
of this method is a high time and space complexity. Two years later this
method and two variants thereof are compared [17] to the five most referred-
to interpolation techniques. The paper emphasizes the superior performance
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of object-based over scene-based interpolation techniques, too. To see how
far this is evident in a specific application, i.e., detection of brain lesions,
Grevera and Udupa [18] statistically compare 100 data sets resulting from
10 patients, 2 modalities and 5 interpolation methods.

In contrast to the frequently used techniques we propose a direction-
driven interpolation. The interpolation is driven by the eigenvectors of the
structure tensor. Structure tensors carry information on the density distri-
bution in simple neighborhoods. As they are computed directly from scalar
data, our method does not require any segmentation or user interaction. This
makes a reasonable difference between our method and most shape-based in-
terpolation techniques.

An introduction to simple neighborhoods and the related tensor analysis
as well as the concept of our method are presented in section 6.3. Section
6.4 discusses implementation issues. To see the performance, qualitative and
quantitative evaluation of our method is given in section 6.5.

6.3 Pattern-driven interpolation

Usual strategies to study local neighborhoods are based on analyzing discon-
tinuities in the intensity [48].

The human visual system, however, can easily recognize objects that
do not differ from a background by their mean gray value but only by the
orientation or scale of patterns. To perform this recognition task with a
digital image processing system, operators which determine the orientation
of patterns are needed [33].

6.3.1 Simple neighborhoods and structure tensor

For an appropriate representation of the emplacement of an object or a tex-
ture it is necessary to distinguish between direction given by an angle from
the interval 〈0◦, 360◦) and orientation 〈0◦, 180◦). As we are locally not able to
distinguish between patterns that are rotated by 180 degrees, the operators
are also required to make no distinction.

A representation of the orientation by one scalar value representing the
angle turns out to be not appropriate, because a measure for certainty which
describes the neighborhood independently from the absolute density is not
involved. This means that an at least two-component vectorial description
is required.



Chapter 6. Orientation-driven shape-based interpolation 85

An attempt to describe a neighborhood by the gradient vectors fails be-
cause it does not allow to distinguish between neighborhoods with constant
intensity, with isotropic intensity distribution, and with ideally oriented pat-
terns (section 3.2.2 and Fig. 3.3).

The following optimization method has been proposed [33] to find an
operator which encodes the angle of orientation, provides a certainty measure
and distinguishes between constant and isotropic distributions.

A neighborhood U(p0) of the point of interest p0 will be described by
a unit vector s which exhibits the least deviation from the orientations of
all gradients ∇g from U(p0). The quadratic form (sT∇g)2 = sT (∇g∇gT )s
meets a criterion for evaluating this deviation – the more the vectors s, ∇g
tend to be collinear, the higher values the quadratic form produces. A search
for s therefore leads to maximization of the following integral:∫

U(p0)

h(p0 − u) (sT∇g(u))2 du (6.1)

where h is a positive weighting function defined on U(p0).

The maximization of the integral (6.1) can more conveniently be rewritten
using the matrix J of the quadratic form of the integrand. Matrix

J =

∫
U(p0)

h(p0 − u) (∇g(u)∇g(u)T ) du (6.2)

referred to as the structure tensor, is a real symmetric, positive semidefinite
3× 3 matrix consisting of the following elements:

Jpq =

∫
U(p0)

h(p0 − u)

(
∂g(u)

∂xp

∂g(u)

∂xq

)
du (6.3)

With J , maximization of the integral (6.1) rewrites to sTJ s→ maximum.
Following Theorem 2.3.1 the solution to s is the principal eigenvector of J .

Since the matrix J is positive semidefinite, its eigenvalues λi are non-
negative. In the following we assume the ordering λ1 ≥ λ2 ≥ λ3 ≥ 0 and,
in accordance with Theorem 2.2.3, we choose the corresponding orthogonal
eigenvectors ei to be of a unit length.

6.3.2 Eigenvectors-aligned kernel

The aim of our interpolation approach is to preserve, to the most possible
extent, the boundaries of objects as well as lines, edges, and ridges. To
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achieve this we propose to perform the interpolation in the directions given
by these structures. The presumption here is that the change of the density
values in these directions is minimal.

Although the structure tensor has originally been proposed to describe
the orientation of a neighborhood by its principal eigenvector e1, there is
more information from its analysis. For a unit vector u, the term uTJu
gives the square of the density change in the direction of u. Following the
Theorem 2.3.1, the minimum of the squared density change and therefore
also the minimum of the density change are reached in the direction of the
eigenvector e3.

According to the rank of tensor J the following four cases can be distin-
guished in a 3D image (refer also to Table 6.1):

rank (J ) Conditions Neighborhood description

0 λ1 � λ2 � λ3 � 0 constant neighborhood
1 λ1 > λ2 � λ3 � 0 boundary or layered texture
2 λ1 � λ2 > λ3 � 0 edge or extruded texture
3 λ1 � λ2 � λ3 > 0 corner or isotropy

Table 6.1: The cases of density distribution in a 3D scene

rank (J ) = 0: The scalar values do not change in any direction. The repre-
sented neighborhood features constant gray values. Interpolation can
simply be done with the nearest-neighborhood interpolation method.

rank (J ) = 1: The scalar values significantly change in the direction of the
principal eigenvector e1, while they remain (nearly) constant in the re-
maining perpendicular directions, e2 and e3. The corresponding neigh-
borhood contains either a layered texture or a boundary between two
objects. The interpolation will be driven by a disc spanned by the
eigenvectors e2 and e3.

rank (J ) = 2: The scalar values significantly change in the directions e1 and
e2 while remain (nearly) constant in e3. The corresponding neighbor-
hood features either an edge of an object or an extruded texture. The
interpolation will be driven by a stick determined by the eigenvector
e3.

rank (J ) = 3: The scalar values change in all directions. There is either a
corner of an object or a distributed 3D texture in the neighborhood.
The interpolation therefore shall consider all of the eigenvectors.
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The second row of Figure 6.2 gives examples of color coding of the rank of
the structure tensor. The areas with rank (J ) = 1, 2, and 3 are encoded
by green, red, and blue color, respectively. Homogeneous areas are excluded
from the rendering.

To perform a directional interpolation at a point p0 we will weight the
density contributions g(y) of voxels y from its neighborhood according to
their relative position to an ellipsoid E(p0). The main axes of the ellipsoid
will be given by scaled eigenvectors ai as follows:

rank (J ) a1 a2 a3

1 ε e1 δ e2 δ e3

2 ε e1 ε e2 δ e3

3 δ e1 δ e2 δ e3

(6.4)

where δ > 1  ε > 0. The purpose of scaling (6.4) is to suppress the
directions of a large density change and to emphasize the directions of a
small density change.

We define the weight of a point y from the interior of ellipsoid E(p0) as:

w(y) = 1−
3∑
i=1

(
(y − p0)

Tai

ai
Tai

)2

(6.5)

and set it to zero for exterior points and points on the boundary of E(p0).
This defines a smooth fade-of of weights from the center of the ellipsoid to
its borders. Fig. 6.1 demonstrates how the situation may look like in a plane
given by the eigenvectors e2 and e3. The gray-level coding of the contributing
grid points corresponds to their weights.

Finally, we define the interpolated density value as a weighted average:

g(p0) =

∑
y∈U(p0)

w(y) g(y)∑
y∈U(p0)

w(y)
(6.6)

6.3.3 Tensor propagation

With the framework for calculating derivatives assumed in this thesis, the
computation of the structure tensor due to Equation (6.3) only applies to
grid points. To calculate the directional information also at off-grid points a
mechanism to compute the structure tensor there is needed.
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Figure 6.1: The ellipsoid given by the scaled eigenvectors and the weighting of
the contributing grid points. The similarity in weighting of the three light-gray
grid points is due to Equation (6.5).

A straightforward solution would be to generalize Equation (6.3) involving
derivative filters for computing partial derivatives between grid points [62,
87].

An indirect approach can benefit from the already computed information
at the surrounding grid points employing an interpolation of the correspond-
ing eigensystems. Using quaternions for this task is the first choice for a
high quality interpolation. On the other hand, since there is a strong co-
herence both in orientation and magnitude of the structure tensor, it is not
necessary to sample the tensor field densely [33]. Therefore nearest-neighbor
interpolation provides a stable and much simpler solution.

6.4 Implementation

As the interpolation usually is to be performed for a larger amount of voxels,
the implementation can be divided into two steps. In preprocessing, the
eigenvalue analysis of the structure tensor is performed for a set of voxels
which surround the positions to be interpolated.

P1. computation of the structure tensor J : Identifying a convolution
in Equation (6.3), the elements Jpq of the structure tensor J can be
computed in two convolution passes. In the first pass the differential
operators ∂/∂xi are applied resulting in the partial derivatives ∂g/∂xi.
Then the products ∂g/∂xp · ∂g/∂xq are computed. In the second con-
volution pass the products are smoothed with a filter corresponding
to the weighting function h. We have used the optimized Sobel filter
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(Appendix A.4) for the differentiation step and the Gaussian filter (Ap-
pendix A.5) defined on a 7×7×7 neighborhood for the averaging step.
To reduce the computational overhead we exploited the separability of
both filters.

P2. eigen-analysis of J : Since the structure tensor J is represented by
a real symmetric matrix, the calculation schema of section 2.4 can be
applied.

After the preprocessing step the interpolation involves the following steps for
each requested position p0.

I1. inheriting the tensor information: In accordance with section 6.3.3
we have used nearest neighbor interpolation for the tensor transfer.

I2. interpolation: For all voxels yi from the neighborhood of p0 deter-
mined by the scaling factor δ, weights w(yi) are computed according
to Equations (6.4) and (6.5) and the weighted average according to
Equation (6.6) is taken as the result of the interpolation. The values of
δ and ε have been set empirically, after an error analysis from several
experiments to ε = 0.1 and δ = 2.2.

6.5 Evaluation

The purpose of this section is to provide a three-fold analysis of the perfor-
mance of the proposed method. Firstly, in section 6.5.1 we give a quantitative
error analysis and a comparison to the linear filtering in z direction. Secondly,
a visual evaluation of error volumes is presented in section 6.5.2. Thirdly,
the time and space complexity of our method is discussed in section 6.5.3.

For the following analysis and comparison we have used 11 data sets cov-
ering a broad spectrum in terms of modality, resolution, noise characteristics
and object detail. The first group consists of the small-resolution, noise-free
artificial data sets generated with the vxt library [84]. The second group
comprises data acquired from CT and MRI scanners. All data sets were
quantized to 256 levels.
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6.5.1 Quantitative evaluation

The approach to the comparison is to pretend there is a slice missing in the
volume, to estimate this slice and compare it to the original. For the compar-
ison, we reuse the framework for error analysis by Grevera and Udupa [17].
The authors introduced three figures-of-merit (FOM). In the following ex-
pression of FOMs, m denotes an interpolation method (linear in z and di-
rectional), S is the data set being interpolated, g(v) represents the original
density value in the voxel given by coordinates v, and gm(v) represents the
density estimation due to the method m at the voxel given by coordinates
v. Interpolation runs over all slices of S, where slice V k is defined by its
z-coordinate k.

1. Mean-squared difference:

FOM1
m(S) =

1

N

∑
k

∑
v∈V k

(g(v)− gm(v))2 (6.7)

where N is the total number of voxels involved in the comparison.

2. Number of sites of disagreement

FOM2
m(S) =

∑
k

∑
v∈V k

τ(|g(v)− gm(v)|) (6.8)

where

τ(x) =

{
1, if x > 0
0, otherwise

(6.9)

3. Largest difference

FOM3
m(S) = max

v∈V k

k

{|g(v)− gm(v)|} (6.10)

The measurements due to the Equations (6.7)–(6.10) for the linear interpola-
tion and the proposed directional interpolation are summarized in Table 6.2.

We make the following three observations regarding the performance of
our technique.

1. Our technique yields on average better estimates of the original density
values than the linear interpolation. This is especially remarkable for
the vxt data. As the Engine data set features many z-axis aligned
objects the directional interpolation does not outperform the linear
interpolation considerably.
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FOM1 FOM2 FOM3

Data set z-lin. dir. z-lin. dir. z-lin. dir.

vxt Wire Tetrahedron 13.1 4.5 1 380 1 156 30 16
vxt Wire Octahedron 41.0 0.1 9 672 1 428 24 3
vxt Wire Dodecahedron 14.3 1.8 1 300 963 37 17
vxt Facet Tetrahedron 14.9 4.7 7 877 6 846 24 23
vxt Facet Octahedron 77.7 0.1 22 895 5 644 35 5
vxt Facet Dodecahedron 35.9 2.5 19 612 17 891 31 16
Lobster 51.0 19.8 6 815 6 567 103 61
Engine Block 7.1 6.3 705 850 609 911 36 34
CT Head with Markers 105.3 25.1 133 312 131 901 124 114
MRI Head 84.7 41.3 570 784 556 033 116 90
Vertebra 1 7.0 4.8 189 584 114 351 32 26

Table 6.2: Error measurements due to the Equations (6.7)–(6.10) for the linear
interpolation in z direction and the newly proposed directional interpolation.

2. An exact reconstruction of the original density values happens at more
sites in the case of directional interpolation. Again, it is more obvious
in the case of the vxt data and gets almost negligible for the scanned
data sets. In our opinion, however, these measurements are of lower
importance than the mean-squared error.

3. The maximal error is generally smaller in the case of directional inter-
polation.

6.5.2 Visual evaluation

To evaluate the performance of both interpolation methods visually, we create
two error volumes consisting of voxels with densities set to | gm(v)− g(v) |,
where m denotes the interpolation method. The error volumes are then
displayed with the OpenSplat package [29]. The 3rd and the 4th rows of
Figure 6.2 show examples of rendering the error volume introduced by the
linear and the directional interpolation, respectively.

Since the directional interpolation yields very small differences in the
case of the vxt Facet Octahedron data set, almost every pixel is assigned to
the background color in the corresponding image. In case of the CT head
with markers the improvement by our interpolation is mostly apparent at
the positions featuring objects, e.g, the wires in the markers. As the error
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Input Volume Eigensystem of J Interpo Total
Data set Resolution Sobel Gauss {λi,ei} lation

vxt Wire Tetrahedron 50× 44× 42 1.2 3.4 0.03 1.6 6.2
vxt Wire Octahedron 59× 59× 59 2.3 6.2 0.05 3.3 11.9
vxt Wire Dodecahedron 58× 56× 48 1.8 4.9 0.05 3.2 10.0
vxt Facet Tetrahedron 50× 45× 42 1.1 3.0 0.03 2.7 6.8
vxt Facet Octahedron 59× 59× 59 2.4 6.7 0.05 5.2 14.3
vxt Facet Dodecahedron 59× 56× 49 2.0 5.3 0.06 6.8 14.2
Lobster 120×120× 34 5.7 15.6 0.16 5.8 27.3
Engine Block 256×256×110 88.8 383.2 2.43 140.0 614.4
CT Head with Markers 256×256× 44 33.4 110.6 0.78 39.4 184.2
MRI Head 256×256×109 74.7 249.1 2.07 127.3 453.2
Vertebra 1 128×128× 74 12.7 50.4 0.39 20.4 83.9

Table 6.3: Time in seconds for reconstruction of all volume slices with the
directional interpolation as measured on a 400 MHz Pentium II.

measurements for the Engine data set do not differ significantly a visual
evaluation is almost impossible in this case.

6.5.3 Time and space complexity

Referring to Table 6.3, the performance of our method is clearly dominated
by the smoothing with the Gaussian filter (section 6.4, P1). The total timing
therefore strongly depends on the size of the support of the weighting function
h. Our implementation processes in average 11000 voxels per second on a
400 MHz Pentium II. This corresponds to 5.12 seconds for reconstruction of
one 256 × 256 slice on average.

To store the eigenvectors of the structure tensor, our implementation
requires a space of O(3n) where n is the size of the data to be interpolated.

6.6 Concluding remarks

We presented a new method for interpolating gray-level volume data taking
into account topological properties of the structures. Unlike the methods
which are based on an a priori information from segmentation, our method
processes the density data directly requiring no user interaction.
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In order to preserve the boundaries of objects, lines, and ridges as far as
possible, we proposed to perform the interpolation along the directions of
these structures. The information on the direction of interpolation is inher-
ited from the textural description of the objects through structure tensors.

For 11 data sets, we compared the performance of our method to the most
frequently used [17] linear interpolation in the direction of the z axis. Our
method outperforms linear interpolation in the mean error, maximal error
and in the number of sites with exact reconstruction.

There are two main issues not addressed in this work. Firstly, the size
of the oriented filter is given by two constants which have been set empiri-
cally after many experiments. In our opinion this is not appropriate if the
method is required to perform robustly for all kind of data. Instead of using
fixed constants we think of using parameters which reflect the magnitude of
the density change separately in each neighborhood. A natural choice for
the scaling factors seem to be the eigenvalues of the structure tensor. In
preliminary tests, however, the performance of such a scaling was inferior as
compared to the constants we introduced.

Secondly, we find it necessary to compare our method to other techniques,
especially to the state-of-the-art interpolation introduced by Grevera and
Udupa [16]. We would like to conclude with remarks on possible results
of this comparison. Clearly, our method requires far less space and time.
To interpolate one slice of n voxels, the algorithm by Grevera and Udupa
requires space of O(Qn) where Q denotes the quantization level and time in
the order of tens of minutes (as measured on a Sparc 2). In contrast, our
method interpolates one slice in a couple of seconds requiring O(3n) space.
Finally, since we have used the same error measurements and a statistical
comparison to the same interpolation method as Grevera and Udupda [16],
we were able to indirectly compare the error performance of both methods.
Even though this preliminary comparison indicates that our method will
perform better, further work is required in this respect. We are convinced
that such a comparison has to be done directly and for the same data sets.



Chapter 6. Orientation-driven shape-based interpolation 94

vxt Facet Octahedron CT Head with Markers Engine Block

Figure 6.2: Volume rendering of the original data sets (1st row), color coding
of the rank of the structure tensor (2nd row), error volume of linear interpolation
(3rd row), and error volume of directional interpolation (4th row).



Chapter 7

Summary and conclusion

In the context of volume visualization, discussions on derivatives usually lead
towards reconstruction and use of the gradient vector and its magnitude.
Discussions on higher-order derivatives are rather seldom.

One contribution of this thesis is the state-of-the-art chapter 3 which in
addition discussed the structure tensor and a variety of combinations of 2nd-
order information included in the Hessian matrix. Our contribution to the
field is reflected in the rest of the thesis:

In Chapter 4 we introduced a novel definition of transfer functions which
are suggested to reflect shape properties of isosurfaces. Since such transfer
functions are independent of the actual data values they are supposed to be
acquisition independent.

In chapter 5 we presented an approach to identify volume-data features
based on the eigenvalues of the Hessian matrix. We showed that such a
kind of identification yields better results as compared to those based on the
gradient-magnitude and is well suited for progressive transmission and data
representation.

In chapter 6 we introduced a new shape-based interpolation method. For
the interpolation we used kernels which are aligned to the eigensystem of the
structure tensor.

As the chapters 4– 6 deal with distinct-enough topics, we concluded them
separately. Nevertheless, more general conclusions which are based on the
acquired experience during the development of concepts and implementation,
can be pointed out.

• The motivation for derivative-based analysis of 2D and 3D images arises
from the observation that the discontinuities in depth, surface orienta-
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tion, reflectance, or illumination (the human visual system is sensitive
to) correspond to changes in image intensity.

• The information in 3D imaging carried by 9 distinct numbers, i.e., 3
gradient components plus 6 elements of the Hessian matrix, is a source
for a spectrum of powerful combinations.

• The barrier which makes difficulties in extending the concepts from
2D imaging to higher dimensions resides in the additional freedom in
choosing the direction to be examined.

• Eigensystems of symmetrically composed matrices of derivatives give
a particular answer to the above problem. This is due to the corre-
spondence between eigensystems of the real symmetric matrices and
the minimum and maximum values of the associated quadratic forms.

• Computation of eigensystems of real symmetric matrices is relatively
cheap as compared to general matrices. This fact has to be considered
during implementation.

In this thesis we only researched derivatives up to the second order. Being
motivated by results coming from 2D image processing we believe that there
is a strong potential in investigating also derivatives of order larger than two.



Appendix A

Separable derivative kernels

This appendix lists the derivative kernels used in the thesis. Starting from
the most frequently used central differences, we recall the separable Prewitt
and Sobel kernels for 1st-order differentiation, and the Gaussian kernels and
its derivatives for 1st- and 2nd-order differentiation.

To be more illustrative we also give the corresponding 2D counterparts
as they appear in the image processing literature.

The following notation is used: X→
a denotes a 1D kernel oriented in the

direction of the xa-axis. Xab denotes a 2D kernel X which performs an
ath-order differentiation in direction of x1 and an bth-order differentiation
in direction of x2. Similarly, Xabc denotes a 3D kernel X which performs
an ath-order differentiation in direction of x1, a bth-order differentiation in
direction of x2, and a cth-order differentiation in direction of x3.

A.1 Central differences

Central differences arise naturally from the definition of continuous deriva-
tives. Since no smoothing in the cross-direction(s) is performed, their use is
only reasonable when the spacing between the signal-samples is well below
the Nyquist limit [34, p. 411]. In spite of that they are, for performance
reasons, a very frequent choice.

C→
1 =

1

2

[
1 0 −1

]
and C→

2 =
1

2


 1

0
−1




and C→
3 is an analogous kernel performing the differentiation in the direction

of the x3 axis.
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A 2D (nD) separable derivative kernel with the same support size in
every coordinate direction can be composed of a 1D derivative kernel and 1D
smoothing kernel(s) in the orthogonal direction(s) [34, p. 146].

A.2 Prewitt kernels

Prewitt kernels involve central differences in directions of differentiation and
box filters, " = 1

3
[1 1 1], for smoothing.

P10 =
1

6


 1 0 −1

1 0 −1
1 0 −1


 =

1

2

[
1 0 −1

]⊗ 1

3


 1

1
1


 = C→

1 ⊗ "→2

P01 =
1

6


 1 1 1

0 0 0
−1 −1 −1


 =

1

3

[
1 1 1

]⊗ 1

2


 1

0
−1


 = "→1 ⊗ C→

2

The 3D kernels are computed as follows:

P100 = C→
1 ⊗ "→2 ⊗ "→3

P010 = "→1 ⊗ C→
2 ⊗ "→3

P001 = "→1 ⊗ "→2 ⊗ C→
3

A.3 Sobel kernels

Sobel kernels involve central differences in directions of differentiation and
triangle filters, ∧ = 1

4
[1 2 1], for smoothing.

S10 =
1

8


 1 0 −1

2 0 −2
1 0 −1


 =

1

2

[
1 0 −1

]⊗ 1

4


 1

2
1


 = C→

1 ⊗ ∧→2

S01 =
1

8


 1 2 1

0 0 0
−1 −2 −1


 =

1

4

[
1 2 1

]⊗ 1

2


 1

0
−1


 = ∧→1 ⊗ C→

2

The 3D kernels are computed as follows:

S100 = C→
1 ⊗ ∧→2 ⊗ ∧→3

S010 = ∧→1 ⊗ C→
2 ⊗ ∧→3

S001 = ∧→1 ⊗ ∧→2 ⊗ C→
3
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A.4 Optimized Sobel kernels

Optimized Sobel kernels involve central differences in directions of differen-
tiation and a variant of the triangle filters, ∧̇ = 1

16
[3 10 3], for smoothing.

The filter is optimized for gradient direction [33].

Ṡ10 =
1

32


 3 0 −3

10 0 −10
3 0 −3


 =

1

2

[
1 0 −1

]⊗ 1

16


 3

10
3


 = C→

1 ⊗ ∧̇→2

Ṡ01 =
1

32


 3 10 3

0 0 0
−3 −10 −3


 =

1

16

[
3 10 3

]⊗ 1

2


 1

0
−1


 = ∧̇→1 ⊗ C→

2

The 3D kernels are computed as follows:

Ṡ100 = C→
1 ⊗ ∧̇→2 ⊗ ∧̇→3

Ṡ010 = ∧̇→1 ⊗ C→
2 ⊗ ∧̇→3

Ṡ001 = ∧̇→1 ⊗ ∧̇→2 ⊗ C→
3

A.5 Gaussian kernels

Gaussian kernels involve the Gaussian function and its derivatives for
smoothing and differentiation, respectively. For a general dimension n the
Gaussian function is defined as follows:

nD : G(x;σ) =
1

(
√

2πσ2)n
exp

(
−‖x‖

2

2σ2

)
(A.1)

where σ is the standard deviation. The plots of the 1D and 2D Gaussian and
its derivatives are shown in Figs. A.1– A.3.

Since both the Gaussian function and its derivatives are separable it is
only necessary to sample the 1D versions

G(x;σ) =
1

σ
√

2π
exp

(
− x2

2σ2

)
(A.2)

G′(x;σ) =
1

σ
√

2π
exp

(
− x2

2σ2

) −x
σ2

(A.3)

G′′(x;σ) =
1

σ
√

2π
exp

(
− x2

2σ2

)
x2 − σ2

σ4
(A.4)
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and combine them into the first-order derivative kernels:

G100 = G→
1
′ ⊗G→

2 ⊗G→
3

G010 = G→
1 ⊗G→

2
′ ⊗G→

3

G001 = G→
1 ⊗G→

2 ⊗G→
3
′

and into the second-order derivative kernels:

G200 = G→
1
′′ ⊗G→

2 ⊗G→
3 G110 = G→

1
′ ⊗G→

2
′ ⊗G→

3 G101 = G→
1
′ ⊗G→

2 ⊗G→
3
′

G020 = G→
1 ⊗G→

2
′′ ⊗G→

3 G011 = G→
1 ⊗G→

2
′ ⊗G→

3
′

G002 = G→
1 ⊗G→

2 ⊗G→
3
′′

An important question to be answered is the relationship between the
width of the kernel and the standard deviation σ. To avoid an early trunca-
tion of the Gaussian function, the width of the kernel has to be proportional
to the standard deviation σ (see also Fig. A.1). Although there is quite a
large variance in the literature concerning this trade-off between performance
and accuracy, many authors [81, 82, 86] agree that the radius of the kernel
should be at least 4σ.

In the following we give the sampled 1D kernels for computation of deriva-
tives in 5× 5× 5 and 7× 7× 7 neighborhoods.

directly sampled: width = 5; σ = 0.5

G = [ 0.07 27.64 204.26 27.64 0.07 ] / 256
G′ = [ 0.55 110.57 0. -110.57 -0.55 ] / 256
G′′ = [ 4.11 331.72 -817.03 331.72 4.11 ] / 256

optimized for gradient direction [34, p. 147]: width = 5; σ ≈ 0.85

G = [ 5.96 61.81 120.46 61.81 5.96 ] / 256
G′ = [ 21.38 85.24 0. -85.24 -21.38 ] / 256
G′′ = [ 47.35 32.70 -167.58 32.70 47.35 ] / 256

directly sampled: width = 7; σ = 0.75

G = [ 0.05 3.89 55.98 136.17 55.98 3.89 0.05 ] / 256
G′ = [ 0.24 13.83 99.52 0. -99.52 -13.83 -0.24 ] / 256
G′′ = [ 1.22 42.26 77.41 -242.08 77.41 42.26 1.22 ] / 256
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G(x) G′(x) G′′(x)
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Figure A.1: 1D Gaussian function and its derivatives. σ = 1.
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Figure A.2: 2D Gaussian function with σ = 1.
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Figure A.3: The 1st- and 2nd-order derivatives of the 2D Gaussian function
with σ = 1.



Bibliography

[1] Numerical Recipes Home Page. http://www.nr.com/. Referenced on
page(s) 18

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum.
In Proceedings of IEEE Visualization, pages 167–175, 1997. Referenced
on page(s) 41, 47, 72

[3] I. N. Bronstein, K. A. Semendjajew, G. Musiol, and H. Mühlig. Taschen-
buch der Mathematik, chapter 1.6.2: Gleichungen 1. bis 4. Grades, pages
40–41. Verlag Harri Deutsch, 4 edition, 1993. Referenced on page(s) 19

[4] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of ACM SIGGRAPH, pages 263–272, 1993.
Referenced on page(s) 43

[5] M. Chen, A. E. Kaufman, and R. Yagel, editors. Volume Graphics.
Springer Verlag, 2000. Referenced on page(s) 13

[6] B. Csébfalvi. Interactive Volume-Rendering Techniques for Medical Data
Visualization. PhD thesis, Institute of Computer Graphics and Al-
gorithms, Vienna University of Technology, June 2001. Referenced on
page(s) 63
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tions for direct volume rendering. In Proceedings of Spring Conference on
Computer Graphics (SCCG), pages 58–65, 2000. Referenced on page(s)
12, 43, 44, 45, 46, 59, 113

[26] J. Hlad̊uvka, A. König, and E. Gröller. Exploiting eigenvalues of the
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[43] A. König and E. Gröller. Mastering transfer function specification by us-
ing VolumePro technology. In Proceedings of Spring Conference on Com-
puter Graphics (SCCG), pages 279–286, 2001. Referenced on page(s) 47

[44] P. Lacroute and M. Levoy. Fast volume rendering using a shear-warp
factorization of the viewing transformation. In Proceedings of ACM
SIGGRAPH, pages 451–458, 1994. Referenced on page(s) 67, 75

[45] T. Lehmann, C. Gonner, and K. Spitzer. Survey: interpolation methods
in medical image processing. IEEE Transactions on Medical Imaging,
18(11):1049–1075, 1999. Referenced on page(s) 83

[46] M. Levoy. Display of surfaces from volume data. IEEE Computer Graph-
ics and Applications, 8(3):29–37, 1988. Referenced on page(s) 31, 43, 47

[47] B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction to Volume Ren-
dering. Prentice Hall, 1998. Referenced on page(s) 13, 48

[48] T. Lindeberg. Edge detection and ridge detection with automatic scale
selection. In Proceedings of IEEE Computer Vision and Pattern Recog-
nition, pages 465–472, 1996. Referenced on page(s) 34, 69, 84

[49] T. Lindeberg. Scale-space: A framework for handling image structures
at multiple scales. In Proceedings of CERN School of Computing, pages
8–21, 1996. Referenced on page(s) 34
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[89] T. Theußl, T. Möller, J. Hlad̊uvka, and E. Gröller. Reconstruction issues
in volume visualization. To appear in Proceedings of Dagstuhl seminar
on Scientific Visualization 2000. Referenced on page(s) 13, 113

[90] P. Thevenaz, T. Blu, and M. Unser. Interpolation revisited. IEEE
Transactions on Medical Imaging, 19(7):739–758, 2000. Referenced on
page(s) 83

[91] P. Todd and R. McLeod. Numerical estimation of the curvature of sur-
faces. Computer-Aided Design, 18(1):33–37, 1986. Referenced on page(s)
52

[92] E. Trucco and R. B. Fisher. Experiments in curvature-based segmenta-
tion of range data. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(2):177–182, 1995. Referenced on page(s) 45, 48

[93] G. Turk and J. F. O’Brien. Shape transformation using variational
implicit functions. In Proceedings of ACM SIGGRAPH, pages 335–342,
1999. Referenced on page(s) 83



Bibliography 112

[94] E. W. Weisstein. The CRC Concise Encyclopedia of Mathematics. CRC
Press, 1998. Referenced on page(s) 25

[95] C. Westin, A. Bhalerao, H. Knutsson, and R. Kikinis. Using local 3D
structure for segmentation of bone from computer tomography images.
In Proceedings of IEEE Computer Vision and Pattern Recognition, 1997.
Referenced on page(s) 34

[96] L. Westover. Footprint evaluation for volume rendering. In Proceedings
of ACM SIGGRAPH, pages 367–376, 1990. Referenced on page(s) 63

[97] M. Worring. Shape Analysis of Digital Curves. PhD thesis, Department
of Computer Science, Faculty of Science, University of Amsterdam, 1993.
Referenced on page(s) 54, 59

[98] M. Worring and A. W. M. Smeulders. Digital curvature estima-
tion. CVGIP: Image Understanding, 58(3):366–382, 1993. Referenced
on page(s) 54



Bibliography 113

Related publications

This thesis is based on the following publications:

Chapter 3
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tions for direct volume rendering. In Proceedings of Spring Conference
on Computer Graphics (SCCG), pages 58–65, 2000.

Chapter 5

[26] J. Hlad̊uvka, A. König, and E. Gröller. Exploiting eigenvalues of
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Jǐŕı Hlad̊uvka
Born on April 19th, 1972, in Bratislava, Czechoslovakia.

e-mail: jiri@cg.tuwien.ac.at
phone: +43 (1) 58801 186 44
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