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Abstract

We present a new conservative image-based occlusion culling method to increase the speed of hardware accelerated rendering of very
complex general scenes which may consist of millions of polygons without time-expensive preprocessing. The method is based on a low-
resolution grid upon a conventional z-buffer or an occlusion-buffer. This grid is updated in a lazy manner which reduces the number of
expensive occlusion queries at pixel-level significantly compared to a busy update. It allows fast decisions if an object is occluded or
potentially visible. The grid is used together with a bounding volume hierarchy that is traversed in a front to back order and which allows to
cull large parts of the scene at once. We show that the method works efficiently on today´s available hardware and we compare lazy and
busy updates.
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Abstract

We present a new conservative image-based occlusion culling
method to increase the speed of hardware accelerated rendering of
very complex general scenes which may consist of millions of
polygons without time-expensive preprocessing. The method is
based on a low-resolution grid upon a conventional z-buffer or an
occlusion-buffer. This grid is updated in a lazy manner which
reduces the number of expensive occlusion queries at pixel-level
significantly compared to a busy update. It allows fast decisions if
an object is occluded or potentially visible. The grid is used
together with a bounding volume hierarchy that is traversed in a
front to back order and which allows to cull large parts of the
scene at once. We show that the method works efficiently on
today´s available hardware and we compare lazy and busy
updates.

1 Introduction

Complex scenes may consist of millions of polygons, much
more than available graphics hardware can render at interactive
frame-rates. Hierarchical view frustum culling and back face
culling [20,22] reduce the number of drawn primitives to some
extent but in many scenes this number will still be too high.
Usually only a small part of such a scene is visible. Therefore
occlusion culling methods try to determine those parts of the
scene that are invisible due to occlusion by other parts so that
these occluded objects do not have to be considered for drawing.

In this paper we present a new conservative image-based
occlusion culling method for general scenes. It does its occlusion
calculations on the fly during the display phase. It does not require
time-expensive visibility-preprocessing which makes it suited for
applications that need to diplay the scene instantly after the user
has modified it, eg. for interactive changes in animations or virtual
environments.

The image is subdivided into a low-resolution grid of cells
with an occlusion state for each cell that shows if the complete
area of the cell is occluded by already drawn objects or if the area
is completely or partially free (unoccluded). This allows to
determine if an object is occluded by querying the occlusion states
of the few cells in the object´s image area instead of testing the
content of the underlying occlusion-buffer or z-buffer for every
pixel in this area.

The major feature that distinguishes our method from related
methods like the hierarchical z-buffer [13] is that whe do not use a
busy update, which means that every time after an object has been
drawn the occlusion state of all cells in its image area has to be
updated. Instead we use a lazy update, which means that the state
of a cell is only updated if it is being queried and if it is currently
marked as outdated because another object has been drawn into
that area before. This has the advantage that significantly fewer
updates and therefore fewer expensive occlusion queries at pixel-
level are necessary. The lower number of updates has the
following reasons:
• An object is potentially visible if the first unoccluded cell is

found in its image area. The rest of the cells which may be
outdated do not have to be queried. Up-to-date cells are queried
before outdated cells to minimize the chance of needing an
update even more.

• Often several objects draw into a cell´s area before the cell is
queried and updated.

We have chosen a flat grid instead of a pyramid [13,15,37]
because due to the lazy update it would be very likely that the
higher level entries of such a pyramid are outdated because some
of their lower level sub-entries are outdated. The update of such a
higher level entry would require to update its outdated lower level
sub-entries. Therefore most of the time the lower level entries
would have to be queried and updated anyhow, similar as it is
done with the simpler grid.

We use this image-based occlusion test on a bounding volume
hierarchy that is traversed in a front to back order. This way a
large part of the scene can be culled at once if its bounding
volume is rated as occluded.

In section 2 we review existing techniques for occlusion
culling with special emphasis on image-based methods. Section 3
describes the lazy occlusion grid with its occlusion-buffer and z-
buffer variant. In section 4 we explain the usage of the bounding
volume hierarchy and the front to back traversal of the scene.
Section 5 describes how hardware acceleration can be done and
section 6 presents ideas for future extensions. In section 7 we
describe our implementation and present our results which
includes a comparison of lazy and busy updates. Section 8
presents our conclusions.

2 Previous Work

The important role of occlusion culling for complex scenes has
resulted in several different approaches. Exact global visibility
methods try to solve the problem by representing all visibility
events in a scene for all possible viewpoints [9,10,25]. The
expense of exact visibility calculation can be avoided by
overestimating the set of visible objects. In a static environment
such potentially visible sets (PVS) can be precomputed by
subdividing the scene into cells and calculating the PVS of each
cell [2,6,11,19,26,27,30,32,33,35,36]. This precomputation
usually requires between several minutes and several hours
depending on the scene complexity. The advantage of
precomputed PVSs is that the display-phase is usually very fast
because the objects in the PVS of the viewpoint´s cell can be
rendered without any further occlusion culling-overhead.
Therefore these methods are often used eg. in games [1] where the
frame-rate is the major criterion and the time-expensive
precomputation does not hurt so much.

Methods that, like our new method, do their occlusion
calculations on the fly during the display-phase [21,23,24,34]
have the advantage that they do not need a time-expensive
precomputation but of course the occlusion calculation during the
display-phase produces some overhead.

The hierarchical z-buffer [13,31] is an image-based on-the-fly
method that uses a pyramid of z-values to cull objects in large
already completely occluded parts of the image with only a few z-
comparisons. The scene is subdivided into an octree to realize a
hierarchy of bounding volumes which are tested against the
hierarchical z-buffer. If a bounding volume is completely
occluded then its sub-objects and sub-bounding volumes are also
occluded and can be culled. This method can be extended to error-
bounded antialiasing [14].
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Hierarchical coverage masks [15] also use a pyramid, but this
one only contains the occlusion state instead of a z-value. Each
entry in the pyramid has 8x8 instead of 2x2 subentries, therefore
the pyramid has fewer levels. The major feature of this method is
that it uses fast table-lookups and bit-operations instead of
traditional scanline-rasterization. Geometry is traversed in exact
front to back order. Traditional graphics-hardware can be used for
texturing and shading.

Hierarchical occlusion maps [37] work with a pyramid of
averaged occlusion-values which is generated with bilinear
filtering using graphics hardware. This occlusion-pyramid is build
initially for a few heuristically chosen occluder-polygons. Several
other methods also use a small set of occluders [5,7,8,17]. This is
based on the assumption that these polygons occlude large parts of
the scene. Hierarchical occlusion maps and several other methods
[4,12,18] support non-conservative culling which speeds up the
computation but which does not guarantee that all visible objects
are drawn.

A simple method to test the occlusion of a bounding volume
with available hardware accelerated occlusion queries [16,28] is to
rasterize the whole bounding volume without modifying any
buffer and querying whether any fragment passed the z-test. This
can also be done for several parts of the image in parallel [3] to
increase performance.

3 Lazy Occlusion Grid

The grid allows to determine if a bounding volume is occluded by
already drawn objects or if it is potentially visible. Each cell of the
grid stores a state that represents if the cell´s image area is
occluded or not (see section 3.1 and 3.2). The grid is based upon a
conventional z-buffer or an occlusion-buffer where a single bit per
pixel shows if that pixel is free or occluded. On systems where the
graphics hardware supports occlusion queries at pixel-level or fast
reading access to the z-buffer (see section 5) the hardware z-
buffer will be used for that. On systems without these graphics
hardware capabilities a conventional software z-buffer or
occlusion-buffer must be used in parallel to the hardware z-buffer
to do the pixel-level occlusion queries.

Occlusion culling of the scene´s objects with the lazy
occlusion grid works as follows:
• Test if the bounding volume of an object is occluded or

potentially visible (see section 3.1 and 3.2).
• If this test decides that the bounding volume is potentially

visible then the object is drawn conventionally with the z-buffer
hardware, otherwise it is culled. If a software occlusion-buffer
or z-buffer is used for the pixel-level occlusion queries then the
object is also drawn (per software) into this software buffer.

• After an object has been drawn this way all cells in its bounding
volume´s image area are being marked as outdated so that the
next occlusion test that queries the occlusion state of one of
these cells knows that it must update the occlusion state of this
cell with a pixel-level occlusion query (see section 3.1 and 3.2).

In a software implementation the occlusion-buffer has the
advantage that it is faster than a software z-buffer because it only
has to set and test a boolean value per pixel instead of calculating
and comparing the pixels´ z-values.

The z-buffer variant of the grid has the advantage that the
objects in the scene can be processed in an arbitrary
approximative front to back order. The occlusion-buffer variant is
used with a special approximative front to back sorting which
guarantees that the occlusion test of a bounding volume is done
before objects are drawn that are not completely in front of the
bounding volume (see section 4). It does not need an exact front
to back sorting of the primitives because exact visibility is solved

by drawing the primitives with the z-buffer hardware. On systems
where graphics hardware supports the pixel-level query, which is
required for the occlusion-buffer variant, this variant can be
implemented solely with the hardware z-buffer and does not need
a software occlusion-buffer, because the z-comparison can be
used instead of testing the single bit per pixel in the occlusion-
buffer (see section 5).

The optimal number of pixels per cell that gives the best
overall-performance is system-dependent and can easily be
determined by testing typical scenes of the desired application
with different numbers of pixels per cell.

3.1 Occlusion-Buffer Variant

In the occlusion-buffer variant of the grid the state which is stored
in each cell of the grid can be
• completely free (completely unoccluded)
• partially free (some of its pixels are free and some are occluded)
• full (completely occluded, represented by a flag that overrides

the other states to avoid that a full cell is being set to outdated)
• outdated (something has been drawn into the cell´s area and it

has not been tested yet if the cell is occluded now)

Initially (before any object is drawn or any bounding volume is
tested) the occlusion-buffer is cleared and all cells are in
completely free-state. The occlusion test which is outlined in fig.
2 is applied for occlusion culling of the scene´s objects as
described above. In this occlusion test we distinguish the cells that
intersect with the tested bounding volume (see fig. 1):
• A cell which is completely covered by the bounding volume is

called an internal cell of the bounding volume.
• A cell which is only partially intersected by the bounding

volume is called a border cell of the bounding volume.

Fig. 1. Border cells (light grey) and internal cells (dark grey) of
the tested bounding volume

This distinction is necessary to be able to recognize that a
bounding volume is occluded behind a horizon (silhouette of
another object). The problem herein is that in general a horizon
does not completely occlude the cells it intersects, therefore these
cells are partially free. If the tested bounding volume has such
cells as border cells and if they would be handled like internal
cells then the bounding volume would be rated as potentially
visible because these cells are partially free. To avoid this the
occlusion test has to make a pixel-level occlusion query in the
intersection area of the bounding volume and its partially free
border cell.

In the occlusion test we first try to determine potential
visibility by using solely the cells´ states (in the
…WithoutPixelquery functions). Only if this does not result in
potential visibility we have to use the more expensive pixel-level
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occlusion queries (in the …WithPixelquery functions). The lazy
update of outdated cells is done in the …WithPixelquery
functions.

3.2 Z-Buffer Variant

The z-buffer variant (fig. 3) is similar to the occlusion-buffer
variant. The differences are that in the z-buffer variant each cell
stores the farest z-value of its pixels (zfar) and a state-flag if the
cell is outdated. Initially (before any object is drawn or any

bounding volume is tested) all cells’ zfar are set to zmax (which
corresponds to completely free) and their outdated-flags are
cleared. The z-buffer variant compares if the nearest z-value (znear)
of the bounding volume is greater than the cell´s zfar to determine
if the bounding volume is occluded or potentially visible in the
cell´s area. A outdated cell´s zfar is being updated with a pixel-
level query that returns the farest z-value of all pixels in the cell´s
area. This lazy update is done in the
internalCellIsFreeWithPixelquery function.

Bool isOccluded(bvol)
     if internalCellIsFreeWithoutPixelquery(bvol,internalPixelqueryList)
          return false
     if borderCellIsFreeWithoutPixelquery(bvol,borderPixelqueryList)
          return false
     if internalCellIsFreeWithPixelquery(internalPixelqueryList)
          return false
     if borderCellIsFreeWithPixelquery(bvol,borderPixelqueryList)
          return false
     return true

Bool internalCellIsFreeWithoutPixelquery(bvol,internalPixelqueryList)
     internalPixelqueryList=empty
     for all internal cells of bvol
          if not cell.full
               if cell.state=outdated
                    add cell to internalPixelqueryList
               else    //completelyfree or partiallyfree
                    return true
     return false

Bool borderCellIsFreeWithoutPixelquery(bvol,borderPixelqueryList)
     borderPixelqueryList=empty
     for all border cells of bvol
          if not cell.full
               if cell.state=completelyfree
                    return true
               else    //partiallyfree or outdated
                    add cell to borderPixelqueryList
     return false

Bool internalCellIsFreeWithPixelquery(internalPixelqueryList)
     for all cells in internalPixelqueryList
          if a pixel in the cell´s area is marked
                         as not-occluded in the occlusion-buffer
               cell.state=partiallyfree
               return true
          else
               cell.full=true
     return false

Bool borderCellIsFreeWithPixelquery(bvol,borderPixelqueryList)
     for all cells in borderPixelqueryList
          if a pixel in the area of (cell ∩ bvol) is marked
                         as not-occluded in the occlusion-buffer
               cell.state=partiallyfree
               return true
     return false

Fig. 2. Pseudocode of test if a bounding volume is potentially
visible or occluded by already drawn objects inclusive lazy update
of the cells´ states (occlusion-buffer variant of the grid)

Bool isOccluded(bvol)
     if internalCellIsFreeWithoutPixelquery(bvol,internalPixelqueryList)
          return false
     if borderCellIsFreeWithoutPixelquery(bvol,borderPixelqueryList)
          return false
     if internalCellIsFreeWithPixelquery(bvol,internalPixelqueryList)
          return false
     if borderCellIsFreeWithPixelquery(bvol,borderPixelqueryList)
          return false
     return true

Bool internalCellIsFreeWithoutPixelquery(bvol,internalPixelqueryList)
     internalPixelqueryList=empty
     for all internal cells of bvol
          if bvol.znear≤cell.zfar

               if cell.outdated
                    add cell to internalPixelqueryList
               else
                    return true
     return false

Bool borderCellIsFreeWithoutPixelquery(bvol,borderPixelqueryList)
     borderPixelqueryList=empty
     for all border cells of bvol
          if cell.zfar=zmax

               return true
          else if bvol.znear≤cell.zfar

               add cell to borderPixelqueryList
     return false

Bool internalCellIsFreeWithPixelquery(bvol,internalPixelqueryList)
     for all cells in internalPixelqueryList
          cell.outdated=false
          cell.zfar=max z of all pixels in cell´s area
          if bvol.znear≤cell.zfar

               return true
     return false

Bool borderCellIsFreeWithPixelquery(bvol,borderPixelqueryList)
     for all cells in borderPixelqueryList
          if bvol.znear≤max z of all pixels in the area of (cell ∩ bvol)
               return true
     return false

Fig. 3. Pseudocode of test if a bounding volume is potentially
visible or occluded by already drawn objects inclusive lazy update
of the cells´ states (z-buffer variant of the grid)



4

4 Front to Back Traversal of a Bounding
Volume Hierarchy

In the previous section we have described how to do occlusion
culling for single objects (bounding volumes). What we need is to
ensure that objects in the front are usually drawn first so that they
can occlude objects behind them. This is accomplished by sorting
the objects in an approximative front to back order. In a scene that
contains a large number of objects it would be inefficient to do
this sorting and the occlusion test for each object separately. To
avoid this we use a bounding volume hierarchy for the scene that
is traversed recursively. If a bounding volume is rated as occluded
it can be culled without having to do the occlusion test for its sub-
bounding volumes. Therefore a large occluded part of the scene
can be culled at once with a single occlusion test. Any kind of
bounding volume can be used, eg. octree, kd-tree, polyhedra or
sphere. In our implementation which is described in section 7 we
have used axis-aligned bounding boxes.

4.1 Z-Buffer Variant

The z-buffer variant of the lazy occlusion grid can be used with an
arbitrary front to back sorting because this variant of the grid
allows to draw objects before the occlusion test of bounding
volumes which are (partially) in front of them is done. A simple
front to back traversal for the z-buffer variant is outlined in fig. 4.
It utilizes a list of bounding volumes which are sorted by their
respective nearest z-value (znear). Note that a heap could be used
as well instead of the list. Note also that we distinguish between
sub-objects (no bounding volumes) and sub-bounding volumes.

initialize lazy occlusion grid
initialize list with root bounding volume
while list is not empty
     bvol=frontmost bounding volume in list, remove it from list
     if bvol intersects view frustum
          if isOccluded(bvol)=false
               sort bvol´s sub-bounding volumes (if any) into list
               if bvol has objects as direct children
                    draw objects that are direct children of bvol
                    mark cells in bvol´s image area as outdated

Fig. 4. Pseudocode of a simple front to back traversal that
incorporates occlusion culling with the z-buffer variant of the grid
and hierarchical view frustum culling

4.2 Occlusion-Buffer Variant

The occlusion-buffer variant of the lazy occlusion grid is used
with a special approximative front to back sorting which does the
occlusion test of a bounding volume before objects are drawn that
are not completely in front of the bounding volume. Otherwise
these objects could falsely occlude the bounding volume or its
sub-bounding volumes. The occlusion-buffer variant does not
need an exact front to back sorting of the primitives because exact
visibility is solved by drawing the primitives with the z-buffer
hardware. This approximative front to back sorting is illustrated in
fig. 5. The front to back traversal that realizes this sorting is
outlined in fig. 6. It draws the frontmost object if it is completely
in front of all bounding volumes that are not occlusion-tested yet
and it tests the frontmost bounding volume for occlusion if no
object is completely in front of it. To do this the traversal uses two
lists (note that two heaps could be used instead of these lists, in
our implementation we have used lists because usually these lists
contain only a few elements):

• Bounding volumes that are not tested yet are sorted by their
respective nearest z-value (znear). Initially this test-list contains
the root bounding volume.

• Bounding volumes that are already rated as potentially visible
and that have objects as direct children are sorted by their
respective farest z-value (zfar). Initially this draw-list is empty.
In fig. 5 the objects themselves are shown instead of these
bounding volumes for sake of simplicity of the illustration.

Fig. 5. Front to back sorting for occlusion buffer variant of the
grid: znear-sorted bounding volumes (white) are occlusion-tested
before zfar-sorted objects (black) that are not completely in front of
them are drawn. znear/zfar is marked at each bounding
volume/object, sub-objects and sub-bounding volumes of the
bounding volumes are not shown.

initialize lazy occlusion grid
initialize test-list with root bounding volume if it
          intersects view frustum, else test-list=empty
draw-list=empty
while test-list or draw-list is not empty
     bvol=bounding volume with smallest znear from test-list or
              bounding volume with smallest zfar from draw-list
              (depends on if znear or zfar is smaller), remove it from its list
     if bvol is from test-list
          if isOccluded(bvol)=false
               for each of bvol´s sub-bounding volumes
                    if sub-bounding volume intersects view frustum
                         sort sub-bounding volume into test-list
               if bvol has objects as direct children
                    sort bvol into draw-list
     else    //bvol is from draw-list
          draw objects that are direct children of bvol
          mark cells in bvol´s image area as outdated

Fig. 6. Pseudocode of front to back traversal that incorporates
occlusion culling with the occlusion-buffer variant of the grid and
hierarchical view frustum culling

5 Hardware Acceleration

The most suited hardware-support is given on systems where
pixel-level occlusion queries are implemented in hardware. The
occlusion-buffer variant of the grid requires a query that tests if all
pixels in the requested area are occluded (see section 3.1). For a
hardware implementation of this query [16,28] it means
comparing if the pixels´ z-values in the hardware z-buffer are less
than zmax (which corresponds to an unoccluded pixel). The cost of
this query compared to the cost of drawing triangles varies
between different hardware [29].

The z-buffer variant of the grid needs a query that returns the
farest z-value of all pixels in the cell´s area [3] (see section 3.2).
On systems where this kind of query is not implemented in
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hardware (unfortunately this is commonly the case today) it is
possible to use another kind of query with a modified version of
the z-buffer variant. In this modified version the original query for
the farest z-value is replaced with a function that uses a query
whether any pixel of the bounding volume passes the z-test (is
visible) [16,28] in the cell´s area. If this is true the function returns
the cell´s old zfar-value otherwise it returns the bounding box´s
znear-value.

On systems where neither kind of query is implemented in
hardware it is still possible to use the hardware z-buffer by
reading it and doing the query in software. The speed of reading
the hardware z-buffer varies significantly between different
systems.

A software z-buffer or occlusion-buffer parallel to the
hardware z-buffer is only necessary on systems where the
hardware does not support pixel-level queries and reading of the
hardware z-buffer is too slow.

6 Future Extensions

The possible future extensions of our basic method which are
sketched in this section use different occlusion tests for special
cases to increase overall-performance. Some of the extensions use
heuristics to decide if these tests shall be used or not. Note that
these extensions do not violate conservatism.

A possible extension is to quickly rate a cell as free (and
therefore the bounding volume as potentially visible) instead of
using a pixel-level query whenever the probability that the cell is
occluded is smaller than a given threshold. This probability can be
approximated by adding up the size of the image-areas of the
primitives that were drawn into the cell which for reason of speed
can be done without considering if these areas are intersecting.

Another possibility is to test whether a bounding volume’s
border cell is full whenever the area of intersection of the
bounding volume with the cell is larger than a given threshold. In
this case the overhead of querying the whole cell-area instead of
querying only the smaller intersection-area is not so big and we
have the the chance to detect that the cell is full.

Border cells could also be treated completely as internal cells
if the image area of the bounding volume is larger than a given
threshold, because the image position of the border of such a large
bounding volume is often quite different to the image position of
the real object´s border. In such a case occlusion of the object
behind a horizon has to be determined with tighter sub-bounding
volumes.

7 Implementation and Results

We have implemented and tested occlusion culling with the lazy
occlusion grid on a PC with a 900 MHz Thunderbird CPU and a
GeForce2 GTS graphics board under OpenGL. We had no access
to graphics hardware that supports pixel-level occlusion queries
therefore we used the occlusion-buffer variant of the grid as
described in section 3.1 in combination with reading the hardware
z-buffer and doing the pixel-level queries in software for the
generation of our results. Reading the hardware z-buffer is done
with the glReadPixels function. The size of the grid´s cells is
32x32 pixels per cell and has been determined heuristically as
described in section 3. Of course on other systems the optimal
cell-size may be different.

For our scenes we have used a hierarchy of axis-aligned
bounding boxes. The image area of a bounding box is
approximated by its bounding rectangle in the image. The
bounding boxes hierarchy is traversed with the front to back
traversal as described in section 4.2. Note that this traversal also
incorporates hierarchical view frustum culling of the bounding

boxes [22] which uses simple clipping of the bounding boxes´
polygons in software. The hierarchy of bounding boxes is built
initially for the given set of primitive objects of the scene. In the
forest scene (fig. 10-12) each tree is a primitive object with an
own bounding box. In the city scene each triangle is a primitive
object and the scene is hierarchically subdivided into bounding
boxes until each bounding box contains no more than 1500
triangles. This generation of the bounding boxes hierarchy takes
less than one second for our scenes.

The forest scene contains 1,694,426 triangles and the city
scene contains 34,034,176 triangles. We tested both scenes with
walkthroughs that were rendered
• with occlusion culling with the lazy occlusion grid (lazy

update).
• with occlusion culling with the occlusion grid but with a busy

update where everytime after an object has been drawn the
occlusion states of all cells in its image area are being updated
(similar to a hierarchical z-buffer with two pyramid-levels).

• without occlusion culling (but also with hierarchical view
frustum culling).

The rendering times of these walkthroughs, the number of
drawn triangles per frame (this means that they are sent to
OpenGL, backface culling is done by OpenGL) and the number of
pixel-level occlusion queries (glReadPixels) per frame are shown
in fig. 7-9. The scenes were rendered at 640x480 as well as
1280x960 pixels to show to what extent the rendering time is
affected by image resolution. Note that depending on scene and
image resolution the average frame-rate with the lazy occlusion
grid is 1.9 to 5.8 times higher than with the busy occlusion grid
and 1.9 to 39.1 times higher than without occlusion culling. In the
forest scene rendering with the busy occlusion grid is slower than
without occlusion culling. We have measured that with our
hardware 38-52% of the total rendering time is spent for the
glReadPixels calls when we use the lazy occlusion grid and 54-
69% when we use the busy occlusion grid.

lazy occlusion grid/
busy occlusion grid

no occlusion culling

forest      640x480   7,009    147,969
forest    1280x960   7,510    147,969
city          640x480 11,981 1,964,918
city        1280x960 11,775 1,964,918

Fig. 7. Average number of drawn triangles (sent to OpenGL) per
frame of walkthrough

lazy occlusion grid busy occlusion grid
forest      640x480 498 2,394
forest    1280x960 650 6,781
city          640x480 565 1,332
city        1280x960 937 4,227

Fig. 8. Average number of pixel-level occlusion queries per frame
of walkthrough
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Fig. 9. Rendering time per frame of walkthrough

8 Conclusion

We have presented a conservative image-based occlusion
culling technique which is capable of handling very complex
general scenes at interactive frame-rates and that requires no time-
expensive preprocessing. Our results show that significantly
higher frame-rates can be achieved with the lazy update which is
used in our method than with a busy update.

Future work includes utilization of temporal coherence and
support of hardware that provides parallel pixel-level occlusion
queries for improved performance.
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Fig. 10. Actually rendered image

Fig. 11. View from above with view frustum from fig. 10

Fig. 12. Only the objects that are drawn (sent to OpenGL) in fig. 10, their leaf-bounding boxes and the view frustum


