
Color Printer Characterization Using

Radial Basis Function Networks

Alessandro Artusi and Alexander Wilkie

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Karlsplatz 13/186, A–1040 Vienna, Austria

ABSTRACT

A key problem in multimedia systems is the faithful reproduction of color. One of the main reasons why this is a complicated
issue are the different color reproduction technologies used by the various devices; displays use easily modeled additive color
mixing, while printers use a subtractive process, the characterization of which is much more complex than that of self–luminous
displays.

In order to resolve these problems several processing steps are necessary, one of which is accurate device characterization.
Our study examines different learning algorithms for one particular neural network technique which already has been found to
be useful in related contexts, namely radial basis function network models, and proposes a modified learning algorithm which
improves the colorimetric characterization process of printers.

In particular our results show that is possible to obtain good performance by using a learning algorithm that is trained
on only small sets of color samples, and use it to generate a larger look–up table (LUT) through use of multiple polynomial
regression or an interpolation algorithm. We deem our findings to be a good start point for further studies on learning algorithms
used in conjunction with this problem.

Keywords: Radial basis function networks, regression, colorimetric characterization of printing devices

1. INTRODUCTION

In multimedia systems, different color reproduction devices — while serving the same purpose — exhibit large discrepancies in
their raw output. This is due to the fact that they usually employ different color mixing technologies (additive and subtractive),
use different color spaces and hence have different gamuts, and that their device characteristics can change with time and usage.
These facts usually do not permit a faithful matching of colors between devices if no precautions are taken.

Colorimetric characterization is one step in the colorimetric reproduction process that permits faithful image reproduction
across different display devices. Its goal is to define a mapping function between the device–dependent color spaces in question
(such as RGB or CMYK) and device–independent colour spaces (such as CIELAB or CIEXYZ), and vice versa.

There are three main approches to defining this mapping function: physical models, empirical models and exhaustive
measurements.8 Physical modeling of images devices involves building mathematical models that find a relationship between
the colorimetric coordinates of the input or output image element and the signals used to drive an output device or the signals
originating from an input device. The advantage of these approaches is that they are robust, typically require few colorimetric
measurements in order to characterize the device, and allow for easy recharacterization if some component of the imaging
system is modified. The disvantage is that the models are often quite complex to derive and can be complicated to implement.
Physical models are often used for the colorimetric characterization of displays and scanners.

Empirical modeling of imaging devices involves collecting a fairly large set of data and then statistically fitting a rela-
tionship between device coordinates and colorimetric coordinates. Empirical models are often higher–order multidimensional
polynomials, or neural network models. They require fewer measurements than LUT techniques, but they need more than
physical models. Empirical models are often used for scanners and printers.

Often the colorimetric characterization of printers requires an exhaustive measurement in order to obtain good performances.
Typically 9� 9� 9 samples of the device drive signals is sampled and colorimetrically measured. Many more measurements
have to be used for devices with poor repeatability.

Correspondence: Email: artusi@cg.tuwien.ac.at

Lookup tables can be used to process image data via multidimensional interpolation. This technique has different disadvan-
tages: the large number of measurements that has to be made, difficulties in interpolating the highly nonlinear data and difficult
recharacterization if any aspect of the device changes. The advantage of exhaustive measurement techniques is that they require
no knowledge of the device physics.

In general a good algorithm for colorimetric characterization must have the following characteristics: small training set,
fast response, good accuracy and it must allow for a fast recharacterization. This paper proposes a modification of an existing
learning algorithm6 to train radial basis function networks to solve the problem discussed so far, namely the colorimetric char-
acterization of printers. This learning algorithm has fast training and test phases, good accuracy and it requires a comparatively
small training set.

In section 2 we discuss related previous work, section 3 describes the background for radial basis function networks, the
models used in our experiments, and the proposed new model. Section 4 explains how the training and test set were generated
and reports some experimental results.

2. STATE OF THE ART

There is a large number of publications on the colorimetric characterization of printers that propose different models for solv-
ing this problem: Khang and Anderson16 propose the application of neural networks and polynomial regression. Albanese,
Campadelli and Schettini3 and Tominaga20 have used feed–forward neural networks trained by back–propagation and obtained
promising results. However, their approach also has some disadvantages: the need for a big training set (several hundred to
several thousand samples), high computation cost, and a comparatively large maximum color error for high quality color repro-
ductions. One of these problems has been solved by Artusi, Campadelli and Schettini2: in their work they reduced the size of
the training set to 216 measured samples, while retaining a maximum error that is comparable to — in some cases even better
than — previous approaches.

There are no references to be found in the literature about the use of radial basis function networks for the colorimetric
characterization of printers, but there is a wealth of other publications about them and their applications (such as Orr,15 Bishop,4

Carozza6 and Lee10).

The work we present is novel in seven ways: to begin with, this is the first work that uses radial basis function networks
to resolve the colorimetric characterization of printers. Second, we used a new learning model to train such networks; our
approach is based on a modification of the proposal by Carozza.6 Third, we use only 125 measured samples for the training
of the network. Fourth, the computational costs for this training are very low when compared to previous techniques and allow
to use this model in consumer products. Fifth, it is a general model which one can also use to define other transformations
between color spaces. Sixth, it is possible to have a fast recharacterization of the device because the computational cost of the
training phase is low. Finally, it improves on the performance of multiple polynomial regression and tetrahedral interpolation.

3. BACKGROUND

There are two main types of regression problems in statistics15: parametric and non–parametric. In parametric regression the
form of the functional relationship between the dependent and independent variables is known, but may contain parameters
whose values are unknown, and it is possible to successfully estimate the desired result from the training set.

In the case of non–parametric regression there is no, or very little,a priori knowledge about the form of the true function
which is being estimated. The colorimetric characterization problem, presented in these papers, is a non–parametric regression
problem, because one does not know the mapping function properties the algorithm will arrive at in advance. There are
different approaches to resolve non–parametric regression problems; when one uses equation systems in this context they may
contain many free parameters that have no physical meaning in the problem domain (interpolation models, multiple polynomials
regression), or one can use neural networks instead.

3.1. Neural networks

The base of a neural network is a formal neuron. It is defined as a series of inputs, a series of outputs and by a function that
maps specific inputs to series of outputs.5 Neural networks consist of collections of connected formal neurons. Each formal
neuron computes a simple nonlinear function F on the weighted sum of its input. The function F is referred to asactivation
function and its output is defined as the activation of the formal neuron. Long term knowledge is stored in the network in the
form of interconnection weights that link such formal neurons.

There are different neural network structures1: total connected networks, partial connected networks, multilayer networks
(feedforward, feedback), and autoassociative networks. In a neural network, the learning phase is a process where a set of
weights is defined that produces a desired response as a reaction to certain input patterns.5 There are two main techniques
for the learning phase: supervised learning and non–supervised learning. In supervised learning the function is learned from
samples which a “teacher” supplies. This set of samples, referred to as the training set, contains elements which consist of paired
values of the independent (input) variable and the dependent (output) variable.15 In the case of non–supervised learning, it
reaches an internal model that captures the regularity in the inputs without taking other information into account.1

3.2. Basis functions

A linear model for a functionf(x) can be expressed in the following form15:

f(x) =

mX
j=1

wj � hj(x) (1)

The modelf is expressed as a linear combination of a set of m fixed functions, often referred to as basis functions. The
flexibility of f , its ability to fit many different functions, derives only from the freedom to choose different values for the
weights. The basis functions and any parameters which they might contain are fixed. If the basis function can also change
during the learning process, the model is considered non–linear. Any set of functions can be used as a basis set, although it
is desirable that they are differentiable. There are many different classes of functions that one can use as basis functions, for
example:

� Fourier series

hj(x) = sin

�
2 � � � j � (x��j)

m

�
(2)

� Logistic functions

h(x) =
1

1 + exp(bt � x� b0)
(3)

� Polynomial functions

Radial functions are a special class of basis function. Their characteristic feature is that their response decreases (or in-
creases) monotonically with the distance from a central point. The centerc, the distance scale, and the precise shape of the
radial functionr are parameters of the model, and are fixed if it is a linear model. Two possible examples of radial functions
are:

� Gaussian

h(x) = exp

�
�(x� c)2

r2

�
(4)

� Multiquadratic

h(x) =

p
r2 + (x � c)2

r
(5)

Figure 1. Radial Basis Function Network

3.3. Radial basis function networks

Radial Basis Function Networks (RBFN) are derived from the exact interpolation problem4 by introduction of several changes.
The exact interpolation problem attempts to map every input point exactly onto a corresponding target point. The Radial Basis
Function (RBF) approach introduces a set of basis functions equal to the number of input points. Furthermore, the following
modifications are necessary for the introduction of RBFNs:

� The number of basis functions does not have to be the same as the number of input points, and is typically smaller.

� The bias parameters are included in the sum term of the linear model from equation 1.

In the case of a non–linear model there are two more modifications if the basis function can move, change size, or if there is
more than one hidden layer:

� There is no constraint that the centers of basis functions have to be input points; instead, determining these centers is part
of the training process.

� Instead of a unique parameterr, every basis function has a parameterr j , the value of which is obtained during the training
process.

A example of a traditional RBFN with one hidden layer is shown in figure 1. Each ofn components of the input vectorx feeds
forward tom basis functions whose outputs are linearly combined with weightsw j into the network output. There are two
stages for the training phase: determining the basis function parameters, and the finding of appropriate weights.

3.4. Linear network models

In the case of a linear model, the parameters of the basis functions are fixed, and the goal is to minimise the sum of the squared
errors in order to obtain the optimal weights vector15:

S =

pX
i=1

(yi � f(xi))
2; (6)

wherep is the pattern number, and(xi; yi) are the input and output vector targets of the respective training set. The optimal
weights, in matrix notation, are:

W = A�1HtY; (7)

whereH is referred to as design matrix and is the output of the RBF,A�1 is the covariance matrix of the weightsW , and
the matrixY is the output target. In many cases this amounts to an over–fitting problem, and the main effect of this is that the
neural network loses its generalization capacity. In order to counter the effects of over–fitting it is possible to utilize results
from regularization theory. Regularization theory suggests to attach a term calledregularization parameter in equation 6, in
order to obtain a weight vector which is more robust against noise in the training set.

In regularization theory, there are two main techniques: global ridge regression, where one uses unique regularization
parameters for all basis functions, and local ridge regression, where there is a regularization parameter for every basis function.
For the case of global ridge regression one has to modify equation 6 as follows:

C =

pX
i=1

(yi � f(xi))
2 + k �

mX
j=1

w2

j ; (8)

where m is the basis function index. In the case of local ridge regression equation has to be 6 modified to:

C =

pX
i=1

(yi � f(xi))
2 +

mX
j=1

kj � w
2

j : (9)

3.5. Forward selection

One way to give linear models the flexibility of non–linear models is to go through a process of selecting a subset of basis
functions from a larger set of candidates.15 In linear regression theory18 subset selection is well known and one popular
version is forward selection in which the model starts empty(m = 0) and the basis functions are selected one at a time and
added to the network. The basis function to add is the one which most reduces the sum squared errors in equation 6; this is
repeated until no further improvements are made. There are different criterions to decide when to stop the forward selection
process: generalised cross-validation (GCV),9 unbiased estimate of variance (UEV),7 final predictor error (FPE)11 and the
Bayesian information criterion (BIC).19 The predicted error is calculated using one of these methods after each new basis
function is added. A efficient method of performing forward selection is the orthogonal least squares method as discussed in
Orr14; it is based on the orthogonalisation of the columns of the design matrix. This involves a particular form of the covariance
matrix, which consists of a triangular and a diagonal matrix; this fact can be used to greatly accelerate the computation.

3.6. Non–linear network models

In the non–linear model the basis function parameters are not fixed, and it is possible to estimate them during the learning
process. This gives more flexibility to the network model. In literature there is a large number of publications that propose
different models to estimate the basis function parameters.

In Carozza6 a new algorithm for function approximation from noisy data was presented. The authors proposed an incremen-
tal supervised learning algorithm for RBFN. It added a new node at every step of the learning process, and the basis function
centerc and the output connection weights are settled in accordance with an extended chained version of the Nadaraja–Watson
estimator. The variancer of the basis functions is determined by an empirical risk driven rule based on a genetic–like optimiza-
tion technique. On a different note, Lee10 introduces the concept ofrobust RBFs and makes suggestions on how to choose a
function candidate which fulfils this role.

3.7. Proposed model

The proposed model is a modification of a existing one.6 In particular we have modified the estimation of the weights by
introducing a pseudoinverse matrix4 instead of using the extend chained version of the Nadaraja–Watson estimator for updating
the weights. The pseudoinverse method works by resolving the following general system of linear equations:

H �W = Y; (10)

whereY is the matrix of output vectors. In this equation therer appears a Moore–Penrose pseudoinverse12 in the form of
the matrixB, which has the same dimensions asH T , and that has to satisfy the following four conditions:

H �B �H = H

B �H �B = B

H �B is Hermitian
B �H is Hermitian:

(11)

The computations are based on singular value decomposition (SVD).17 This method is based on the following theorem
of linear algebra: anyM �N matrixH whose number of rowsM is greater than or equal its number of columnsN , can be
written as the product of anM �N column–orthogonal matrixU , anN �N diagonal matrixW with positive or zero elements
(the singular values), and the transpose of anN �N orthogonal matrixV .

The output of the network trained with our model is not calculated as in the model proposed by Carozza,6 but rather by a
sum of products of basis function output weights. The RBFN model used in our experiments adopts only one hidden layer, and
Gaussian basis functions for the nodes in the hidden layer.

In our model there are some parameters: the averagec and the variancer for the basis function, the weightsw, times as the
number of epochs andE as initial error. Other initializations depend on the application at hand. After preliminary experiments,
we choose the following values to be suitable for our particular case:c = random(0; 1); r = 0:5; w = random(0; 1); times=
10. The initial errorE has to be large in order for error reduction to work, and the node numbers of the hidden layerN begin
from 1.

Table 1. Error comparison of CMY! CIELAB conversion using the initial RBFN, regression with different polynomials and
tetrahedral interpolation for theTraining1, Training2 andTest datasets on the Epson Stylus Pro5000.

Method Training1 Test Training2 Test

Avg Max Avg Max Avg Max Avg Max

Initial RBFN 0.522 2.295 0.867 4.653 0.035 0.100 3.003 10.637

Regression polynomials 60 terms 2.391 10.976 3.172 10.979 2.495 7.674 3.228 9.798

Regression polynomials 69 terms 2.310 10.924 3.109 10.918 2.458 7.639 3.176 10.111

Regression polynomials 87 terms 1.813 8.041 2.515 8.195 1.721 5.453 2.654 8.277

Regression polynomials 105 terms1.636 8.798 2.306 8.661 1.475 4.337 2.571 7.676

Tetrahedral interpolation 0.0 0.0 0.812 5.018 0.0 0.0 2.116 7.490

Table 2. Error comparison of CMY! CIELAB conversion using the initial RBFN and regression with different polynomials
for theTraining3, Training4 andTest datasets on the Epson Stylus Pro5000.

Method Training3 Test Training4 Test

Avg Max Avg Max Avg Max Avg Max

Initial RBFN 0.390 1.849 1.286 4.347 0.330 0.966 2.902 9.000

Regression polynomials 60 terms 2.386 8.114 3.315 10.674 2.470 9.217 3.603 10.934

Regression polynomials 69 terms 2.328 8.432 3.271 10.863 2.372 9.320 3.731 9.920

Regression polynomials 87 terms 1.771 6.066 2.669 8.644 1.771 5.708 3.271 8.096

Regression polynomials 105 terms1.556 5.810 2.543 7.501 1.461 5.642 3.497 10.043

3.8. Our algorithm

parameter initialization

while (termination criterion is not met)
if (N > 1)

rN = 0.5;

Compute the average error E of the output model
with respect to the output target
c = the input vector with index of the patterns

with maximum error
Compute the weights w with the pseudoinverse

end if

/* update of basis function parameters c and r */

for (k = N to 0)
while (l <= times)

alpha = random(-0.5, 0.5)
rnew = rk * (1 + alpha) + epsilon

Compute average error Enew of the output model
with respect to the output target

if (Enew < E)
rk = rnew
E = Enew

end if
l = l + 1

end while
end for

Compute the weights w with the pseudoinverse
and use the basis function parameter update

N = N + 1
end while.

After preliminary experiments, the termsalpha andepsilon were set to the following initial values: for alpha a random
value in the range from�0:5 to 0:5, and epsilon was set to0:01.

This model has the capacity to generate the structure of the RBFN. In fact, it adds a new node during each iteration and
initializes its parametersc, r andw. This operation stops when the termination criterion is satisfied.

4. EXPERIMENTAL RESULTS

4.1. Training and test sets

The colorimetric patterns of the training and test sets which we used in these experiments are formed by pairs of three dimen-
sional vectors. One of these vectors specifies the CMY coordinates, and the other specifies the CIELAB coordinates of a printed
color. The color sets for the training and test phases are obtained by printing a number of hues, specified in CMY space, in
squares of approximately 1 cm2 at the highest resolution the printer has to offer. These color swatches are then measured with
a SPECTROLINO spectrophotometer produced by GretagMacbeth.

For the training phase of our experiments we used four different sets of this kind, labeledTraining1 throughTraining4. The
setsTraining1 andTraining2 were made up of 729 and 125 colors, respectively, which were obtained by uniform sampling
in CMY space. The setsTraining3 and Training4 consisted of 392 and 252 colors, which were obtained as suggested by
Moroni.13 The Test set contains 777 colors obtained by random sampling of CMY space. The error of the models was
calculated in CIELAB space according to the formula

�E =
p
(L� L0)2 + (a� a0)2 + (b� b0)2; (12)

where(L; a; b) is the output of the models and(L 0; a0; b0) is the target output. The experiments were conducted using
several different ink–jet printers, namely an Epson Stylus Pro5000 (with photo quality paper), an Olivetti Artjet 20 (with coated
paper) and a HP2000C (with cut sheet paper). The code for the algorithms tested in these experiments was written in C and
Matlab.

4.2. Results

The first step in our reserarch was to find a good learning algorithm to train the RBFN function with small training sets. In order
to do this we evaluated different learnings algorithm in the following order: first linear models with forward selection and local
ridge regression (GCV,9 UVE,7 FPE,11 BIC19); we used the Matlab implementation of these algorithms by Orr.15 Then
we considered nonlinear models as proposed by Lee10 and Carozza6; we implemented these ourselves in C. Our proposed
own non-linear model was again implemented in Matlab. All these algorithms were then compared to multiple polynomial
regression and thetraedral interpolation.

When we wanted to find out whether a particular learning algorithm is adequate to solve the posed problem, we first tested it
only for the conversion CMY! CIELAB on an Epson Stylus Pro5000, and only if this preliminary test turned out favourably,
we conducted further experiments on other printers and with the conversion CIELAB! CMY. In every table of the columns
for the training and test sets we show the averange error on the left and the maximum error on the right of the respective cells.

We began the experiments by initially testing existing learning algorithms, specifically those proposed by Golub,9 Efron,7

Mallows11 and Schwarz19 on the color printer Epson Stylus Pro 5000; we used two training sets (labeledTraining1 and
Training2 in the tables) and tested the networks with a set labeledTest. The results are shown in table 1 for the function
CMY ! CIELAB, in order to save space only the results of the model that obtained the best performance is shown.

Our results demonstrate that this model is already able to improve on the performance of multiple polynomial regression
for polynomials up to 60 terms and thetraedral interpolation in the case of the setTraining1. However, this does not extend to
the setTraining2, where the unmodified RBFN approach fares no better than the conventional techniques. This is probably due
to the fact that in this case the network encounters over–fitting problems as mentioned in section 3.4. In order to resolve this
problem we have tried to use regularization theory (local and global ridge regression), but this failed to improve the results.

Another approach was to generate more training sets with smaller numbers of samples compared to the original large set
Training1. We produced two such sets in the way suggested by Moroni,13 labeledTraining3 andTraining4, with 392 and 252
samples respectively. Results from test runs with these sets are reported in table 2 and show that there are indeed improvements
with respect to multiple polynomial regression with the setTraining3, and equal performance withTraining4.

However, compared to the still large size of the new reduced training sets the improvement is rather small. The methodol-
ogy for generation of the condensed training set proposed by Moroni13 apparently does not allow for the desired increase in
efficiency.

In this phase of the experiments we also tried other innovative learning algorithms found in literature (such as Lee10 and
Carozza6), but the results we obtained were of poor quality. We then altered our strategy and decided to modify an existing
learning algorithm. Our the choice here has been to modify the learning algorithm proposed by Carozza,6 mainly because it
does not get significantly more complex when it is modified, and also because it does not have inherent convergence problems
like the algorithm of Lee.10 The results we obtained are shown in tables 3 and 4; the tests were done on an Epson Stylus
Pro5000 for the function CMY! CIELAB.

The results show how it is possible to obtain performance that is better than that of multiple polynomial regression and
tetrahedral interpolation with only 125 samples. This is shown in the last two columns beginning at the right of table 1 for both
sets (Training and Test) and both error metrics (average and maximum). In order to make sure that these results are consistently
reproducible over time we repeated the experiment in May, June and July, and used different (but similar) sets of 125 training
samples in each case; the progression of the error over time is shown in table 4.

Table 3. Initial error measurements of CMY! CIELAB conversion using the proposed RBFN for theTraining2 andTest
datasets on the Epson Stylus Pro5000.

Training2 Test

Average Maximum Average Maximum

Proposed RBFN 0.797 1.893 1.831 6.763

Table 4. Subsequent error measurements of CMY! CIELAB conversion using the proposed RBFN for theTraining2 and
Test datasets on the Epson Stylus Pro5000 measured at one month intervals.

Month Training2 Test

Average Maximum Average Maximum

May 0.927 1.980 2.024 6.833

June 0.744 1.537 2.043 5.780

July 0.784 1.737 2.210 5.699

The results are in line with the first experiment reported in table 3. In order to validate our model we performed similar
tests on two more ink-jet color printers from other manufacturers, namely a HP2000C and an Olivetti Artjet20. The results are
shown in table 5 for the Epson Stylus Pro5000, in table 6 for the HP2000C and in table 7 for the Olivetti Artjet20. The data is
also compared against results from multiple polynomial regression; all tests were done for the function CMY! CIELAB.

Table 5. Error comparison of CMY! CIELAB conversion using the proposed RBFN and regression with different polyno-
mials for theTraining2 andTest datasets on the Epson Stylus Pro5000.

Method Training2 Test

Average Maximum Average Maximum

Proposed RBFN 0.797 1.893 1.831 6.763

Regression polynomials 60 terms 2.495 7.674 3.228 9.798

Regression polynomials 69 terms 2.458 7.639 3.176 10.111

Regression polynomials 87 terms 1.721 5.453 2.654 8.277

Regression polynomials 105 terms 1.475 4.337 2.571 7.676

The results show that there is an improvement over multiple polynomial regression for every ink-jet color printer. The
results shown in the tables 5 to 7 demonstrate that our model has general validity.

The final problem we discuss in this paper is the definition of the function CIELAB! CMY using our model; now the main
problem is that of the definition of a suitable termination condition for the learning process. If we use the same condition that
we used for the definition of the function CMY! CIELAB and compute the error in CIELAB space, is necessary to use the
inverse transformation for each termination check, which in turn also implies that a neural network for this inverse case ought
to be used. This solution is not feasible because the computational cost of the inverse network training phase is significant, and
too much accuracy is lost through the repeated conversions. Neither is it possible to compute the error in CMY space, because
this approach is inherently incapable of knowing when to stop the learning process.

The solution that we have adopted has been to generate a LUT with 729 uniform samples in CMY space with our type of
RBF network, which was trained with 125 samples. We then used this LUT with multiple polynomial regression on the set
Test. We compared this result to the result obtained with a LUT of 729 uniform samples, which were printed and measured

Table 6. Error comparison of CMY! CIELAB conversion using the proposed RBFN and regression with different polyno-
mials for theTraining2 andTest datasets on the Hewlett Packard HP 2000 C.

Method Training2 Test

Average Maximum Average Maximum

Proposed RBFN 2.876 5.774 3.691 9.800

Regression polynomials 60 terms 6.610 19.141 5.396 18.794

Regression polynomials 69 terms 6.516 19.344 5.728 18.995

Regression polynomials 87 terms 5.182 11.187 5.502 13.077

Regression polynomials 105 terms 4.607 10.714 4.744 13.072

Table 7. Error comparison of CMY! CIELAB conversion using the proposed RBFN and regression with different polyno-
mials for theTraining2 andTest datasets on the Olivetti Artjet 20.

Method Training2 Test

Average Maximum Average Maximum

Proposed RBFN 1.752 4.084 2.537 6.660

Regression polynomials 60 terms 1.901 10.268 2.236 9.739

Regression polynomials 69 terms 1.851 10.400 2.266 9.864

Regression polynomials 87 terms 1.514 9.100 1.994 8.664

Regression polynomials 105 terms 1.305 9.100 1.936 8.664

from CMY space, and which were also used with multiple polynomials regression on the same set of samples. The results are
reported in table 8; this test was performed on an ink–jet printer of the type Epson Stylus Pro5000.

Table 8. Error of CIELAB! CMY conversion for theTest dataset on the Epson Stylus Pro5000.

Method Average Maximum

Regression with printer LUT (729) 2.244 9.894

Regression with LUT created by proposed RBFN (729)2.290 8.890

These results show that is possible to generate a LUT from only 125 initial printed and measured samples with our method,
compared to 729 samples used by multiple polynomial regression or interpolation models. Our model permits a fast recharacter-
ization of ink–jet color printers because it need only 125 printed and measured samples, and in addition its training phase is very
fast. On a Pentium II Celeron system with 128 Mbyte of RAM the training time with the initial 125 samples is approximately
10 minutes, and the time to generate the 729 entry LUT is one additional minute.

5. CONCLUSION AND FUTURE WORK

We have presented a new learning algorithm, which is a modification of a known technique, that trains the RBFN model for
the colorimetric characterization of color printers. Our algorithm needs a training set of only 125 samples in order to train
the RBFN. With this model is even possible to generate a LUT of 729 samples, begining with only 125 printed and measured
samples, and to use this LUT with other standard algorithms of colorimetric characterization.

The computational cost is very low in the training and testing phases, and is even better than the performance of other
standard colorimetric characterization models (e.g. multidimensional polynomials regression an tetrahedral interpolation). It is

our opinion that the results suggest that may be possible to use this algorithm in consumer products, because we have been able
to resolve the two problems that has so far limited the more widespread use of such methods: high computational cost, and the
large number of training samples needed. The small size of the training set also permits a fast recharacterization of devices.

We believe that there are several possible ways to evolve these models for colorimetric characterization problems: investi-
gation of different mathematical models for the estimation of the basis function parameters, research on different mathematical
models for the estimation of the weights, introduction of one or two more hidden layers in the structure of the RBFN, and
eventually experiments that involve combinations of these new techniques.

REFERENCES

1. A. Artusi, “Applicazione di algoritmi di apprendimento alla caratterizzazione colorimetrica di stampanti a colori” Tesi di
laurea in Informatica, Univ. Degli studi di Milano, A.A 1996-97.

2. A. Artusi, P. Campadelli, R. Schettini “Boosting learning Algorithms for the Colorimetric Characterization of Color
Printers”. Proc. WIRN’98: 283-289, Vietri, Giugn 1998.

3. S. Albanese, P. Campadelli, R. Schettini “Inkjet color printer caliration by back-propagation”. Communication at the
Workshop on Envaluation Criteria of Neural Net Efficiency in Industrial Applications, Vietri, November 1995.

4. C. M. Bishop “Neural Networks for Pattern Recognition”. Calendor Press Oxford, 1996.
5. J.M.Bishop, M.J. Bushnell, S. Westland “Application of Neural Networks to the Computer Recipe Prediction” Color

research and application, Volume 16, Number 1, 3-9, February 1991.
6. M. Carozza, S. Rampone “Function approximation from noisy data by an incremental RBF network”. Pattern Recognition,

volume 32, numero 12, 2081-2083, 1999.
7. B. Efron, R. J. Tibshirani “An Introduction to the Bootstrap”. Chapman and Hall, 1993.
8. Mark D. Fairchild “Color Appearance Models”, Addison Wesley 1998.
9. G.H. Golub, M. Heat, G. Wahba “Generalised croos-validation as a method for choosing a good ridge parameters”.

Technometrics, 21(2), 215-223, 1979.
10. Lee et al. “Robust radial basis function neural networks”. IEEE trans, on systems, man and cybernetics, vol 29, 674-685,

1999.
11. C. Mallows “Some comments on Cp”. Technometrics, 15, 661-675, 1973.
12. Mathworks “Matlab Function reference”. website ”http://www.mathworks.com” , 2000.
13. N. Moroni Barcelona HP Res. Labs, Personal Communication, 1996.
14. M. J. L. Orr “Regularisation in the selection of radial basis function centres”. Neural Computation, 7(3), 606-623, 1995.
15. M. J. L. Orr “Introduction to Radial Basis Function Networks”. Center of Cognitive Science, University of Edinburgh,

1996.
16. H.R. Kang, P.G. Anderson “Neural network application to the color scanner and printer calibrations”. Journal of Electronic

Imaging 1: 25-135, 1992.
17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery “Numerical Recipes in C The Art of Scentific Computing”.

Second Edition, Cambrige University press, 1992.
18. J.O. Rawlings “Applied Regression Analysis”. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1988.
19. G. Schwarz “Estimating the dimension of a model”. Annals of Statistics, 6, 461-464, 1978.
20. S. Tominaga “A color mapping method for CMYK Printers”. Proc. 4th IS&T&SID’s Color Imaging Conference: Color

Science, Systems and Applications, 1996.

