
1

Adaptive Visualization over the Internet

K.N. Tsoi, and E. Gröller
{joe, meister}@cg.tuwien.ac.at

Abstract

This report gives an account on our work in adaptive visualization
over the Internet ressearch. In this report we present our prototypes
of adaptive visualization systems and an agent-based visualization
model for network applications. We propose an intelligent agent
system for adaptively dispatching of visualization processes
between a cluster of computers based on the changing network
transmission bandwidth and processing power. We also discuss the
scientific contributions of our work to the current research in Interne
based visualization system design.

1. INTRODUCTION

This technical report gives an account on our work in adaptive visualization via the
Internet research and a proposed agent-based adaptive visualization model. We
present an agent-oriented Adaptive Visualization Agents Model (AVAM) for Internet
applications, which adapts itself to changing resource situations, such as computers
processing power and network transmission bandwidth, and dynamically partition
visualization processes and workload onto computer hosts (i.e. client workstation and
visualization server) in a distributed heterogeneous Internet environment. In the
subsequent sections of this report, an overview of the proposed project and its
objectives, and its current progress will be discussed. In section 2, we will also give
arguments for contributions and benefits that the proposed system may give to the
field of “visualization via the Internet”. The related work of ours and other researchers
in the fields of intelligent agents, and Internet-based visualization systems are
discussed in section 3. Our proposed work for an adaptive visualization system model
is elaborated in greater detail in section 4. Section 5 is the conclusion of this report
and we also discuss the future work of our ongoing visualization agents project.

2. ADAPTIVE VISUALIZATION VIA THE INTERNET

In this section, we give the arguments for the contributions and benefits that our work
may give to the field of “adaptive visualization via the Internet”.

2

2.1. Adaptive Visualization Agents Model for Internet Applications

Visualization systems based on contemporary client/server system architectures have
limitations in terms of supporting interactive applications via the Internet as processes
are statically mapped between client and server during the system design. Due to the
dynamic nature of the heterogeneous Internet, it is rather difficult (impossible) for
static distributions of visualization processes to balance the workload between client
and server and to achieve optimal performance through effective exploitation of
available resources at run-time. A more flexible software engineering approach is
needed for developing adaptive Internet-based (including WWW) interactive 3D
visualization systems. In this project, we adopted the agent paradigm. An agent-
oriented Internet-based prototype system for displaying iso-surface extractions, using
the Voyagertm ORB 3.2 agent toolkit [see Appendix A for more information] is being
developed. Visualization agents carry processes and can migrate themselves (code
mobility) between a network of computers to accommodate to the bandwidth and
processing power limitations based on the observed situation. The goal is to improve
performance of visualization through minimizing network usage, reducing the
communication overheads required and balancing the computational loads between
client/server hosts.

2.2. The Current Research Challenges and Problems

Delivering quality interactive visualizations of 3D volume data via the Internet
presents many challenges. We identified the following three main problematic topics
that bring challenges to our research:

(1) Network transmission bandwidth and availability of processing power, are
two key determining computational resources. Visualization processes, such
as direct volume rendering and flow visualization, are usually
computationally expensive. In addition, transmitting vast amounts of data
(i.e. raw data and visualization results) requires sufficient network bandwidth
in order to guarantee reasonable response time and quality interactive
visualization service. The “frequent trips” style of communication in a
client/server system requires additional bandwidth especially when security
measures are enabled in the system. The conventional design usually
sacrifices scene quality for better performance due to bandwidth and
processing power constraints.

(2) The challenges of developing large scale visualization systems in a

distributed Internet environment stem from the inherent complexity
associated with distributed systems [3]. It is rather difficult to make design
decisions during the system development for optimal partitioning of
visualization processes and workload onto client/server machines, to
minimize the communication latency, and to ultimately accommodate to the
constraints of bandwidth and computational resource variations. This is due
to the dynamic nature and heterogeneity of the Internet environment and of
many uncertainty factors, such as configuration and computational capacity
of a user workstation, and the availability of network transmission bandwidth
at run-time.

3

(3) Limitations of the contemporary system architecture are one of the
problematic issues. Most of the visualization systems follow a dataflow
model of hierarchical centralized control to implement the visualization
pipeline [13], and are based on the client/server model for network
applications. Visualization processes are statically mapped and tightly
coupled between client and server, and the interactions between various
processes are usually too rigidly defined (the “hard-wired” engineering
approach) at design time. Visualization processes are either mostly executed
on the server and results are sent to the client workstation over the network,
or users are allowed to download the software (either part of the codes or the
whole package) from the server and execute them locally. The workload
could easily become too high to support reasonable performance for timely
response on a multi-user visualization server, while a user’s workstation
(client) may be idle most of the time although it has the capacity to share and
perform some of the necessary computation. With a static distribution of the
visualization processes, it is difficult (rather impossible) for the system to
adapt to the changing resource situation and to balance the workload between
user workstations (client) in order to maintain an optimal system
performance because the system does not allow its codes to move between
hosts at run time when the local resources are insufficient for the
computation.

2.3. The Proposed Solution and its Scientific Contributions

To the problems at hand, we favor the agent paradigm to be a promising software
engineering approach for adaptive distributed Internet applications over the
conventional alternatives. The agent paradigm has many benefits for distributed
Internet based visualization systems. It changes the nature of the work from data,
processes, servers and clients (users). As in contrast to the contemporary hierarchical
design of statically mapped and centralized controlled visualization processes, the
agent-based approach provides a decentralized, loosely coupled solution for adaptive
complex systems. There’s no need for developers to design a centralized executive
control for distribution of visualization pipeline processes over a network, and without
regard to in advance the network topology, traffic patterns and system capacity of the
user workstations. The benefits of adopting an agent-oriented system design are also
due to the code mobility and autonomy. An intelligent agent is capable of making
decisions independently (and locally) and automatically reacts to the changes in the
environment based on the observed situations, which may not be foreseen at design
time. Mobility allows processes (modules) to migrate between computer hosts at run-
time and to communicate with other system resources (data and services) locally,
which eliminates the need for making “frequent trips” style of communicate between
client and server over the network, and hence greatly reduces the communication
overhead. A local message is often faster than its remote equivalent. An agent can
invoke a reusable visualization module (either remotely or locally) and migrate from
machine to machine as part of its execution. The mobility allows visualization
processes to be executed at the host where processing power is sufficient or data is
located in order to reduce the network traffic, and hence increase the response time
and increase throughput. Agent-oriented system design is an effective way to
decompose complex distributed problems in terms of autonomous agents that engage

4

in automotive decision-making by itself through interaction with the computation
environment and other software entities (agents). Every agent becomes a problem
solving entity by itself. The decentralization of problem solving, in turn, reduces the
system control complexity and communication overhead in a network environment at
run-time, and hence, increases the response time of the system. The agent paradigm
has been highly advocated as a promising next generation software model for
complex and distributed systems [17].

We propose an Adaptive Visualization Agent Model (AVAM) for Internet
applications. The goals are to endow individual visualization pipeline processes with
independent abilities and minimal communication needs and provide globally
coherent and efficient behavior. In section 4, we will elaborate more on AVAM.

2.3.1 Objectives

The objectives are to investigate and to develop

(1) An agent-oriented model for adaptive and interactive visualization via the

Internet.

(2) Intelligent mobile visualization agents capable of balancing workloads

between the involved computer hosts (i.e., client and server machines) through
adaptively migration and execution of visualization tasks between hosts.

(3) Autonomous intelligent agents that monitor and extract information about the

availability of operating system performance data, CPU/memory resource
utilization thresholds, and network information (i.e., bandwidth and latency).
These agents are also capable of communicating with other agents either
synchronously or asynchronously.

(4) An optimal “cost-benefit” model for the constrained optimization problems

[12, 14, 22]. This model will be used for developing a fuzzy-rule based
system, which deals with the constraints of network transmission bandwidth
and processing power.

(5) A NeuroFuzzy [20] hybrid decision-making system using fuzzy logic control

[21] and neural networks. A reinforcement learning approach [36] using an
unsupervised neural network approach will be adopted for training of the
fuzzy control sets. This system is for judiciously and dynamically migration
and execution of visualization tasks between computational hosts.

(6) A proof-of-concept working prototype agent-oriented visualization system for

volume visualization applications, such as iso-surface extraction (e.g.,
marching cubes algorithm [27]) and direct volume rendering (e.g., ray casting
[26]). The prototype system will also extend the AVAM architecture for
supporting collaborative visualization.

(7) Evaluation study of our proposed agent-oriented visualization systems and

systems based on contemporary design of statically mapped visualization
processes. The outcome of this study will provide a set of quantitative
performance data of both types of systems.

5

2.3.2 The Scientific Contributions

Considering the problems stated above (section 2.2), the central arguments for the
benefits of our proposed solution and its scientific contributions are expressed and
justified. As quantitative data that would show superiority of the agent-based
approach over other contemporary techniques does not exist in literature so far, our
arguments for the proposed solution that adopts the agent paradigm are qualitative in
nature and deserve further investigation.

We believe that the outcomes of our research will advance the state of the art in the
research of important areas of distributed interactive visualizations via the Internet,
and will make the following distinct contributions.

(1) An Adaptive Visualization Agent Model (AVAM) provides a novel approach for

developing high fidelity Internet-based interactive visualization systems, which
are adaptive to the changing resources situations in a heterogeneous Internet
environment without having to sacrifice the scene quality for better performance
due to resource constraints. The proposed model is also extendable for supporting
collaborative visualizations via the Internet.

(2) Our prototype system will demonstrate the capability of agent-oriented system

design in supporting distributed and collaborative visualization via the Internet
through dynamically dispatching and migrating visualization modules, and
balancing the workload between hosts (client/server machines) based on observed
resource situation at run-time of client/server.

(3) The working prototype systems will also contribute as a case study for researchers

investigating various intelligent distributed visualization systems design
techniques. Moreover, they will provide a basis of quantitative arguments for the
benefits and feasibility of agent-oriented design for complex and distributed
internet-based visualization systems.

(4) Currently, there are not studies reported in the literature about the application of

NeuroFuzzy control systems for dynamically distribution of visualization
processes among all involving computational hosts. Our prototype systems will
contribute as a valuable case study material for researchers in the field.

(5) The insights and experiences gained in this work and the evaluation results will

provide quantitative data for the researchers and software engineers in the field
facing similar problems to assess whether an agent-oriented approach is feasible
for them.

6

3. RELATED WORK

Below, in the context of our proposed study, we give a brief overview of the related
work in Web-based visualization systems, Collaborative visualization systems, and
intelligent agent systems for Internet applications.

3.1. Web-based systems (based on a client/server architecture)

Research efforts in Internet-based visualization have addressed various system design
issues and investigated the flexibility of delivering interactive 3D visualization via the
Internet. However, the majority of previous work assumes that the distribution of
visualization processes is a design-time problem. And they do not specifically address
the need for a flexible system architecture that effectively accommodates to the
constraints of network bandwidth and processing power. These systems typically have
visualization processes (pipeline steps) statically mapped either all on the client side
or on the server side (while the client displays the resulting 3D scenes). At the
beginning of either session (via a Web interface), users of these systems will either
download/execute only part of the visualization codes (e.g., the display module) or
entire code on to the local workstation.

These prototype systems are usually Web-based Java applets or use VRML [2, 24, 30,
32, 35, 37]. Users of [34] can access a set of commonly accessible visualization tools
and techniques through an intuitive Web interface. Web-VIZARD [10, 11] is a Web-
based GIS (Geographic Information System) for geographic data visualization using
JAVA technology, which provides a set of APIs for integration of third party GIS
systems as an Intelligent GUI. The aim of the system is to provide intelligent GUI for
making system functionality more accessible to the end users. The NOVICE system
[18] mainly emphasizes on the networked technologies, and provides a set of
extensible web-based visualization tools for medical visualization within a high
performance-computing environment. VizWiz [30] provides simple but innovative
visualization services that allows users to visualize different data types using multiple
visualization techniques. InVis [28, 29], focuses on the interactivity and adaptive
(server) processing power utilization issues by incorporating a real-time control
optimization mechanism for quality interactive visualization using an interactively
adapting progressive refinement technique. It also provides a set of tools for parallel
processing for multiple data types, such as volume data, geometric objects and hybrid
data. Some systems adopted a “Thin” or “Fat” Client service mode [19] to balance the
workload between the user’s workstation and the visualization server. “Thin” client
means most of the visualization-steps are processed at the visualization server, while
“Fat” client has most of the visualization-steps processed at a client workstation.
More recently, a study [6] about Web-based iso-surface extraction techniques
demonstrates a number of static distributions of visualization modules for optimal
processing power utilization between client and server.

3.2. Agents and Applications in Visualization

An agent is a computational entity, which acts on behalf of other entities in an
autonomous fashion. An agent performs the actions with some level of pro-activity

7

and reactiveness. An agent also exhibits some level of key attributes of learning,
cooperation and mobility [16]. Some systems in real-time reasoning and process
control are using a cooperative agent design [15, 25, 31]. There are so far a few
visualizations systems that are based of the agent-oriented design. Researchers of the
SurfaceMapper project [9] developed a multi-agent system for 3D scientific volume
data interpretation. SurfaceMapper is a community of cooperative agents, which
automatically locate and display interpretations of 3D scientific data from a store of
vast volumetric data. These cooperative agents are namely Segment Agents, Curve
Agents and Surface Agents.

3.3. Collaborative Visualization In a Network Environment

This section gives a short overview of the collaborative visualization systems reported
in the literature. However, these studies are mostly based on the client/server design
and do not explicitly address the design issues of adapting to the changing
computational resources at run-time.

The main goal of TeleInViVo [4] is to facilitate therapy planning and treatment,
medical training, surgery, and diagnosis using real-time visualization in a distributed
environment. The physicians can exchange and manipulate data sets via ISDN or
ATM networks. It supports collaborative visualization and exploration of volumetric
data including computed tomography, magnetic resonance imaging and PET scans.
TeleMed [33] is a platform independent system developed in Java and using the
CORBA architecture. TeleMed is basically a multimedia patient records management
system, which dynamically unites graphical patient records. It allows multiple user
accesses to the database and performs tasks such as radiology examinations in real-
time. CORBA can be used for developing agent-oriented systems, but this feature is
not implemented in the current version of TeleMed. Shastra [1] is another Internet-
based multimedia system, which supports collaborative and distributive visualization
through implementation of two distributed visualization algorithms. The algorithms
consist of a collection of inter-operating tools, which support managing,
communication and rendering facilities. Users of Shastra can use a rendering and
visualization tool called Poly for graphical objects manipulation, rendering and
visualization. SDSC_NetV [5] is an experimental system. It is developed as a
distributed system with advanced rendering techniques and exhibits stereo images.
The design goal of this system is to overcome the performance problems with
processing large volume data in a shared environment. It has a mechanism for
managing the available resources for volume rendering in a network and allowing
access by users either remotely or locally.

3.4. Adaptive Dynamical System Visualization

This is a work done preliminary at the beginning of our adaptive visualization agents
research. The work is based on two phases, which aim to develop a prototype system
for 3D visualization of numerical simulation of the Lorenz equations and to
adaptively adjust the output of polygons produced by the visualization based on the
changes in processing power (CPU and memory availability). The prototype system

8

for visualization the Lorenz equations is developed using the Java 3D toolkit. Figure 1
depicts the visualization output of the Lorenz equations.

Below the Lorenz system is given as first order differential equations:

dx/dt = sigma (y-x)
dy/dt = rho x - y - xz
dz/dt = xy - beta z

These equations are integrated using a fourth order Runge Kutta method for the
parameter values: sigma = 10.0, rho = 28.0, beta = 2.6667.

Figure 1. 3D visualization of the Lorenz equations

Based on the prototype visualization system for the Lorenz equations, we dynamically
adjust the number of polygon outputs. The prototype system records the time (in ms)
required for producing a certain number of polygons. At the beginning of a
visualization session, the program first profiles how many polygons can the system
produce in 1ms with the current system resource situation (CPU level and memory
availability). It then determines how many polygons to produce next by multiplying
the user’s desired response time (in ms) with the number of polygons the system can
produce. The equation below explains the working of the system.

NP = (TP/T)*UT

NP denotes the number of polygons for the next output, while TP is the total number
of polygons of the previous output. T denotes the time used for the previous output
and UT denotes user’s desired response time. Figure 2 is a screen capture of the
output of the system.

9

Figure 2. Screen capture of the dynamically generated polygon output.

4. THE PROPOSED AVAM

This section describes our proposed Adaptive Visualization Agents Model (AVAM).
We have investigated an adaptive visualization agent’s model for intelligent distributed
visualization applications in the Internet environment. A prototype system using agent-
oriented design is proposed and is being developed.

4.1. Motivations

Judicious adaptation of visualization processes to the available transmission
bandwidth and processing power can ameliorate the impacts of many uncertainties
and the underlying constraints of networked computation resources. Motivated by the
non-uniform quality of service in heterogeneous Internet environment and non-
uniform computing ability across computer platforms, we focus our research in
devising a visualization system that can dynamically adapt and accommodate to the
changing resource situations and constraints. We envision and wish to design an
adaptive Internet based visualization agents system that is robust enough to guarantee
quality interactive visualization services without sacrificing scene quality for
increased responsiveness in a heterogeneous Internet environment. To turn our vision
into reality, we need a careful designed system model and architecture.

10

4.2. An Overview of the Proposed System

The proposed Adaptive Visualization Agent Model (AVAM) for Internet applications
provides an abstracted conceptual framework for designing agent-oriented
visualization systems, which interact with the environment (and agents) and makes
decisions at run-time locally based on the observed situations to fit to the prevailing
circumstances of the system. An implementation of such agent system allows
dynamical migration of visualization pipeline entities between client/server machines
based on the server load, network latency, processor speed and computation power of
the local machine, user’s requirement for the quality and interactive performance.

Figure 3. A Logical Overview of AVAM

Figure 3 depicts AVAM. This model takes the resources/environment information and
data source information as inputs and actions/controls as outputs. We decompose
AVAM into three main sub-systems based on their functionalities:

(1) Sensor monitors computing resource and network transmission bandwidth
availability, receives user inputs for visualization parameters and file

11

information about the volume data set (such as file format, structure, size and
location).

(2) Arbitrator is a decision-maker for a visualization agent. Based on the

information collected by Sensor, it determines whether an agent should
execute a visualization step locally or migrate it on to a remote host for
execution.

(3) A Visualization Agent represents a designated mobile/autonomous
visualization pipeline entity. It invokes visualization modules and carries out
the decisions made by the Arbitrator.

The Sensor extracts and generalizes the information (states) regarding the
computing resources and network bandwidth information, the targeted data source
for visualization (e.g., data format, structure, size and location), and receives user
inputs of visualization parameters. The Arbitrator makes decision about on which
host the visualization agent should execute its visualization pipeline step.

4.3. AVAM Visualization Agents Architecture

Figure 4 depicts a visualization agents architecture based on AVAM. This architecture
illustrates an example of a multi-agent environment involving main hosts
(visualization server) and user hosts (client machines). The main hosts consist of Host
A (the main visualization application host) and two computational slaves (Host B and
C) located within the same local area network. User host A and B receive
visualization services from the visualization server. The main visualization host is the
home of visualization agents, which maintains a library of the visualization modules.
Each visualization agent has an embedded Arbitrator. A stationary Network Monitor
Agent resides on the main host (Host A), which periodically monitors the bandwidth
situation of the connection between each of the user client machines. Each of the
computation hosts involved has a stationary System Resource Monitor Agent. The
dashed lines represent the migration of visualization agents between the hosts within
the architecture. Scenarios of mobile autonomous visualization agents are illustrated
in section 4.4. The key components of this architecture are described as follows:

Network Monitor Agent and System Resource Agent (a.k.a. sensor agents) are
information collection and extraction systems. The sensor agents may be stationary
autonomous agents. A stationary agent is non-migratory by design as part of its
execution. The Network Monitor Agent resides on the visualization server (main host)
and monitors the network bandwidth situation between the main host and client hosts,
while the System Resource Agent resides on every host machine and monitors the
local availability of processing power, such as CPU/Memory. They report these
collected information to visualization agents upon request at run-time.

Arbitrator is an embedded decision-making unit within a visualization agent. Based
on information about the changes in the computational environment reported by the
Sensor Agents, the Arbitrator decides for a Visualization Agent which visualization
modules to invoke and where (host) the agent should migrate to for execution of the
visualization processes. Arbitrator maintains a vector of “state/action” fuzzy rule sets

12

for appropriate actions performed according to an agent’s prevailing circumstances at
run-time.

Figure 4. Visualization Agents Architecture

Visualization Agents are a collection of autonomous agents (except for Viewer
Agent, which is designated to be stationary). A visualization agent consists of an
embedded arbitrator and is capable of making localized decisions, functions for
invoking and detaching visualization modules, and functions to handle code mobility
(migration to a remote host) and execution of visualization modules. A visualization
agent can invoke and detach modules either locally or remotely over a network at run-
time. These visualization agents are modeled based on the conventional visualization
pipeline entities, namely Reader Agent, Filter Agent, Mapper Agent, Render Agent
and Viewer Agent. A visualization agent moves the visualization modules to a remote
host or where the data is located (i.e., Reader Agent moves to user host A to access
the data) for execution if the local computation resource is insufficient or the network
latency is too high. Among the visualization agents, Viewer Agent acts as an interface
agent between the visualization system and the users, for user’s visualization requests
and parameter input (i.e., change of iso-value and view point). While the rest of the
visualization agents are mobile in nature, the Viewer Agent is not mobile (but may be
downloaded to a user’s workstation at the beginning of the visualization service).

4.4. Mobile Visualization Agents Scenarios

Figure 5 depicts four possible scenarios of visualization agents migrating between
host machines (client/server). We used a marching cube algorithm application (iso-

13

surface extraction from a volume dataset) as an example in these scenarios. In these
scenarios, we assume that all client hosts involved have graphics adapter for rendering
3D polygonal models so that Render Agent can move to the client host at run-time to
produce rendered images.

In scenarios (a) and (b), data is located at the client host and the network is too slow
for sending volume dataset of large size to maintain fast interaction (due to available
transmission bandwidth is insufficient or latency is too high) at run-time. Reader
Agent migrates to the client host, determines the format of the volume data and loads
the data using a data-reading module of a specific file format. Filter Agent takes the
raw data read by Reader Agent to filter out cells from the volume dataset that are
intersected by iso-surface. Filter Agent then interpolates along cell edges and carries
the results back to the main visualization host over the network. Mapper Agent at the
main visualization host then computes the iso-surfaces (iso-surface extraction) and
produces triangle/polygon (geometry transformation) using the interpolation values
and marching cube cases passed from the Filter Agent. It then invokes a projection
module to project the triangles/polygons data to the viewing plane and maps them to
the screen coordinates. Mapper Agent also invokes a rasterization module to render
screen coordinates of triangle vertices along with the colors at the vertices into frame
buffer. The Viewer Agent receives rendered images from Render Agent and displays
them to the users. Render Agent can also carry the triangles as its current computation
state to the client and does the rendering locally if the client host has sufficient
resources and the network latency is high. This guarantees immediate display of the
rendered images and avoid transferring them over the congested network.

Figure 5. Visualization Agents Migration Scenarios

14

In scenario (c), the volume dataset is located on the main visualization host.
Assuming the client host has the capacity to do the mapping and rendering tasks.
Render Agent and Mapper Agent both migrate to the client host. Triangle setup and
rendering are both done on the client. In this scenario, local interaction for viewpoint
changes without delay due to network latency is allowed. A large volume dataset
stored on the remote server can be visualized over the latency network without the
need of transferring the whole set of data to the client machine.

In scenario (d), the volume dataset is stored on a remote data host. Reader Agent
moves to the data host, and moves back to the main visualization host with the
retrieved data. This scenario demonstrates the flexibility of mobile agents in the
situation where the location of the data cannot be determined at the design time.

4.5. Agents Communication

In this section, we propose a “mailbox” approach as communication mechanism for
sensor agents and visualization agents. To choose an efficient communication method
for a multi-agent system is a challenge. We therefore investigated “Procedure call”,
“Callback” and “Mailbox” mechanisms. With the callback mechanism, agent A calls
agent B and then continues on with its tasks. When agent B has done whatever it was
asked to do, it calls back agent A and passes the result. Agent A has to stop the
current job to deal with the callback (windows system, Java AWT and Swing are all
using callback). Procedure call works in the way as agent A calls agent B and waits
until B has some result. Agent B may work for a while and realizes that it needs
something else from Agent C and then it calls C and waits for C to reply. Unlike the
callback mechanism, procedure call works in a sequential mode; it is easy to be
followed. With the mailbox mechanism, agent A asks agent B and tells B to put the
finished result in its mailbox. A then goes about its business checking the mailbox
periodically to see if B is finished. Figure 6 depicts the communications of
visualization modules in a pipeline.

Figure 6. Mailbox Mechanism

15

We favor the mailbox method over the other two communication mechanisms
because of two compelling reasons.

(1) It allows asynchronous processing: Agents are, by their very nature,
autonomous, independent, distributed software entities. In an Internet
environment, with its inherent delay (network latency), agents cannot afford
to wait for something they need at some future point (compared to the
procedure call mechanism).

(2) Easy to trace flow of execution: the mailbox method avoids hiding flow of

execution. In a distributed system with processing often spread across a
number of machines in a network, debugging and tracing of the flow of
execution is difficult (as with the callback mechanism).

Although the mailbox mechanism is pragmatically more difficult to implement than
either of callback and procedure call mechanisms, it allows for asynchronous
processing while at the same time avoiding the problem of a confusing flow of
execution. These two are important factors in distributed systems.

4.6. Implementation Environment

The test environmetn consists of a cluster of high-end graphics workstations (to be
sufficient to provide a network of host PCs which provide various processing powers
of different work loads), as in addition to the existing visualization servers for an
implementation and testing enviroment of our prototype systems within the BandViz
project. Our visualization agents migrate among the network for execution of
computation according to the changing network bandwidth and system resource
situations on the host computers. Network traffic patterns similar to or close to the
real life Interent environment is being simulated through intentionally sending of vast
amount of video files over the network between host PCs within the LAN of our test
environment (so that it will not interfer with the regular LAN).

16

5. CONCLUSION AND FUTURE WORK

Voyager provides an agent framework for mobility and autonomy of code. We have
so far explored the partial functionality of this toolkit. There are still technical
difficulties of moving our visualization codes around the network with Voyager due
to version incompatibility between Voyager and JDK.

The working prototype of Java mobile visualization agents should have the following
characteristics:

• Mobility: Agents can carry their codes, data and execution state with them
from one computer to another across the network.

• Autonomy: Algorithms implemented in the code of agents enable them to
make local decisions on what to do, where to go and when to go.

• Concurrency: Multiple agents can be dispatched simultaneously to
accomplish various parts of a task in parallel. For example, processing of
multiple slices of a volume data set.

• Local interaction: Mobile visualization agents interact with local entities,
such as data source and stationary agents (sensor agents), through method
invocation, while interaction with remote entities is by message passing.

• Rapid response: An agent can visit several hosts, interacting with local
entities at each host, and can return to its home base in only a few seconds.

As our work on AVAM has not yet produced any quantative results for comparision
against conventional visualization system design for network applications, we can
only argue th benefits of AVAM and its contributions to the field of Internet-based
visualiation on a qualitative basis. We are confident that agent design will take an
important role to advance the state of the art for visualization via the Internet. In the
near future, we plan to continue implementing AVAM and realize our vision of an
agent-based visualization system for networked applications.

17

6. REFERENCES

1. Anupam, V. et.al.: Distributed and Collaborative Visualization. Computer,

Los Alamitos, CA, Vol.27(7). pp.37-43, July 1994.
 at http://www.ticam.utexas.edu/CCV/projects/shastra/
2. Brodlie K., et al, Web-based Visualization: A Client Side Approach. IEEE

Workshop on Distributed Visualization Systems, 1998.
3. Brooks, F.P. The Mythical Man-Mouth, Addison-Wesley, Reading, Mass.,

1975.
4. Coleman, J.: TeleInViVo, Fraunhofer – Center for Research in Computer

Graphics.
http://www.crcg.edu/projecs/medvis/TeleInViVo/Publicity/cyberedge.html

5. Elvins, T.T.: Volume Visualization in a Collaborative Computing
Environment, Computer&Graphics, Oxford, Vol.20(2), pp.219-222, 1996.

6. Engel K, Westermann R, and Ertl T, Isosurface Extraction Techniques for
Web-based volume Visualization, Proceedings IEEE Visualization 1999, IEEE
Visualization Conference 1999.

7. Forslund, D.: TeleMed, http://www.acl.lanl.gov/TeleMed
8. Forslund, D.: CORBAmed, http://www.omg.org/homepages/corba med/
9. Gallimore, R.J., et al, (1998) 3D Scientific Data Interpretation using

Cooperating Agents, Proc. 3rd Int. Conference on the Pratical Applications of
Agents and multi-Agent Systems (PAAM-98), London, UK, 47-65.

10. Goebel, S., WebVizard: Intelligent System for Geodata Visualization and CBT
in WWW, Proceedings of Computer Graphics International'98, Los Alamitos,
CA: IEEE Computer Society Press, 1998, pp.113-122.

11. Goebel, S., WebVizard: Intelligent Geodata Visualization with JAVA,
http://www.igd.fhg.de/igd-a5/projects/web_viz.html.en, IGD, Fraunhofer,
Germany, 1999.

12. Gobbetti E, and Bouvier E, Time-Critical multiresolution Scene Rendering,
Proceedings IEEE Visualization 1999, IEEE Visualization Conference 1999.

13. Haber, R. B.; Mcnabb, D. A., Visualization Idioms: A Conceptual model for
Scientific Visualization Systems, Nielson, G.M.; Shriver, B.D. (Eds.),
Visualization in Scientific Computing, IEEE, pp.74-93, 1990.

14. Hoppe H.. Efficient implementation of progressive meshes. Computers &
Graphics, Vol. 22, No. 1, 1998, pp. 27-36. (Other version available as MSR-
TR-98-02.)

15. Ingrand, F.F.; Georgeff, M.P., and Rao, A.S., (1992) An Architecture for Real
Time Reasoning and System Control, IEEE Expert 7 (6).

16. Jennings, N.R.: On Agent-based Software Engineering, Artificial Intelligence,
Vol.117(2000), pp.277-296, Elservier Science, UK., 2000.

17. Jennings, N.R. and Wooldridge M.; Agent-oriented Software Engineering, in:
J. Bradshaw (Ed.), Handbook of Agent Technology, AAAI/MIT Press, 2000.

18. Jern M., NOVICE: Network-Oriented Visualization in the Clinical
Environment, A Work in Progress Project,
http://www.man.ac.uk/MVC/projects/NOVICE/, MVC, 1999.

19. Jern M., “THIN” vs. “FAT” Visualization Client, Computer Graphics
International, IEEE, pp.772-788, June 1998.

20. Khan, E. and Unal F.A.: A Fuzzy Finite State Machine Implementation Based
on a Neural Fuzzy System, IEEE 1994, pp.1749-1754.

18

21. Klir, G.J. and Yuan B.: Fuzzy Sets and Fuzzy Logic: Theory and Application,
New York. Prentice Hall, 1995.

22. Klosowski J. T., and Silva C. T., Rendering on a Budget: A Framework for
Time-Critical Rendering, Proceedings Proceedings IEEE Visualization 1999,
IEEE Visualization Conference 1999.

23. Lefer, W., A Distributed Architecture for a Web-based Visualization Service,
Proceedings of 9th Eurographics Workshop on Visualization in Scientific
Computing, Blaubeuren, Germany, Apr. 1998.

24. Lefer, W., and Pierson J-M, Dynamic Distributed Environment for Data
Visualization on the World Wide Web, Proceedings of IEEE Workshop on
Distributed Visualization System (in conjunction with the IEEE
Visualization’98 Conference), Research Triangle, NC, Oct. 1998.

25. Lesser, V.R. and Corkill, D.D., (1981) Functionally Accurate, Co-operative
Distributed Systems, IEEE Transactions on Systems Man and cybernetics 11
(1) 81-96.

26. Levoy, M.: Efficient Ray-Tracing of Volume Data. ACM transactions on
Graphics, New York, Vol.9, No. 3, July 1990.

27. Lorensen, W.E.: Cline, H.E.: Marching Cubes: A High resolution 3D Surface
Construction Algorithm, Computer Graphics, New York, Vol.21, No.4, July
1987.

28. Meyer, J., et al., InVis: Interactive Visualization of Medical Data Sets, at the
http://davinci.informatik.uni-kl.de/~jmeyer/InVIS/eng/invis.htm, Department
of Computer Science, University of Kaiserslautern, Germany, June 1997.

29. Meyer, J., et al., Interactive Visualization of Hybrid Medical Data Sets,
Proceedings of WSCG’97 The Fifth International Conference in Central
Europe on Computer Graphics and Visualization'97, 1997.

30. Michaels C.; VizWiz: A Java Applet for Interactive 3D Scientific Visualization
on the Web, http://www.sdsc.edu/vizwiz/, Proc. IEEE Visualization’97,
pp.261-267, 1997.

31. Munir-ul M. Chowdhury and Yun Li, Evolutionary Reinforcement Learning
for Neurofuzzy Control, Technical Report, CSC-96020, Faculty of
Engineering, Glasgow G12 8QQ, Scotland, UK, 1997, URL:
http://www.mech.gla.ac.uk/Research/Control/Publications/Reports/csc96020.p
s

32. Science3D, Science3D.com: Learn about Science over the Web with 3D
Animations and Visualization, http://www.science3d.com/, April 1999.

33. TeleMed, User Manual: Graphical patient record (GPR) Window, at
http://www.acl.lanl.gov/TeleMed

34. Trapp J. and Pagendarm H-G., A Prototype for a WWW-based Visualization
Services. 8th EG Workshop on ViSC, Boulogne sur Mer, 28-30 April, 1997.

35. Ulmer, H.; and Lindenbeck, Ch.: Geology Meets Virtual Reality: VRML
Visualization Server Applications, Proceedings of the WSCG’98 6th
International Conference in Central Europe on Computer Graphics and
Visualization’98, Plzen, Czech Republic, 1998.

36. Watkins, C.: Learning from Delayed Rewards, Thesis, University of
Cambridge, 1989, England

37. Wood, J.D.; Brodlie, K.W. and Wright H., Visualization over the World Wide
Web and its Application to Environmental Data, Proceedings IEEE
Visualization’96, pp.81-86, 1996.

19

38. Wooldridge M.: Agent-based software engineering, IEE Proc. Software
Engineering 144 (1) (1997) 26—37

Visualization Over the Internet

21

Appendix A. Voyager Agent Toolkit

ObjectSpace Voyager™ ORB 3.2 (Object Request Broker) is a Java agent-enhanced object
request broker (ORB) that provides a distributed system architecture for developing
mobile and autonomous software. The toolkit can be found at the company web site of
ObjectSpace at http://www.objectspace.com

	Adaptive Visualization over the Internet
	
	
	
	
	
	
	Abstract

	1.	INTRODUCTION
	2. 	ADAPTIVE VISUALIZATION VIA THE INTERNET
	2.1.	Adaptive Visualization Agents Model for Internet Applications
	2.2.	The Current Research Challenges and Problems
	2.3.	The Proposed Solution and its Scientific Contributions
	3.	RELATED WORK
	3.1.	Web-based systems (based on a client/server architecture)
	3.3.	Collaborative Visualization In a Network Environment
	3.4.	Adaptive Dynamical System Visualization

	Figure 1.	3D visualization of the Lorenz equations
	4.	THE PROPOSED AVAM
	4.1.	Motivations
	4.2.	An Overview of the Proposed System
	4.3.	AVAM Visualization Agents Architecture

	Figure 4.	Visualization Agents Architecture
	
	
	
	
	4.5.	Agents Communication

	Figure 6. Mailbox Mechanism
	
	
	
	
	4.6.	Implementation Environment
	5.	CONCLUSION AND FUTURE WORK

