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Abstract

This paper presents a method that can replace the small and medium size lightsources by their effect in non-
diffuse global illumination algorithms. Incoming first-shot is a generalization of a preprocessing technique called
the first-shot that was developed for speeding up global diffuse radiosity algorithms. Alternatively, it can also be
approached as a generalization of the direct-lightsource computation involved in gathering type methods. In order
to reduce the prohibitive memory requirements of the original first-shot when it is applied to non-diffuse scenes
in a direct manner, the proposed new method computes and stores only the incoming radiance generated by the
lightsources and the reflected radiance is obtained from the incoming radiance on the fly taking into account the
local BRDF. Since the radiance function of the reflection is smoother and flatter than the original lightsource
function, this replacement makes the integrand of the rendering equation have significantly smaller variation,
which can speed up global illumination algorithms. The paper also discusses how the first-shot technique can be
built into a stochastic iteration algorithm using ray-bundles, and provides run-time statistics.

Keywords: Non-diffuse global illumination, stochastic it-  port
eration, Monte-Carlo quadrature, global methods, finite-

element techniques, first-shot TL(X w) Z/L(h(xa—d)v(‘)’)' fr(w',% w) - cost’ do
Q
3)
whereL (X, w) and L%(X,w) are the radiance and emission
1. Introduction of the surface in poink at directionw, Q is the directional

S ] ] o sphereh(, o) is the visibility function defining the point
Global illumination a_lgorlthms aim at obtfimlng the power  that is visible from poing at directiondd, fr (o, %, w) is the
detected by a collection of measuring devices. The measure-p;_girectional reflection/refraction function, aidis the an-

ment process is characterized by the following equation gle between the surface normal and directiedd (figure 1).

plete right side (which equals 19 recursively. If the inte-
gral operator is a contraction, this provides the solution in
whereL (¥, w) is theradiance, 8 is the angle between the sur-  the form of an infinite series:
face normal a_nd dire_ctiom andV\le()‘_i, w) is t_hesensitivity L=L®+TL=Le4 T (Lo TL) =
of the measuring device. A measuring device can detect, for
example, the power reaching the eye through a pixel. (Le+ T(L 4+ T(Lo+..)...). )

//L(V, ) - cosH-WE(Y, w) dy deo = ML, (1) Let us substitute functioh in the right side by the com-
sQ

The radiance function can be obtained by solvingrtme Thus the measured power is
dering equation 10 that has the following form: e e e
ML=ML"+T(L"+T(L"+...)...). (5)

L=L°+7L. 2
Random-walk?® and stochastic iteratioPt algorithms
In this integral equation, operat@rdescribes the lighttrans-  evaluate the integrals of this formula by Monte-Carlo
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the value of the integraf L' (w) dw everywhere in the do-
Q
main.

One way of reducing the variance of the Monte-Carlo
integration is the application of some form ishportance
sampling 17, which means thap(w’) mimics the integrand
L"(w') to makeL' (w')/p(w’) approximately constant. Un-
fortunately, the integrand of the rendering equation is not
available explicitely, thus the probability density is usually
based only on the local BRDFS! — i.e. it mimics fr - cost’
instead of L®+ L") - fr -cos®’, which can be quite inaccurate.

Another possibility is a different formulation of the global
illumination problem as an integral, where the integrand is
significantly flatter. Since the problematic part is the incom-
ing radiance which stems both directly and indirectly from
the emission of the lightsources, we aim at replacing the
lightsource term by a different function which is flatter. For
quadrature. Monte-Carlo integration is justified by the facts €xample, we can replace the emissions of the lightsources
that its complexity does not grow with the dimension of the by their first reflection, which leads us to the core idea of the
domain of the integration and it does not accumulate the er- first-shot methods.
ror.

Figure 1: Geometry of the rendering equation

The integrals providing the solution of the rendering equa- 2. Thebasicidea of first-shot

tion have the following form: First-shot is a method that shoots the power of the small

TLE+T(L+..)..) =T (L + |_‘) = lightsources onto other surfaces, increase the emission of the
other surfaces by the reflection, then removes the original

/(LeJr Li) £, - cosd dod lightsources from the scene.

Q — —O—
_ I 2N
wherel' is the indirect illumination computed by the subse- P
qguent integration. Monte-Carlo estimates are accurate if the o A
integrand = + \
L™ (o) = (L®+L") - fr - cosd’ 5
is “flat”, i.e. close to constant, otherwise the estimates have

high variance. Let us examine this statement formally. Sup-
pose that this integral is evaluated by Monte-Carlo quadra- H Lep TL®
ture, thus it is converted to an expected value, which is esti-

mated by an average. Assume that a random direcfigs

sampled from a probability densify(«). The integral to be

computed is: Figure 2: First-shot technique

/Lr(w') dw' :/:((3)) -p(w) do' =
Q

Formally, the unknown radiandeis decomposed into two

e

terms:
{U( ] oo Lo L ©) L=L®4+L™ (8)
p(w N Z\ whereL®F is the emission of the small area and point light-
Estimatori” is also a random variable whose standard devi- SOUrcesL™ is the emission of the larger area lightsources
ation isa/v/N wherea? is and the reflected radiance. Substituting this into the render-
ing equation we have:
- / Lr / L' (w) dw | - p(w') do.  (7) LP LW = L8+ T(L® +L™). ©)
Expressind."P we obtain:
This standard deviation is smalllif (w')/p(w') is close to L™ = (L* =L+ TL®) £ TL". (10)
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Introducing the new lightsource term should be stored (this requirésdditional variables per
L =L®—L®P+ 7L (11) patch, whzeré is the number of point samples of the light-
sources¥2. The secondary, non-diffuse emission to a di-
which just replaces the point lightsourcé§”j by their sin- rection is computed from these irradiances. The method
gle reflection {'L®P), the equation fot."? is similar to the is feasible ifl is small, which is the case if the scene con-
original rendering equation: tains a few point lightsources and small area lightsources
LMP _ | & P (12) whose contribution can be accurately evaluated.

4. On-the-fly direct lightsource computation: Everything is
Note that when this equation is solved, integrand done simultaneously to the global illumination algorithm.
e, ek | i / This happens in gathering type random walk algorithms,

L7 (@) = (L7 +L7)- fr-cosh for instance in path tracing, when at each hit point shadow
is flatter than the original integrand. rays are traced towards the lightsources and the direct re-
flection of the visible lightsources is added to the radiance
of the hit point. This approach requires neither prepro-
cessing nor storage but is slower than the previous meth-
ods using finite-element tessellation.

Summarizing, first-shot computes the direct illumination
caused by the small lightsources, then removes these light-
sources from the scene during global illumination calcula-
tion, and adds them again at the end of the computation. First
shot is indispensable for all global methods and for all gath- ~ This paper discusses the incoming first-shot method and
ering type local methods. its application in a stochastic iteration algorithm.

The reflection of the small lightsources can be computed
in a preprocessing phase of the global illumination algo- 3. |ncoming first-shot of point light-sour ces
rithm, or simultaneously with the global illumination algo- o
rithm when it is needed. Furthermore, it is also possible to SUPPOSE that the scene containsoint lightsources at lo-
do some parts of the calculation in the preprocessing phaseCationsys, ...¥i with powers®y, ..., @y, respectively, then
while completing the computation on-the-fly with the global their reflection at poinkis:
illumination algorithm. | ®; - V(%i,%)

ep _
(TL )(27 ("‘)) iZ\ 4111?. —X|2
1. Classical first-shot: The reflected radiance is computed wheredy is the direction of lightsourcg @ is the angle be-
completely in the preprocessing phase. This method tweenwj and the surface normal, amyi,%) indicates the
works well in the radiosity setting, since in this case, the mutual visibility of X andy;. Suppose that the patch under
representation of the reflected radiance requires a diffuse consideration is patch and its area i9\. The average re-
“emission” in each patch, thus the memory overhead of flected radiance is:

. . . (W, %, w) -coshf, (13)
We can consider the following alternatives:

the first-shot is just one variable per patch. However, in o o 1 .
non-diffuse scenes the classical first-shot has prohibitive  (7L%)j(w) = (TL®)j(w) = A /(TL P)(% w) dx =
memory requirements, since even if the original light- ! Aj

sources are diffuse, their reflection may have general di-

rectional function, which requires the representation of L1 ®; V(¥ %) , .

the complete reflected, non-diffuse radiance function. If ZA— iy — A2 - fr(wy, X, w) - cosh; dX. (14)
the directional variation of the radiance is represented by =171 i '

n basis functions (i.en is the number of small solid an-
gles in which the radiance can be supposed to be con-
stant) in each patch, then the method requirasw vari-
ables for each patch.

2. Diffuse first-shot: The BRDF, the light-transport opera-
tor, and the reflected radiance are decomposed into dif-
fuse and non-diffuse components and the previous first-
shot is applied only to the diffuse reflected radiance. This
method can be used in those finite-element, non-diffuse
global illumination algorithms which can make a distinc-
tion between the first and the other bounces of the light.

3. Incoming first-shot: The incoming radiance is computed The integral in equation (14) can also be evaluated on the
in the preprocessing phase and the reflected radiance issix window surfaceswW) that form a cube around the light-
obtained from the incoming radiance on the fly. Since source. Note that this is similar to the famous hemicube ap-
the surfaces can also be non-diffuse, the incoming radi- proach of the diffuse radiosity probleinin fact, first-shot
ance received by the patches from each point lightsource requires the vertex-patch form factors that can be computed

To compute the reflection of a lightsource at a point, the vis-
ibility of the lightsource from the point must be determined.
We can useshadow rays evaluated by ray-shooting, but this

is rather slow. Another alternative is to exploit the image
synthesis hardware in the following way. The eye is put at
the lightsource and the window is defined as one of the faces
of a cube placed around the eye. Rendering the images for
each faces using constant shading and using the index of the
patches as color values, the visible areas of the patches from
the lightsource can be determined.
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/\ pixels — thendP = 4f2/R?. If the BRDF can be assumed
to beﬂ-((q’,w) in patch j, then the reflected radiance can
be decomposed into 3 factors: the power spectrum of the
it iiaiiiiiy lightsourced;, the BRDFﬂ- (wf, ) which is also a spectrum
Ty and is the only factor which depends on viewing directign
I 6 ] and a scalar factor:
T v 1 3
¥ point i - + Tij TRA, peEPJ cosBj.
3 lightsource I These scalar factors are computed and stored at each patch,
T - which requires just one float variable per each patch and each
AR point lightsource.
windowsW
If variablesr;j are available, then the incoming first-shot
Figure 3: Computation of the lightsource visibility by hard- phase is complete. During global illumination when the re-
ware flected radiancé7L*P)(w) is needed at poirk of patchj,

this is computed on the fly from the stored scalar parameter
rij, from the directions pointing fror to the lightsources

and from the power of the lightsources:
by the hemicube. In this section, we re-derive the basic for- P 9

mulae to show that they can also be used in cases when the ).
reflection is non-diffuse. (TL™) Z\(DI rij - 1 (of, @), 7)

To find formal expressions, let us express the solid angle
dQp, in which a differential surface arei is seen through

4. Small area light-sources
pixel areadp, both from the surface area and from the pixel g

area: Now let us discuss the computation of a single reflection of
dx-cosd  dB-cosd the light coming from a small area lightsourgsef emission
dQp = T—X2 g mzp, (15) L®(¥, w) to a pointk. The reflection at poirt is
11— 11—

ep —
where8p is the angle between direction pointingXdrom (TLH R w) =

yi and the normal of the window (figure 3). The distance

|Vi — P| between pixel poinp and the lightsourcg equals /Le(h(x’, —m’),oo’) . fr(w’,x w) - cost dw =
to f/cosBp wheref is the distance fron§; to the window

plane, that is also called tHecal distance. Using this and

equation (15), differential aredx can be expressed and sub- Le oD V(V. %
stituted into equation (14), thus we can obtain: / g, |)V—2|2 VAN fr(w,X,w)-cosd’ dy, (18)
(TLP)j(w) = °
whereQg s the solid angle in which lightsour&is visible,
V(5 %) cosg3 y is a running point on the lightsource afdis the angle
Z\A / n" (W), %, oo)~ 2 P dp. betweenw and the surface normal of the lightsourcég.at
]

The average reflected radiance of pajdh
LetPj be the set of pixels in which patgtis visible from the 1

lightsource.P; is computed by running a z-buffer/constant (TL®)j(w) = = -/(TLep)(X, w) dX =
shading rendering step for each sides of the window surface, J Al
assuming that the color of patghs j, then reading back the
“images”. The reflected radiance on paijcis approximated
by a discrete sum as follows:

(TL®)j(w) =

IY X2

(/J\

Ai / ) - €osB- V(¥,%) -cosh’ - fr(w', %, w) dx dy,
A

(19)
| The outer integral is estimated by trapezoidal rule. It means
q)zi . Zb fr (), %, w) ~cosG%~6P, (16) that the lightsource area is tessellated to triangles (or quadri-
4 4mtfeA| pe laterals). The integrand is evaluated at the common vertices

and is assumed to be linear between the vertices. If the num-

wheredP is the area of a single pixel in the image Rfis ber of vertices is, then the quadrature rule is:

the resolution of the image — i.e. the top of the hemicube
containsk x R pixels, while the side faces contaix R/2 (TL®Yj(w) =
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| e /
Si [ Lo(0) - co V(%K) o o
A A A/ 3l — X2 cosd; - fr(w, %, ) dX,
il

where§; is the total area of the lightsource triangles that
share vertex and factor ¥3 comes from the fact that a tri-
angle has 3 vertices.

Note that the inner integral is the same as the integral in
equation (14), with the substitution
D e / Si
— <Ly -cosB; - —-.
4.'.[ (yl ) (Q ) | 3
There is another slight difference in the window surface. A
one-sided area lightsource can emit light into that halfspace
which is “above” the plane of lightsource. Thus the window
surface becomest@micube (figure 4). An even better win-
dow surface is theubic tetrahedron 2, since it has just 3
faces while the hemicube has 5.

Summarizing the incoming first-shot from a small area
lightsource consists of the following steps. First the light-
source is decomposed into a triangle mesh. A hemicube or a
cubic tetrahedron is placed at each vegteof the mesh and
the visibility of the other surfaces are determined. Scalar fac-
tors

4S; - cosh; 3
i = area. Z, cosdp
RA; G
are stored in each patch.

The reflected radiance can be obtained from this scalar
factor during the global illumination computation in the fol-
lowing way:

(TL)j(@) = Y LoF) i (o, w). (20)

5. Application of theincoming first- shot to ray-bundle

based stochastic iteration Figure 4: Placement of the hemicube around a lightsource

In this section the incoming first-shot technique is applied to Point and the images on the 5 hemicube faces
stochastic iteration.

The ray-bundle based stochastic iterafibworks as fol-
lows. At each step of the iteration a uniformly distributed
random global direction is sampled, and the radiances of
all patches in the scene are transferred into this direction.
Having computed the transfer, each patch may have some
incoming radiance depending what is seen in selected direc- The combination of this method with the proposed incom-
tion. This incoming direction is reflected towards the eye, ing first-shot technigues is quite straightforward. At a given
which results in an image estimate. The average of image iteration step not only the incoming radiance of the previ-
estimates of subsequent iteration steps will provide the final ous transfer is reflected towards to new direction but also the
result. Note that in the next iteration step, when the radiance illumination of the lightsources that are associated with the
is transferred again in the new direction, the radiance is ob- given patch. Thus the overhead is juRDF computations
tained from the incoming radiance of the previous transfer. per each patch at each iteration, whérie the number of
Thus the method requires just one variable per patch which those point lightsources and vertices of the area lightsources
stores the incoming radiance of the previous iteration step. which are visible from the patch.
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incoming first-shot Figure 6 compares the speed of the convergence of
first shot stochastic iteration with and without the proposed incoming
e ) first-shot step. In figure 7 the timing and the image quality
Q < PTEVIOUS of the two methods can also be compared. For the first-shot,
radiance transfer . L . .
o, S . the area lightsource has been subdivided into a mesh of 8 tri-
v, » = <«— current radiance X . . .
T, % transfer angles and 9 vertices. The incoming first-shot phase took 55

seconds, which were needed by the S z-buffer/constant-
shading rendering steps and the reading and processing of
the generated images. A single radiance transfer by a ray-
bundle took 1.5 seconds without the first-shot results and 2
seconds when the incoming first-shot was also used. The 0.5
second overhead is due to the reflection of the result stored
by the incoming first-shot both towards the eye and towards
to next global direction.

eye transfer

D However, we can conclude that incoming first-shot is

global random worth for this small extra time, since the resulting algorithm

direction converges very quickly, and the image is almost fully con-

. verged after 2.5 minutes. Comparing the error curves, we
Sorrent can see that the stochastic iteration is about 10 — 20 times

»" global random direction faster with the incoming first-shot than without it.

computation of the image estimate in an iteration step ~ 7- Conclusions

This paper has presented a preprocessing method which re-
placed the emission of small and point lightsources by their
current reflection. This replacement makes the integrand signifi-
global random direction  cantly flatter, which improves most of the global illumina-
tion algorithm. Incoming first-shot requires the identification
PA > of the surface areas that can be seen from the sample points
* of the lightsources. We adapted the hemicube approach for
this calculation, inheriting also its deficiencies, which can be

image plane reduced by increasing the resolution of the hemicube. Note

v that in our approach the hemicube is placed just at a few

sample points, thus its performance and resolution are not

Figure 5: Ray-bundle stochastic iteration with incoming critical issues. The incoming first-shot method has also been
first-shot combined with ray-bundle based stochastic iteration, and we

come to the conclusion that incoming first shot pays off since
it significantly increases the convergence speed. With this
combination the global illumination of scenes of ten thou-
6. Simulation results sand patches becomes possible in a few minutes.
The presented algorithms have been implemented in C++in _ 1his method makes a greater part of the global illumina-
OpenGL environment. The running times have been mea- tion problem view-independent thus it provides a promising

sured on a PC with 300 MHz Pentium Il processor without framework for developing interactive walkthrough anima-

any graphics accelerators. The image and the hemicube reslions fgr non-diffuse global.lllumlnatlon rendgrlngs. Instead

olutions were 80t 800. of storing the complete radiance functiéri®, this approach
stores just the effect of the lightsources, thus the required

The scene of figure 7 contains a 3D Sierpiensky set and preprocessing time and the storage remain moderate.

has 22768 patches. The diffuse albedo of the patches in this

set is(0.18,0.06,0.12) on the wavelengths 400 nm, 552 nm

and on 700 nm, respect_ively. The specular albedmase-_ 8. Acknowledgements

length independent and is between 0.8 and 0.4 depending on
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Error of rendering the Sierpiensky set

Error of rendering as a function of time

1 1
j W\lh incoming first-shot j j j j WM‘] incomind first—shol‘
——————— Without first-shot -------
8 8
& 01lf - B & o01p
- o -
ha) . ha)
. q
0.01 L L 0.01 L L L L L
1 10 100 1000 0 100 200 300 400 500 600 700 800 900 1000

iterations

time (seconds)

Figure 6: Error of ray-bundle stochastic iteration with and without incoming first-shot

O iteration, 0 secs

first-shot+ 0 iteration, 50 secs

T

first-shat 10 iterations, 70 secs

100 iterations, 150 secs

47 iterations, 70 secs

first-shet50 iterations, 150 secs

Figure 7: Comparison of stochastic iteration without (upper-row) and with incoming first-shot (lower-row)
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