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Abstract
This paper presents a method that can replace the small and medium size lightsources by their effect in non-
diffuse global illumination algorithms. Incoming first-shot is a generalization of a preprocessing technique called
the first-shot that was developed for speeding up global diffuse radiosity algorithms. Alternatively, it can also be
approached as a generalization of the direct-lightsource computation involved in gathering type methods. In order
to reduce the prohibitive memory requirements of the original first-shot when it is applied to non-diffuse scenes
in a direct manner, the proposed new method computes and stores only the incoming radiance generated by the
lightsources and the reflected radiance is obtained from the incoming radiance on the fly taking into account the
local BRDF. Since the radiance function of the reflection is smoother and flatter than the original lightsource
function, this replacement makes the integrand of the rendering equation have significantly smaller variation,
which can speed up global illumination algorithms. The paper also discusses how the first-shot technique can be
built into a stochastic iteration algorithm using ray-bundles, and provides run-time statistics.

Keywords: Non-diffuse global illumination, stochastic it-
eration, Monte-Carlo quadrature, global methods, finite-
element techniques, first-shot

1. Introduction

Global illumination algorithms aim at obtaining the power
detected by a collection of measuring devices. The measure-
ment process is characterized by the following equation

Z

S

Z

Ω

L(~y;ω) �cosθ �W e(~y;ω) d~y dω=ML; (1)

whereL(~y;ω) is theradiance, θ is the angle between the sur-
face normal and directionω andWe(~y;ω) is thesensitivity
of the measuring device. A measuring device can detect, for
example, the power reaching the eye through a pixel.

The radiance function can be obtained by solving theren-
dering equation 10 that has the following form:

L = Le +T L: (2)

In this integral equation, operatorT describes the light trans-

port

T L(~x;ω) =
Z

Ω

L(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0 dω0

(3)
whereL(~x;ω) and Le(~x;ω) are the radiance and emission
of the surface in point~x at directionω, Ω is the directional
sphere,h(~x;ω0) is the visibility function defining the point
that is visible from point~x at directionω0, fr(ω0;~x;ω) is the
bi-directional reflection/refraction function, andθ0 is the an-
gle between the surface normal and direction�ω0 (figure 1).

Let us substitute functionL in the right side by the com-
plete right side (which equals toL) recursively. If the inte-
gral operator is a contraction, this provides the solution in
the form of an infinite series:

L = Le +T L = Le+T (Le+T L) =

(Le+T (Le +T (Le+ : : :) : : :): (4)

Thus the measured power is

ML =M(Le+T (Le +T (Le+ : : :) : : :): (5)

Random-walk20 and stochastic iteration21 algorithms
evaluate the integrals of this formula by Monte-Carlo
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Figure 1: Geometry of the rendering equation

quadrature. Monte-Carlo integration is justified by the facts
that its complexity does not grow with the dimension of the
domain of the integration and it does not accumulate the er-
ror.

The integrals providing the solution of the rendering equa-
tion have the following form:

T (Le +T (Le+ : : :) : : :) = T (Le+Li) =

Z

Ω

(Le +Li) � fr �cosθ0 dω0

whereLi is the indirect illumination computed by the subse-
quent integration. Monte-Carlo estimates are accurate if the
integrand

Lr(ω0) = (Le+Li) � fr �cosθ0

is “flat”, i.e. close to constant, otherwise the estimates have
high variance. Let us examine this statement formally. Sup-
pose that this integral is evaluated by Monte-Carlo quadra-
ture, thus it is converted to an expected value, which is esti-
mated by an average. Assume that a random directionω0 is
sampled from a probability densityp(ω0). The integral to be
computed is:

Z

Ω

Lr(ω0) dω0 =

Z

Ω

Lr(ω0)

p(ω0)
� p(ω0) dω0 =

E

�
Lr(ω0)

p(ω0)

�
� L̂r =

1
N

N

∑
i=1

Lr(ω0

i)

p(ω0

i)
: (6)

EstimatorL̂r is also a random variable whose standard devi-
ation isσ=

p
N whereσ2 is

σ2 =
Z

Ω

0
@Lr(ω0)

p(ω0)
�

Z

Ω

Lr(ω) dω

1
A

2

� p(ω0) dω0: (7)

This standard deviation is small ifLr(ω0)=p(ω0) is close to

the value of the integral
R
Ω

Lr(ω) dω everywhere in the do-

main.

One way of reducing the variance of the Monte-Carlo
integration is the application of some form ofimportance
sampling 17, which means thatp(ω0) mimics the integrand
Lr(ω0) to makeLr(ω0)=p(ω0) approximately constant. Un-
fortunately, the integrand of the rendering equation is not
available explicitely, thus the probability density is usually
based only on the local BRDFs9; 11 — i.e. it mimics fr �cosθ0

instead of(Le+Li) � fr �cosθ0, which can be quite inaccurate.

Another possibility is a different formulation of the global
illumination problem as an integral, where the integrand is
significantly flatter. Since the problematic part is the incom-
ing radiance which stems both directly and indirectly from
the emission of the lightsources, we aim at replacing the
lightsource term by a different function which is flatter. For
example, we can replace the emissions of the lightsources
by their first reflection, which leads us to the core idea of the
first-shot methods.

2. The basic idea of first-shot

First-shot is a method that shoots the power of the small
lightsources onto other surfaces, increase the emission of the
other surfaces by the reflection, then removes the original
lightsources from the scene.

+=

Lep LepT

Figure 2: First-shot technique

Formally, the unknown radianceL is decomposed into two
terms:

L = Lep+Lnp (8)

whereLep is the emission of the small area and point light-
sources,Lnp is the emission of the larger area lightsources
and the reflected radiance. Substituting this into the render-
ing equation we have:

Lep+Lnp = Le+T (Lep +Lnp): (9)

ExpressingLnp we obtain:

Lnp = (Le�Lep+T Lep)+T Lnp: (10)
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Introducing the new lightsource term

Le� = Le�Lep+T Lep (11)

which just replaces the point lightsources (Lep) by their sin-
gle reflection (T Lep), the equation forLnp is similar to the
original rendering equation:

Lnp = Le�+T Lnp
: (12)

Note that when this equation is solved, integrand

Lr�(ω0) = (Le�+Li�) � fr �cosθ0

is flatter than the original integrand.

Summarizing, first-shot computes the direct illumination
caused by the small lightsources, then removes these light-
sources from the scene during global illumination calcula-
tion, and adds them again at the end of the computation. First
shot is indispensable for all global methods and for all gath-
ering type local methods.

The reflection of the small lightsources can be computed
in a preprocessing phase of the global illumination algo-
rithm, or simultaneously with the global illumination algo-
rithm when it is needed. Furthermore, it is also possible to
do some parts of the calculation in the preprocessing phase
while completing the computation on-the-fly with the global
illumination algorithm.

We can consider the following alternatives:

1. Classical first-shot: The reflected radiance is computed
completely in the preprocessing phase. This method6

works well in the radiosity setting, since in this case, the
representation of the reflected radiance requires a diffuse
“emission” in each patch, thus the memory overhead of
the first-shot is just one variable per patch. However, in
non-diffuse scenes the classical first-shot has prohibitive
memory requirements, since even if the original light-
sources are diffuse, their reflection may have general di-
rectional function, which requires the representation of
the complete reflected, non-diffuse radiance function. If
the directional variation of the radiance is represented by
n basis functions (i.e.n is the number of small solid an-
gles in which the radiance can be supposed to be con-
stant) in each patch, then the method requiresn new vari-
ables for each patch.

2. Diffuse first-shot: The BRDF, the light-transport opera-
tor, and the reflected radiance are decomposed into dif-
fuse and non-diffuse components and the previous first-
shot is applied only to the diffuse reflected radiance. This
method can be used in those finite-element, non-diffuse
global illumination algorithms which can make a distinc-
tion between the first and the other bounces of the light.

3. Incoming first-shot: The incoming radiance is computed
in the preprocessing phase and the reflected radiance is
obtained from the incoming radiance on the fly. Since
the surfaces can also be non-diffuse, the incoming radi-
ance received by the patches from each point lightsource

should be stored (this requiresl additional variables per
patch, wherel is the number of point samples of the light-
sources)22. The secondary, non-diffuse emission to a di-
rection is computed from these irradiances. The method
is feasible ifl is small, which is the case if the scene con-
tains a few point lightsources and small area lightsources
whose contribution can be accurately evaluated.

4. On-the-fly direct lightsource computation: Everything is
done simultaneously to the global illumination algorithm.
This happens in gathering type random walk algorithms,
for instance in path tracing, when at each hit point shadow
rays are traced towards the lightsources and the direct re-
flection of the visible lightsources is added to the radiance
of the hit point. This approach requires neither prepro-
cessing nor storage but is slower than the previous meth-
ods using finite-element tessellation.

This paper discusses the incoming first-shot method and
its application in a stochastic iteration algorithm.

3. Incoming first-shot of point light-sources

Suppose that the scene containsl point lightsources at lo-
cations~y1; : : :~yl with powersΦ1; : : :;Φl , respectively, then
their reflection at point~x is:

(T Lep)(~x;ω) =
l

∑
i=1

Φi � v(~yi;~x)
4πj~yi�~xj2

� fr(ω0

i ;~x;ω) �cosθ0i ; (13)

whereω0

i is the direction of lightsourcei, θ0i is the angle be-
tweenω0

i and the surface normal, andv(~yi;~x) indicates the
mutual visibility of~x and~yi. Suppose that the patch under
consideration is patchj and its area isAj. The average re-
flected radiance is:

hT Lepi j(ω) = hT Lepi j(ω) =
1

A j
�
Z

A j

(T Lep)(~x;ω) d~x =

l

∑
i=1

1
A j
�
Z

A j

Φi � v(~yi;~x)
4πj~yi�~xj2

� fr(ω0

i ;~x;ω) �cosθ0i d~x: (14)

To compute the reflection of a lightsource at a point, the vis-
ibility of the lightsource from the point must be determined.
We can useshadow rays evaluated by ray-shooting, but this
is rather slow. Another alternative is to exploit the image
synthesis hardware in the following way. The eye is put at
the lightsource and the window is defined as one of the faces
of a cube placed around the eye. Rendering the images for
each faces using constant shading and using the index of the
patches as color values, the visible areas of the patches from
the lightsource can be determined.

The integral in equation (14) can also be evaluated on the
six window surfaces (W ) that form a cube around the light-
source. Note that this is similar to the famous hemicube ap-
proach of the diffuse radiosity problem8. In fact, first-shot
requires the vertex-patch form factors that can be computed
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Figure 3: Computation of the lightsource visibility by hard-
ware

by the hemicube. In this section, we re-derive the basic for-
mulae to show that they can also be used in cases when the
reflection is non-diffuse.

To find formal expressions, let us express the solid angle
dΩp, in which a differential surface aread~x is seen through
pixel aread~p, both from the surface area and from the pixel
area:

dΩp =
d~x �cosθ0i
j~yi�~xj2

=
d~p �cosθp

j~yi�~pj2
; (15)

whereθp is the angle between direction pointing to~x from
~yi and the normal of the window (figure 3). The distance
j~yi �~pj between pixel point~p and the lightsource~yi equals
to f=cosθp where f is the distance from~yi to the window
plane, that is also called thefocal distance. Using this and
equation (15), differential aread~x can be expressed and sub-
stituted into equation (14), thus we can obtain:

hT Lepi j(ω) =

l

∑
i=1

1
A j
�
Z

W

Φi � v(~yi;~x)
4π

� fr(ω0

i ;~x;ω) �
cosθ3

p

f 2 d~p:

Let Pj be the set of pixels in which patchj is visible from the
lightsource.Pj is computed by running a z-buffer/constant
shading rendering step for each sides of the window surface,
assuming that the color of patchj is j, then reading back the
“images”. The reflected radiance on patchj is approximated
by a discrete sum as follows:

hT Lepi j(ω)�

l

∑
i=1

Φi

4πf 2A j
� ∑

p2Pj

fr(ω0

i ;~x;ω) �cosθ3
p �δP; (16)

whereδP is the area of a single pixel in the image. IfR is
the resolution of the image — i.e. the top of the hemicube
containsR�R pixels, while the side faces containR�R=2

pixels – thenδP = 4 f2=R2: If the BRDF can be assumed
to be f̃ j(ω0

i ;ω) in patch j, then the reflected radiance can
be decomposed into 3 factors: the power spectrum of the
lightsourceΦi, the BRDFf̃ j(ω0

i ;ω)which is also a spectrum
and is the only factor which depends on viewing directionω,
and a scalar factor:

ri j =
1

πR2A j
� ∑

p2Pj

cosθ3
p:

These scalar factors are computed and stored at each patch,
which requires just one float variable per each patch and each
point lightsource.

If variablesri j are available, then the incoming first-shot
phase is complete. During global illumination when the re-
flected radiancehT Lepi j(ω) is needed at point~x of patch j,
this is computed on the fly from the stored scalar parameter
ri j, from the directions pointing from~x to the lightsources
and from the power of the lightsources:

hT Lepi j(ω) =
l

∑
i=1

Φi � ri j � f j
r (ω0

i ;ω): (17)

4. Small area light-sources

Now let us discuss the computation of a single reflection of
the light coming from a small area lightsourceS of emission
Le(~y;ω) to a point~x. The reflection at point~x is

(T Lep)(~x;ω) =

Z

ΩS

Le(h(~x;�ω0);ω0) � fr(ω0;~x;ω) �cosθ0 dω0 =

Z

S

Le(~y;ω0) �cosθ � v(~y;~x)
j~y�~xj2

� fr(ω0;~x;ω) �cosθ0 d~y; (18)

whereΩS is the solid angle in which lightsourceS is visible,
~y is a running point on the lightsource andθ is the angle
betweenω0 and the surface normal of the lightsource at~y.

The average reflected radiance of patchj is

hT Lepi j(ω) =
1

A j
�
Z

A j

(T Lep)(~x;ω) d~x =

Z

S

1
A j
�
Z

A j

Le(~y;ω0) �cosθ � v(~y;~x)
j~y�~xj2

�cosθ0 � fr(ω0;~x;ω) d~x d~y;

(19)
The outer integral is estimated by trapezoidal rule. It means
that the lightsource area is tessellated to triangles (or quadri-
laterals). The integrand is evaluated at the common vertices
and is assumed to be linear between the vertices. If the num-
ber of vertices isl, then the quadrature rule is:

hT Lepi j(ω)�
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l

∑
i=1

Sti

A j
�
Z

A j

Le(~yi;ω0

i) �cosθi � v(~yi;~x)
3j~yi�~xj2

�cosθ0i � fr(ω0

i ;~x;ω) d~x;

whereSti is the total area of the lightsource triangles that
share vertexi and factor 1=3 comes from the fact that a tri-
angle has 3 vertices.

Note that the inner integral is the same as the integral in
equation (14), with the substitution

Φi

4π
( Le(~yi;ω0

i) �cosθi �
Sti

3
:

There is another slight difference in the window surface. A
one-sided area lightsource can emit light into that halfspace
which is “above” the plane of lightsource. Thus the window
surface becomes ahemicube (figure 4). An even better win-
dow surface is thecubic tetrahedron 2, since it has just 3
faces while the hemicube has 5.

Summarizing the incoming first-shot from a small area
lightsource consists of the following steps. First the light-
source is decomposed into a triangle mesh. A hemicube or a
cubic tetrahedron is placed at each vertex~yi of the mesh and
the visibility of the other surfaces are determined. Scalar fac-
tors

ri j =
4Sti �cosθi

3R2A j
� ∑

p2Pj

cosθ3
p

are stored in each patch.

The reflected radiance can be obtained from this scalar
factor during the global illumination computation in the fol-
lowing way:

hT Lepi j(ω) =∑
i

Le(~yi;ω0

i) � ri j � f j
r (ω0

i ;ω): (20)

5. Application of the incoming first- shot to ray-bundle
based stochastic iteration

In this section the incoming first-shot technique is applied to
stochastic iteration.

The ray-bundle based stochastic iteration21 works as fol-
lows. At each step of the iteration a uniformly distributed
random global direction is sampled, and the radiances of
all patches in the scene are transferred into this direction.
Having computed the transfer, each patch may have some
incoming radiance depending what is seen in selected direc-
tion. This incoming direction is reflected towards the eye,
which results in an image estimate. The average of image
estimates of subsequent iteration steps will provide the final
result. Note that in the next iteration step, when the radiance
is transferred again in the new direction, the radiance is ob-
tained from the incoming radiance of the previous transfer.
Thus the method requires just one variable per patch which
stores the incoming radiance of the previous iteration step.

Figure 4: Placement of the hemicube around a lightsource
point and the images on the 5 hemicube faces

The combination of this method with the proposed incom-
ing first-shot techniques is quite straightforward. At a given
iteration step not only the incoming radiance of the previ-
ous transfer is reflected towards to new direction but also the
illumination of the lightsources that are associated with the
given patch. Thus the overhead is justl BRDF computations
per each patch at each iteration, wherel is the number of
those point lightsources and vertices of the area lightsources
which are visible from the patch.
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Figure 5: Ray-bundle stochastic iteration with incoming
first-shot

6. Simulation results

The presented algorithms have been implemented in C++ in
OpenGL environment. The running times have been mea-
sured on a PC with 300 MHz Pentium II processor without
any graphics accelerators. The image and the hemicube res-
olutions were 800�800.

The scene of figure 7 contains a 3D Sierpiensky set and
has 22768 patches. The diffuse albedo of the patches in this
set is(0:18;0:06;0:12) on the wavelengths 400 nm, 552 nm
and on 700 nm, respectively. The specular albedo iswave-
length independent and is between 0.8 and 0.4 depending on
the viewing angle. The non-diffuse reflection was modeled
by the physically plausible stretched Phong model14. The
“shine” parameter is 3.

Figure 6 compares the speed of the convergence of
stochastic iteration with and without the proposed incoming
first-shot step. In figure 7 the timing and the image quality
of the two methods can also be compared. For the first-shot,
the area lightsource has been subdivided into a mesh of 8 tri-
angles and 9 vertices. The incoming first-shot phase took 55
seconds, which were needed by the 9�5 z-buffer/constant-
shading rendering steps and the reading and processing of
the generated images. A single radiance transfer by a ray-
bundle took 1.5 seconds without the first-shot results and 2
seconds when the incoming first-shot was also used. The 0.5
second overhead is due to the reflection of the result stored
by the incoming first-shot both towards the eye and towards
to next global direction.

However, we can conclude that incoming first-shot is
worth for this small extra time, since the resulting algorithm
converges very quickly, and the image is almost fully con-
verged after 2.5 minutes. Comparing the error curves, we
can see that the stochastic iteration is about 10 – 20 times
faster with the incoming first-shot than without it.

7. Conclusions

This paper has presented a preprocessing method which re-
placed the emission of small and point lightsources by their
reflection. This replacement makes the integrand signifi-
cantly flatter, which improves most of the global illumina-
tion algorithm. Incoming first-shot requires the identification
of the surface areas that can be seen from the sample points
of the lightsources. We adapted the hemicube approach for
this calculation, inheriting also its deficiencies, which can be
reduced by increasing the resolution of the hemicube. Note
that in our approach the hemicube is placed just at a few
sample points, thus its performance and resolution are not
critical issues. The incoming first-shot method has also been
combined with ray-bundle based stochastic iteration, and we
come to the conclusion that incoming first shot pays off since
it significantly increases the convergence speed. With this
combination the global illumination of scenes of ten thou-
sand patches becomes possible in a few minutes.

This method makes a greater part of the global illumina-
tion problem view-independent thus it provides a promising
framework for developing interactive walkthrough anima-
tions for non-diffuse global illumination renderings. Instead
of storing the complete radiance function16; 19, this approach
stores just the effect of the lightsources, thus the required
preprocessing time and the storage remain moderate.
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