
Bridging Multiple User Interface Dimensions with Augmented Reality

Dieter Schmalstieg
Vienna University of Technology,

Austria
dieter@cg.tuwien.ac.at

Anton Fuhrmann
Research Center for Virtual Reality
and Visualization, Vienna, Austria

fuhrmann@vrvis.at

Gerd Hesina
Vienna University of Technology,

Austria
hesina@cg.tuwien.ac.at

Figure 1: Collaborative work in Studierstube: 3D
painting application window (with focus, middle) and

object viewer window (without focus, lower right)

Abstract

Studierstube is an experimental user interface system,
which uses collaborative augmented reality to
incorporate true 3D interaction into a productivity
environment. This concept is extended to bridge multiple
user interface dimensions by including multiple users,
multiple host platforms, multiple display types, multiple
concurrent applications, and a multi-context (i. e., 3D
document) interface into a heterogeneous distributed
environment. With this architecture, we can explore the
user interface design space between pure augmented
reality and the popular ubiquitous computing paradigm.
We report on our design philosophy centered around the
notion of contexts and locales, as well as the underlying
software and hardware architecture. Contexts
encapsulate a live application together with 3D (visual)
and other data, while locales are used to organize
geometric reference systems. By separating geometric
relationships (locales) from semantic relationships
(contexts), we achieve a great amount of flexibility in the
configuration of displays. To illustrate our claims, we
present several applications including a cinematographic
design tool which showcases many features of our system.

Figure 2: Two Studierstube users working jointly on
multiple applications in front of a large screen, usually

with passive stereo glasses (not shown)

1. Introduction

Technical progress in recent years gives reason to believe
that virtual reality (VR) has a good potential as a user
interface of the future. At the moment, VR applications
are usually tailored to the needs of a very specific domain,
such as a theme park ride or virtual mock-up. We believe
that augmented reality (AR), the less obtrusive cousin of
VR, has a better chance to become a viable user interface
for everyday productivity applications, where a large
variety of tasks has to be covered by a single system.
Rather than forcing a user to deal exclusively with a
virtual environment, less rigid approaches like UNC’s
office of the future [12] embed VR and AR tools in a
conventional work environment.

In a more general sense, this principle is known as
ubiquitous computing [22], describing a world where
computers are embedded in large numbers in our everyday
surrounding, allowing constant access to networked
resources. Some researcher argue that AR is the opposite
of ubiquitous computing, because users carry their
computing devices – such as head-mounted (HMDs)
displays - to the places they go to rather than expecting
the computing devices to be there already.

We believe that these two concepts are just extremes
on a scale, and that a lot of useful user interface concepts
can be found in between. Our current work on the
Studierstube project, which started as a pure augmented
reality setup [15], focuses on experimenting with the
possibilities of new user interfaces that incorporate AR.
For efficient experimentation, we have implemented a
toolkit that generalizes over multiple user interface
dimensions, allowing rapid prototyping of different user
interface styles. The Studierstube user interface spans the
following dimensions:

1.1. Multiple users

The system allows multiple users to collaborate (Figure 1,
Figure 2). While we are most interested in computer-
supported face-to-face collaboration, this definition also
encompasses remote collaboration. Collaboration of
multiple users implies that the system will typically
incorporate multiple host computers. However, we also
allow multiple users to interface with a single host (e.g.
via a large screen display), and a single user to interface
with multiple computers at once. On a very fundamental
level, this means that we are dealing with a distributed
system. It also implies that multiple types of output
devices such as HMDs, projection-based displays, hand-
held displays etc. can be handled and that the system can
span multiple operating systems.

1.2. Multiple contexts

Contexts are the fundamental units from which the
Studierstube environment is composed. A context is a
union of data itself, the data’s representation and an
application which operates on the data. Contexts are thus
structured along the lines of the model-view-controller
(MVC) paradigm known from Smalltalk’s windowing
system [6]: Studierstube’s data, representation, and
application correspond to MVC’s model, view, and
controller, respectively. Not surprisingly, this structure
makes it straightforward to generalize established
properties of 2D user interfaces to three dimensions.

In other words, a context encapsulates visible and
invisible application-specific data together with the
responsible application. The notion of an application is
therefore completely hidden from the user, in particular,
users never have to “start” an application, they simply
open a context of a specific type. Compared to the
desktop metaphor, this approach is much closer to the
concept of an information appliance, which is always
“on” (compare [2]).

In a conventional desktop system, the data
representation of a document is typically a single 2D
window. Analogously, in our three-dimensional user
interface, we define a context’s representation as a three-
dimensional structure contained in a certain volume – a

3D-window. Unlike its 2D counterpart, a context can be
shared by any group of users, and even more importantly,
can be present in multiple locales simultaneously by
replication.

Every context is an instance of a particular application
type. Contexts of different types can exist concurrently,
which results in multi-tasking of multiple applications, a
feature which is well established within the desktop
metaphor, but rarely implemented in virtual environments.
Moreover, Studierstube also allows multiple contexts of
the same type to co-exist, allowing a single application to
work with multiple data sets. In the desktop metaphor, this
feature is generally known as a multiple document
interface. Note that it differs from simply allowing
multiple instances of the same application which are
unaware of each other. Multiple contexts of the same type
are aware of each other can share features and data. For
example, consider the shared “slide sorter” from section 5.

LAN

Host 2

Host 3

Host 1

virtual
table

Locale B

Locale A

Figure 3: Multiple locales can simultaneously exist in
Studierstube. They can be used to configure different
output devices and to support remote collaboration

1.3. Multiple locales

Locales correspond to coordinate systems in the virtual
environment. They usually coincide with physical places
(such as a lab or conference room, or parts of rooms), but
they can also be portable and associated with a user, or
used arbitrarily – we even allow (and use) overlapping
locales in the same physical space. We define that every
display used in a Studierstube environment shows the

content of exactly one locale. Every context can (but need
not) be replicated in every locale; these replicas will be
kept synchronized by Studierstube’s distribution
mechanism.

To understand why the separation of locales and
contexts is necessary, consider the following examples:
• Multiple users are working on separate hosts. They can

share contexts, but can layout the context
representations (3D-windows) arbitrarily according to
screen format and personal preferences. This is made
possible by defining separate locales, as the position of
3D-windows is not shared across locale boundaries
(Figure 3). The hosts can be in separate buildings for
remote collaboration, or they can be placed side by
side. In the latter case, locales would probably overlap,
as users might see several or all screens.

• A user wearing a see-through HMD is looking at a
large projection screen through the HMD. Both display
devices (HMD, projection screen) can be set to use the
same locale, so the graphics in a user’s HMD may
augment the projection screen’s output. Of course this
setup is view-dependent and works for only one user,
so alternatively, the projection screen may use a
separate locale, and present graphical elements which
are complementary to the HMD output.

By separating locales (geometric relationships) from
contexts (semantic relationships), we achieve a great
amount of flexibility in the configuration of displays. This
not only allows to connect multiple Studierstube
environments over a network for remote collaboration, but
also to set up an environment with multiple co-located,
i. e., overlapping locales. Consider as a scenario a
spacecraft mission control center with dozens of
collaborating operators assembled in a large hall. Every
involved user will assume a specific role and require
specific tools and data sets, while some aspects of the
mission will be shared by all users. A naïve approach of
embedding all users in a single locale means that users in
close proximity can work in a shared virtual space, while
other users who desire to participate are too far away to
see the data well, and are not within arm’s reach for
manual interaction. By separating contexts from locales, a
remote user can import the context into a separate locale,
and interact with it conveniently. While our available
resources do not allow us to verify such large-scale
interaction, in section 5 we present some results that back
up our considerations.

The system presented in this paper must be understood
as an experimental platform for exploring the design space
that emerges from bridging multiple user interface
dimensions. It can neither compete in maturity and
usability with the universally adopted desktop metaphor
nor with more streamlined, specialized virtual
environment solutions (e. g., CAVEs). However,

Studierstube demonstrates a design approach for next
generation user interfaces as well as solutions on how to
implement these interfaces.

2. Previous work

Almost a decade ago, Weiser introduced the concept of
ubiquitous computing as a future paradigm on interaction
with computers [22]. In his vision, computers are
constantly available in our surrounding by embedding
them into everyday items, making access to information
almost transparent. In contrast, augmented reality systems
focus on the use of personal displays (such as see-through
head-mounted displays) to enhance a user’s perception by
overlaying computer generated images onto a user’s view
of the real-world.

Collaborative augmented reality enhances AR with
distributed system support for multiple users with multiple
display devices, allowing a co-located joint experience of
virtual objects [3, 15]. Some researchers are
experimenting with a combination of collaborative AR,
ubiquitous computing and other user interface concepts.
Prominent examples include EMMIE developed at
Columbia University [4, 8], work by Rekimoto [13], and
the Tangible Bits Project at MIT [9, 21]. These systems
share many aspects with our approach for a collaborative
augmented reality system making use of a variety of
stationary as well as portable devices.

Working with such a system will inevitably require
transfer of data from one computer’s domain to another.
For that aim, Rekimoto [14] proposes multi-computer
direct manipulation, i. e. drag and drop across system and
display boundaries. To implement this approach, a
physical prop (in Rekimoto’s case, a pen) is used as a
virtual “store” for the data, while in reality the data
transfer is carried out via the network using the pen only
as a passive locator. Similar transfer functions are
available in EMMIE [4]. Such use of passive objects as
perceived media containers is also implemented by the
Tangible Bits group’s mediaBlocks [21].

Other sources of inspiration for multiple dimensions in
3D user interfaces are CRYSTAL [20], which allows
concurrent execution of multiple applications in the same
three-dimensional workspace, and SPLINE [1], which
introduced the concept of multiple locales within one
large virtual environment. Note that unlike SPLINE,
Studierstube’s allows multiple locales to overlap.

3. Background: Studierstube

The original Studierstube architecture [15, 18] was a
collaborative augmented reality system allowing multiple
users to gather in a room and experience the sensation of a
shared virtual space that can be populated with three-
dimensional data. Head-tracked see-through head-

mounted displays (HMDs) allow each user to choose an
individual viewpoint while retaining full stereoscopic
graphics.

Figure 4: The Personal Interaction Panel combines
tactile feedback from physical props with overlaid
graphics to form a two-handed general purpose

interaction tool.

The personal interaction panel (PIP), a two-handed
interface composed of pen and pad, both fitted with
magnetic trackers, is used to control the application [19].
It allows the straightforward integration of conventional
2D interface elements like buttons, sliders, dials etc. as
well as novel 3D interaction widgets (Figure 4). The
haptic feedback from the physical props guides the user
when interacting with the PIP, while the overlaid graphics
allows the props to be used as multi-function tools. Every
application may display its own interface in the form of a
PIP ”sheet”, which appears on the PIP when the
application is in focus. The pen and pad are our primary
interaction devices.

While the original Studierstube architecture from [18]
incorporated simple distribution mechanisms to provide
graphics from multiple host computers and shared data
from a separate device (tracker) server, the initial
networking approach later turned out to be insufficient for
the evolving distribution requirements. An even more
limiting factor was that the toolkit allowed to run only a
single application and a single context at a time. Our
efforts towards a follow-up version resulted in support for
projection-based platforms [16] and a toolkit for
distributed graphics [7]. This paper presents the results of
a two-year long redesign process of Studierstube
incorporating all these features into a new framework.

4. Implementation

Our software development environment is realized as a
collection of C++ classes built on top of the Open

Inventor (OIV) toolkit [17]. The rich graphical
environment of OIV allows rapid prototyping of new
interaction styles. The file format of OIV enables
convenient scripting, overcoming many of the
shortcomings of compiled languages without
compromising performance. At the core of OIV is an
object-oriented scene graph storing both geometric
information and active interaction objects. Our
implementation approach has been to extend OIV as
needed, while staying within OIV’s strong design
philosophy.

App3App2App1

DIV

Runtime

Widgets

context m
anagm

ent

Open Inventor

User level

Studierstube
kernel
level

system
level

graphics
hardware

. . .

StbAPI

Figure 5: The Studierstube software is composed of
an interaction toolkit and runtime system. The latter is

responsible for managing context and distribution.

This has lead to the development of two intertwined
components: A toolkit of extensions of the OIV class
hierarchy (mostly interaction widgets capable of
responding to 3D events), and a runtime framework which
provides the necessary environment for Studierstube
applications to execute (Figure 5). Together, these
components form a well-defined application
programmer’s interface (API), which extends the OIV
API, and also offers a convenient programming model to
the application programmer (section 4.4). Applications are
written and compiled as separate shared objects (.so for
IRIX, .dll for Win32), and dynamically loaded into the
runtime framework. A safeguard mechanism makes sure
only one instance of each application is loaded into the
system at any time. Besides decoupling application
development from system development, dynamic loading
of objects also simplifies distribution as application
components can be loaded by each host whenever needed.
All these features are not unique to Studierstube, but
rarely found in virtual environment software.

By using this dynamic loading mechanism,
Studierstube supports multi-tasking of different

applications (e.g. a painting application and a 3D
modeler), but also multiple concurrent contexts associated
with the same application (Figure 6). This approach is
similar to popular desktop systems such as the multiple
document interface.

Figure 6: Multiple document interface in 3D – the right
window has the user’s focus and can be manipulated

with the current PIP sheet.

Depending on the semantics of the associated application,
ownership of a context may or may not privilege a user to
perform certain operations on the information (such as
object deletion). Per default, users present in the same
locale will share a context. A context – represented by its
3D-window - is owned by one user, and subscribed by
others. Per default, a context is visible to all users and can
be manipulated by any user in the locale.

4.1. 3D-windows

The use of windows as abstraction and interaction
metaphor is a long-time convention in 2D GUIs. Its
extension to three dimensions seems logical [5, 20] and
can be achieved in a straightforward manner: Using a box
instead of a rectangle seems to be the easiest way of
preserving the well-known properties of desktop windows
when migrating into a virtual environment. It supplies the
user with the same means of positioning and resizing the
display area and also defines its exact boundaries.

A context is normally represented in the scene by a 3D-
window, although we allow a context to span multiple
windows. The 3D-window class is a container associated
with a user-specified scene graph. This scene graph is
normally rendered with clipping planes set to the faces of
the containing box, so that the content of the window does
not protrude from the window’s volume. Nested windows
are possible, although we have found little use for them.
The window is normally rendered with associated
”decoration” that visually defines the windows extent and
allows it to be manipulated with the pen (move, resize
etc). The color of the decoration also indicates whether a

window has a user’s focus (and hence receives 3D event
from that user). Like their 2D counterparts, 3D-windows
can be minimized (replaced by a three-dimensional icon to
save space in a cluttered display), and maximized (scaled
to fill the whole work volume and receive input events
exclusively). Typically, multiple context of the same type
will maintain structurally similar windows, but this
decision is at the discretion of the application
programmer.

4.2. PIP sheets

Studierstube applications are controlled either via direct
manipulation of the data presented in 3D-windows, or via
a mixture of 2D and 3D widgets on the PIP. A set of
controls on the PIP – a PIP sheet - is implemented as an
OIV scene graph composed primarily of Studierstube
interaction widgets (such as buttons etc.). However, the
scene graph may also contain geometry (e. g., 2D and 3D
icons) that are useful to convey user interface state or
merely as decoration.

input

Figure 7: Multiplicity relationships in Studierstube -
control elements on the PIP are instantiated
separately for every (user, 3D-window) pair

Every type of context defines a PIP sheet template, a kind
of application resource. For every context and user, a
separate PIP sheet is instantiated. Each interaction widget
on the PIP sheet can therefore have a separate state. For
example, the current paint color in our artistic spraying
application (Figure 6) can be set individually by every
user for every context. However, widgets can also be
shared by all users, all contexts, or both. Consequently,
Studierstube’s 3D event routing involves a kind of
multiplexer between windows and users’ PIP sheets
(Figure 7).

4.3. Distributed execution

The distribution of Studierstube requires that for each
replica of a context all graphical and application-specific
data is locally available at each host which has a replica.

In general, applications written with OIV encode all
relevant information in the scene graph, so replicating the
scene graph at each participating host already solves most
of the problem.

For that aim, we have created Distributed Open
Inventor (DIV) [7] as an extension (more a kind of plug-
in) to OIV. The DIV toolkit extends OIV with the concept
of a distributed shared scene graph, similar to distributed
shared memory. From the application programmer’s
perspective, multiple workstations share a common scene
graph. Any operation applied to a part of the shared scene
graph will be reflected by the other participating hosts. All
this happens to the application programmer in an almost
completely transparent manner by capturing and
distributing OIV’s notification events. A scene graph need
not be totally replicated – local variations (compare [10])
in the scene graph can be introduced, which is among
others useful for fine-tuning low-latency operations such
as dragging.

More importantly, local variations allow us to resolve
distribution on a per-context base. A context is owned by
one workstation (called a master context), which will be
responsible of processing all relevant interaction on the
application, while other workstations (in the same locale
and in other locales) may replicate the context (as a slave
context).

The roles that contexts may assume (master or slave)
affect the status of the context’s application part. The
context data and its representation (window, PIP sheet
etc.) stay synchronized over the whole lifespan of the
context for every replica. The application part of a master
context is active and modifies context data directly
according to the users’ input. A slave context’s
application is dormant and does not react to user input (for
example, no callbacks are executed if widgets are
triggered). Instead, a slave context relies on updates to be
transmitted via DIV. Note that context replicas can swap
roles (e. g., by moving master contexts to achieve load
balancing), but at any time there may only be one master
copy per replicated context.

The replication on a per context-base provides coarse-
grained parallelism. At the same time the programming
model stays simple, as the programmer is spared to solve
difficult concurrency issues and all relevant input can be
processed in a single address space.

Once the low-level replication of context data is taken
care of by DIV, the high-level context management
protocol is fairly simple: A dedicated session manager
process serves as a mediator among hosts as well as a
known point of contact for newcomers. The session
manager does not have a heavy workload compared to the
hosts running the Studierstube user interface, but its
directory services are essential. For example, it maintains
a list of all active hosts and which contexts they own or

subscribe, it gets to decide about policy issues such as
load balancing etc.

Finally, input is managed separately by dedicated
device servers (typically PCs running Linux), which also
perform the necessary filtering and prediction. The tracker
data is then multicast in the LAN, so it is simultaneously
available to all hosts for rendering.

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd jgflkjsdfgkjvakltj
i4trrtg
dfs;lghjksdl;fhkl;sgkdh dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg h
khjlkjnlkjl;kfjg;lksdfjbhl;kjsl

ykbjm ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkhgseizr

uivhseuityb hiouyi jrt
jhrnthj si

jitosjhimthibmriptmbdnoi

ijniojniojfoijiojhgiojfdghiom
dfoimhn
ifgjosdjigoijdiosfh
dfghklj hh h jhjhjh jkh jh iu iuh uihiuh
uhiuhij h
‘ji hnjn nun nn

kj lkjlkji

window application

PIPsheet
(per user)

sghkjkl lksdfj lkjf dg
dfsghhj fhjgjkdflhjlskd
jgflkjsdfgkjvakltj i4trrtg
dfs;lghjksdl;fhkl;sgkdh
dfsgkjdsfkjg

dfgdsfghjsdghkljgfhjklg
h

khjlkjnlkjl;
kfjg;lksdfjbhl;kjslykbjm
ll;rth
fhjdlfghkk

kjhjjlknjklj
hjkhfdjkh

Context 1

Context 2

Figure 8: A context is implemented as a node in the
scene graph, as are windows and pip sheets. This

allows to organize all relevant data in the system in a
single hierarchical data structure.

4.4. Application programmer’s interface

The Studierstube API imposes a certain programming
model on applications, which is embedded in a foundation
class, from which all Studierstube applications are
derived. By overloading certain polymorphic methods of
the foundation class, a programmer can customize the
behavior of the application. The structure imposed by the
foundation class makes sure the application allows
multiple contexts to be created (i. e., offers the equivalent
to a multiple document interface), each of which can be
operated in both master mode (normal application
processing) and slave mode (same data model, but all
changes occur remotely through DIV).

The key to achieve all this is to make the context itself
a node in the scene graph. Such context nodes are
implemented as OIV kit classes. Kits are special nodes
that can store both fields, i. e., simple attributes, and child
nodes, both of which will be considered part of the scene
graph and thus implicitly be distributed by DIV. Default
parts of every context are at least one 3D-window node,
which is itself an OIV kit and contains the context’s
“client area” scene graph, and an array of PIP sheets,

which are also special scene graphs. In other words, data,
representation, and application are all embedded in a
single scene graph (Figure 8), which can be conveniently
managed by the Studierstube framework.

To create a useful application with all the properties
mentioned above, a programmer need only create a
subclass of the foundation class and overload the 3D-
window and PIP sheet creation methods to return custom
scene graphs. Typically, most of the remaining application
code will consist of callback methods responding to
certain 3D events such as button press or 3D direct
manipulation events. Although the programmer has great
freedom to use anything that the OIV and Studierstube
toolkits offer, it is a requirement that any instance data is
stored in the derived context class as a field or node, or
otherwise it will not be distributed. However, this is not a
restriction in practice, as all basic data types are available
in both scalar and vector format as fields, and new types
can be created should the existing ones turn out to be
insufficient (a situation that has not occurred to us yet).

Note that allowing a context to operate in both master
and slave mode has implications on how contexts can be
distributed: It is not necessary to store all master contexts
of a particular type at one host. Some master contexts may
reside on one host, some on another host – in that case,
there will be corresponding slave contexts at the
respective other host, which are also instances of the same
kit class, but initialized to function as slaves. In essence,
our API provides a distributed multiple document
interface.

Figure 9: Storyboard application with two users and
two contexts as seen from a third “virtual” user used
for video documentation. In the background the video

projection is visible.

5. Results

To demonstrate our framework, we chose the application
scenario of Storyboard design. This application is a
prototype of a cinematic design tool. It allows multiple

users to concurrently work on a storyboard for a movie or
drama. Individual scenes are represented by their stage
sets, a kind of world in miniature [11].

Every scene is represented by its own context, and
embedded in a 3D-window. Users can manipulate the
position of props in the scene as well as the number and
placement of actors (represented by colored board game
figures), and finally the position of the camera (Figure 9,
Figure 10).

All contexts share an additional large slide show
window, which shows a 2D image of the selected scene
from the current camera position. By flipping through the
scenes in the given sequence, the resulting slide show
conveys the visual composition of the movie.

Slide
Sorter

Focused
Context

Unfocused
Context

Scene
Selection

New
Context

Delete
Context

Actor

Pen

Camera

Film
Set

Toggle
sorter/show

on projection

Toggle
sorter/show

on PIP

Actor
Selection

Figure 10: The Storyboarding application allows the
3D placement of actors, props, and cameras. The

slide sorter shows a storyboard of all camera “shots”

Alternatively, a user may change the slide show to a “slide
sorter” view inspired by current presentation graphics
tools, where each scene is represented by a smaller 2D
image, and the sequence can be rearranged by simple drag
and drop operations. The slide sorter comes closest to the
traditional storyboard used in cinematography. It appears
on the PIP for easy manipulation as well as on the larger
projection screen.

Using the distributed Studierstube framework, we ran
the Storyboard application in different configurations.

5.1. Heterogeneous displays

Our first configuration (Figure 9, Figure 11) consisted of
three hosts (SGI Indigo2, Intergraph TZ1 Wildcat, SGI
O2), two users, and two locales (Figure 12). It was
designed to show the convergence of multiple users (real

ones as well as virtual ones), contexts, locales, 3D-
windows, hosts, displays and operating systems.

The two users were wearing HMDs, both connected to
the Indigo2’s multi-channel output, and seeing head-
tracked stereoscopic graphics. They were also fitted with a
pen and pad each. The Intergraph workstation was driving
an LCD video projector to generate a monoscopic image
of the projection screen (without viewpoint tracking) on a
projection wall. The slider show/sorter 3D-window was
hidden from graphics output on the HMDs, so the users
could see the result of their manipulation of the miniature
scenes on the large bright projection exploiting the see-
through capability of the HMDs.

SGI Indigo2
Impact

driving HMD

Intergraph
Wildcat
driving

video projector

SGI O2
driving
video

recorder

video
recorder

HMD

Pen

PIP

video projector

tracker
server

video
camera

Figure 11: Hardware setup for the heterogeneous
display experiment

Users were able to perform some private editing on their
local contexts, then update the slide show/sorter to discuss
the results. Typically, each user would work on his or her
own set of scenes. However, we choose to make all
contexts visible to both users, so collaborative work on a
single scene was also possible. The slide sorter view was
shared between both users, so global changes to the order
of scenes in the movie were immediately recognizable.
The third host – the O2 – was configured to combine the
graphical output (monoscopic) from Studierstube with a
live video texture obtained from a video camera pointed at
the users and projection screen. The O2 was configured to
render for a virtual user, whose position was identical with
the physical camera. This feature was used to document
the system on video. The configuration used two locales,
one shared by the two users and the O2, while a separate
locale was used for the Intergraph driving the projection
screen (again viewed by a virtual user). The additional
video host allowed us to perform live composition of the
users’ physical and virtual actions on video, while the
video projector driving the projection screen could be

freely repositioned without affecting the remainder of the
system (Figure 12).

LAN

L
A

N

Intergraph

O2

Cam.

Proj.

Indigo2

Figure 12: Heterogeneous displays – two users
simultaneously see shared graphics (via their see-

through HMDs) and a large screen projection

5.2. Symmetric workspace

The second example was intended to show multi-user
collaboration in pure augmented reality with multiple
hosts. The Storyboarding application was executed in a
more conventional augmented reality setup consisting of
two hosts (Indigo2, Intergraph), two users, and one locale
(Figure 13). Both users were wearing HMDs again, but
the first user was connected to the Indigo2, while the
second user was connected to the Intergraph. In this
configuration, the slide show/sorter was included in the
graphics shown via the HMD rather than projected by a
separate video projector.

LAN

IntergraphIndigo2

Figure 13: A symmetric workspace configuration uses
homogeneous displays (2 HMDs) to present a shared

environment to multiple users in one locale

While the obtainable frame rate was significantly higher
than for the first configuration, since rendering load for

the two users was distributed over two hosts, no high
resolution wide field-of-view projection was available for
the slide show/sorter. Consequently, only one locale was
necessary since users shared the same physical space.

5.3. Remote collaboration

The third example was created to show remote
collaboration of multiple users. In this setup, we built a
second Studierstube environment in the laboratory next
door to experiment with the possibilities of remote
collaboration. We then let two users collaborate remotely
using the Storyboard application.

LAN LAN

Intergraph Indigo2

Locale B
(2nd room)

Locale A
(1st room)

Figure 14: Remote collaboration: Two geographically
separated users experience a shared environment

Note that the results are preliminary in the sense that all
hosts were connected to the same LAN segment, and
network performance is thus not representative of what
one would get over a wide area network connection.
However, this was not the current focus of investigation.

The system consisted of two hosts (Intergraph in the
first laboratory, Indigo2 in the second), two users and two
locales (Figure 14). Each user was wearing a HMD
connected to the local workstation. In contrast to
configuration from section 5.2, two locales were used as
the users did not share a physical presence. The sharing of
context, but not locale, allowed them to rearrange their
personal workspace at their convenience without affecting
collaboration.

5.4. Multiple applications

Finally, Figure 1 and Figure 2 show users working with
multiple applications such as spraying, painting, and
object viewing tools on two possible platforms: HMDs
and a large polarized stereo projection wall.

6. Discussion

As observed by Tsao and Lumsden [20], in order to be
successful for everyday productivity work situations,
virtual environment systems must allow “multi-tasking”

and “multi-context” operation. By multi-tasking they
mean that the virtual environment can be re-configured to
execute a particular application, i. e., there is a separation
of VR system software and application software.

MediaBlocks

EMMIE

Studierstube
SPLINE

CRYSTAL

Multi-user +
multi-host

Multi-task +
multi-context

Multi-locale

Figure 15: Extended taxonomy for multiple
dimensions of user interfaces with some related work

(adapted from CRYSTAL).

Multi-context operation goes beyond that by allowing
multiple applications to execute concurrently rather than
sequentially. They also point out that this resembles a
development earlier experienced for 2D user interfaces,
which evolved from single-application text consoles to
multi-application windowing systems. It is no surprise that
by “judicious borrowing”, many useful results from 2D
user interfaces become applicable to 3D, as is evident
with Studierstube’s PIP, 3D-windows, or 3D event
system.

However, the CRYSTAL system from [20] does not
incorporate true multi-user operation, and consequently
has no need for multiple locales. Extending the taxonomy
from CRYSTAL, Figure 15 compares some relevant
work. For example, MIT’s mediaBlocks [21] allow a user
to work with different manipulators, which are dedicated
devices for specific applications, and the mediaBlocks
themselves are a very elegant embedding for context data.
However, although principally possible, no multi-user
scenarios were demonstrated.

In contrast, SPLINE [1] is designed towards multi-user
interaction. While SPLINE completely immerses a user in
a purely virtual world and thus does not meet our
definition of a work environment, it features multiple
locales that correspond to activities (for example, chat
takes place in a street café, while train rides take place on
a train).

The closest relative to our work is Columbia’s EMMIE
[4]. Except for explicit support of locales, EMMIE shares
many basic intentions with our research, in particular
concurrent use of heterogeneous media in a collaborative
work environment. Like ourselves, the authors of EMMIE
believe that future user interfaces will require a broader
design approach integrating multiple user interface

dimensions before a successor to the desktop metaphor
can emerge.

7. Conclusions and future work

We have presented Studierstube, a prototype user
interface that uses collaborative augmented reality to
bridge multiple user interface dimensions: Multiple users,
context, and locales as well as applications, 3D-windows,
hosts, display platforms, and operating systems.
Studierstube supports collaborative work by coordinating
a heterogeneous distributed system based on a distributed
shared scene graph and a 3D interaction toolkit. This
architecture allows to combine multiple approaches to
user interfaces as needed, so that it becomes easy to create
a 3D work environment, which can be personalized, but
also lends itself to computer supported cooperative work.

Our implementation prototype shows that despite its
apparent complexity, such a design approach is principally
feasible, although much is left to be desired in terms of
quality and maturity of hard- and software. However,
addressing issues such as display update rate and tracking
accuracy is out of scope of this work.

Our future interest will focus on bringing the element
of mobility into the Studierstube environment. While the
name Studierstube (“study room”) may be no longer
appropriate, we envision a portable 3D information space
that allows ad-hoc networking for instant collaboration of
augmented users. Our goal is to allow users to take 3D
contexts “on the road” and even dock into a
geographically separate environment without having to
shut down live applications.

Acknowledgments
This project was sponsored by the Austrian Science Fund
FWF under contract no. P-12074-MAT. Special thanks to
Markus Krutz, Rainer Splechtna, Hermann Wurnig, and
Andreas Zajic for their contributions to the
implementation, to Zsolt Szalavári and Michael Gervautz
for inventing the PIP, and to M. Eduard Gröller for his
spiritual guidance.

Web information
http://www.cg.tuwien.ac.at/research/vr/studierstube/

References
1. Barrus, J., R. Waters, R. Anderson. Locales and Beacons:

Precise and Efficient Support for Large Multi-User Virtual
Environments. Proc. VRAIS ‘96, pp. 204-213, 1996.

2. Billinghurst M., J. Bowskill, M. Jessop, J. Morphett. A
Wearable Spatial Conferencing Space, Proc. ISWC ‘98, pp.
76-83, 1998.

3. Billinghurst M., S. Weghorst, T. Furness III: Shared Space:
An Augmented Reality Approach for Computer Supported
Collaborative Work, Virtual Reality: Virtual Reality -
Systems, Development and Applications, 3(1), pp. 25-36,
1998.

4. Butz A., T. Höllerer, S. Feiner, B. MacIntyre, C. Beshers.
Enveloping Computers and Users in a Collaborative 3D
Augmented Reality, Proc. IWAR ‘99, pp. 1999.

5. Feiner S., C. Beshers. Worlds Within Worlds: Metaphors for
Exploring N-Dimensional Virtual Worlds, Proc. UIST '90,
pp. 76-83, 1990.

6. Goldberg A., D. Robson. Smalltalk-80: The language and
its implementation. Addison-Wesley, Reading MA, 1983.

7. Hesina G., D. Schmalstieg, A. Fuhrmann, W. Purgathofer.
Distributed Open Inventor: A Practical Approach to
Distributed 3D Graphics, Proc. VRST ‘99, London, pp. 74-
81, Dec. 1999.

8. Höllerer T., S. Feiner, T. Terauchi, G. Rashid, D. Hallaway.
Exploring MARS: Developing indoor and outdoor user
interfaces to a mobile augmented reality systems, Computers
& Graphics, 23(6), pp. 779-785, 1999.

9. Ishii H., B. Ulmer. Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms, Proc. CHI ‘97,
pp. 234-241, 1997.

10. MacIntyre B., S. Feiner. A Distributed 3D Graphics Library,
Proc. SIGGRAPH ‘98, pp. 361-370, 1998.

11. Pausch R., T. Burnette, D. Brockway, M. Weiblen.
Navigation and Locomotion in Virtual Worlds via Flight
into Hand-Held Miniatures, Proc. SIGGRAPH ’95, pp. 399-
401, 1995.

12. Raskar R., G. Welch, M. Cutts, A. Lake, L. Stesin, H. Fuchs.
The office of the future: A unified approach to image-based
modeling and spatially immersive displays, Proc.
SIGGRAPH ’98, pp. 179-188, 1998.

13. Rekimoto J. A Multiple Device Approach for Supporting
Whiteboard-based Interactions, Proc. CHI ‘98, pp. 344-351,
1998.

14. Rekimoto J. Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments, Proc.
UIST ‘97, pp. 31-39, 1997.

15. Schmalstieg D., A. Fuhrmann, Zs. Szalavari, M. Gervautz.
Studierstube - Collaborative Augmented Reality, Proc.
Collaborative Virtual Environments ‘96, Nottingham, UK,
Sep. 1996.

16. Schmalstieg D., L. M. Encarnação, Zs. Szalavári. Using
Transparent Props For Interaction With The Virtual Table,
Proc. SIGGRAPH Symp. on Interactive 3D Graphics ‘99,
pp. 147-154, Atlanta, GI, April 1999.

17. Strauss P., R. Carey. An object oriented 3D graphics toolkit,
Proc. SIGGRAPH ‘92, pp. 341-347, 1992.

18. Szalavári Zs., A. Fuhrmann, D. Schmalstieg, M. Gervautz.
Studierstube - An Environment for Collaboration in
Augmented Reality, Virtual Reality - Systems, Development
and Applications, 3(1), pp. 37-49, 1998.

19. Szalavári Zs., M. Gervautz. The Personal Interaction Panel -
A Two-Handed Interface for Augmented Reality, Computer
Graphics Forum, 16(3), pp. 335-346, Sep. 1997.

20. Tsao J., C. Lumsden. CRYSTAL: Building Multicontext
Virtual Environments, Presence, 6(1), pp. 57-72, 1997.

21. Ullmer B., H. Ishii, D. Glas. mediaBlocks: Physical
Containers, Transports, and Controls for Online Media,
Proc. SIGGRAPH ‘98, pp. 379-386, July 1998.

22. Weiser M. The Computer for the twenty-first century.
Scientific American, pp. 94-104, 1991.

