
OpenTracker - An Open Software Architecture for Reconfigurable Tracking
based on XML

Gerhard Reitmayr and Dieter Schmalstieg
Vienna University of Technology�
reitmayr|dieter � @cg.tuwien.ac.at

Abstract

This paper describes OpenTracker, an open software ar-
chitecture that provides a generic solution to the differ-
ent tasks involved in tracking input devices and process-
ing tracking data for virtual environments. It combines a
highly modular design with a configuration syntax based
on XML, thus taking full advantage of this new technology.
OpenTracker is a first attempt towards a ”write once, track
anywhere” approach to virtual reality application develop-
ment. To support these claims, integration into an exist-
ing augmented reality system is demonstrated. Once devel-
opment is sufficiently mature, it is planned to make Open-
Tracker available to the public under an open source soft-
ware license.

1. Introduction

Tracking is an indispensable requirement for all kinds of
virtual reality (VR) and augmented reality (AR) systems.
While the quality of tracking, in particular the need for high
performance and fidelity have led to a large body of past
and current research, little attention is typically paid to soft-
ware engineering aspects of tracking software. Some cur-
rent solutions may have a modular approach that allows to
substitute one type of tracking device for another. Typically,
this is the approach taken by commercial VR products that
offer turn-key support for many popular tracking and input
devices, but at the cost of a limited amount of extendability
and configuration options. In particular, they make it hard
to combine existing features in novel ways.

In contrast, research systems may offer features not
found in commercial systems, such as prediction or sensor
fusion, but are usually limited to their particular research
domain and not intended for the end user. In such systems,
replacing a piece of hardware or changing its configuration
usually means rewriting a significant portion of the tracker
software.

Optical
marker

Magnetic
tracker

Figure 1. Different tracking technologies inte-
grated transparently by OpenTracker

In the middle(-ware), there is a lack of tools that allow
for a high degree of customization, yet are easy to use and
to extend. (One notable exception is the MR toolkit [14]
of the University of Alberta, which still serves as a starting
point for many VR research projects despite its aged archi-
tecture and lack of active development.) What is needed is
a system that allows mixing and matching of different fea-
tures, as well as simple creation and maintainence of possi-
bly complex tracker configurations.

In this paper, we present a tracking software system
called OpenTracker with the following characteristics:

� An object-oriented approach to an extensive set of sen-
sor access, filtering, fusion, and state transformation
operations

� Behavior specification by constructing graphs of track-
ing objects (similar in spirit to scene graphs or event
cascades) from user defined tracker configuration files

� Distributed simulation by network transfer of tracker
state at any point in the graph structure



� Decoupled simulation by transparent multi-threading
and networking

� A software engineering approach based on XML [6],
which allows to use many generic tools such as [2,
9, 10] for development, documentation, and configu-
ration.

Through its scripting capability (tracker configuration
files) as well as easy integration of new tracking features,
OpenTracker encourages exploratory construction of com-
plex tracking setups. It is equally useful for end users,
which can fully exploit their hardware without any custom
programming, as well as developers, who can easily build
test environments. In brief, OpenTracker attempts to pro-
vide a ”write once, track anywhere” paradigm similar to the
spirit of the Java programming language. Through the re-
lease under a public domain license, we plan to make Open-
Tracker available to a larger audience in the near future.

2. Related work

Ideas implemented in OpenTracker were drawn from
several areas:

Device abstraction is a standard requirement for 2D
graphical user interfaces, (e. g. GKS [11]), and sometimes
incorporated into 3D applications [8]. Device abstraction is
also an important goal of OpenTracker. However, it goes
beyond pure abstraction using a static interface in that the
data can be re-combined in novel ways.

Many interactive systems employ sophisticated event
handling schemes. State changes to attributes of scene ob-
jects are either propagated through functional dependencies
(e. g. routes in VRML [7], engines in Open Inventor [15]),
or may be handled by user supplied callback functions (e.
g. script nodes in VRML [7]). These approaches inspire the
architecture of OpenTracker, although none of them deals
specifically with tracker configurations.

Finally, an important requirement for virtual environ-
ments is support for distributed simulation, partly to sup-
port simultaneous users, partly to better exploit available
hardware. Decoupled simulation was first introduced in MR
[14], and later used in almost any major VR software sys-
tem. Decoupled simulation can either be implemented by
multi-threading and/or symmetric multiprocessing on one
host, or by configuring a small set of hosts to work as an
ensemble.

3. Scope of the software architecture

While some approaches to general event architectures
exist (e. g. [5]), the current scope of OpenTracker are tra-
ditional VR applications. It thus deals primarily with posi-
tion and orientation information (six degrees of freedom,

6DOF), although some other event types such as button
events and 2D position information (such as from a desk-
top mouse) are supported. While it is straightforward to
cover other data types (such as input from a pressure sen-
sitive tablet), we choose to limit ourselves to the domain
immediately useful for VR applications.

The software is designed as a class hierarchy of tracker
objects, implemented in C++. Every tracker object defines
an interface that can answer a query for the current position
and orientation as well as the state of the associated but-
tons. At runtime, these tracker objects are assembled into a
directed acyclic graph (DAG) - or frequently, a set of DAGs
- according to the instructions in a user-supplied configu-
ration file written in XML. We distinguish source objects,
which are leaves in the graph and receive their data values
from external sources, filter objects, which are intermedi-
ate nodes and modify the values received from their child
nodes, and sink objects, which propagate their data values
received from their child nodes to external outputs.

3.1. Source objects

Most source objects encapsulate a device driver that di-
rectly accessess a particular tracking device, such as a Pol-
hemus or Ascension tracker connected to a serial inter-
face. Other source objects form bridges to complex self-
contained systems, such as the video tracking library from
ARToolKit [12]. Yet other source objects emulate tracker
via the keyboard or simply respond with constant values
(useful for development and debugging) or access network
data (see section 4).

Some source objects have a multi-threaded execution
model to implement a decoupled simulation model [14] (e.
g., when blocking I/O must be used).

3.2. Filter objects

Filter objects have one or more children. When queried,
filter objects pass on the query to determine the state of their
children, then compute their own state based on the returned
data. A non-exhaustive list of filters includes:

� Transformation filters perform geometric transforma-
tions of their childrens values. These include pre- and
post-transformations and may be static or depend on
data values received from other children. The latter
allows to modify the filtered state relative to another
tracker state.

� Prediction filters allow to partially compensate for lag
in the measuring and processing tracker data.

� Noise and smoothing filters are handy to deal with in-
herent inaccuracies of trackers.



� Undistortion filter are necessary e.g. to linearize dis-
tortions in the magnetic field of a magnetic tracking
device.

� Permutation filters are necessary to match data rep-
resentations from different hardware or software plat-
forms, such as equivalent, but incompatible quaternion
representations.

� Merge filters assemble new data values using differ-
ent parts of the data values of several children. Sam-
ple uses include the combination of orientation from
an inertial tracker with position information from an
acoustic tracker, or adding a button device to a closed
tracking solution such as Polhemus Ultratrak.

� Conversion filters are able to translate one data type
into another. For example, 2D positions from a desktop
pointing device can be translated into 3D positions by
adding a constant third value.

� Clamp filter are special nonlinear transformation filters
that cut off values at user-specified extrema, for exam-
ple to deliberately limit interaction to a valid range.

� Store-and-forward filters are useful if transient loss of
tracking can be expected, for example if occlusion oc-
curs in optical tracking. The last measured value is
simply repeated to provide at least a reasonable and
valid state.

� Confidence filters select data values from different
children based on some measure of confidence in the
accuracy of the data.

3.3. Sink objects

Sink objects are similar to source objects but distribute
data rather than receive it. They include output to network
multicast groups, debugging output to a user interface or
shared memory to integrate OpenTracker as a library into
other applications.

The presence of sink object drives the evaluation model
of OpenTracker. All sink objects in a tracker object graph
are registered upon creation, and their respective state eval-
uation method is triggered periodically. We found this to
be more effective than a pure client-driven lazy evaluation
scheme, as it avoids potentially costly recomputation of in-
termediate values for every invocation.

4. Distributed tracking

There are several reasons why is is desirable to share
tracker data over a network:

� Using the tracker data at multiple host computers for
a distributed virtual environment (local or remote): In-
put in the form of tracker data becomes readily avail-
able through transparent network access via Open-
Tracker. The scene database still has be to kept consis-
tent through a proprietary application protocol, but the
task is much simplified.

� With the same approach, multi-processing based on in-
expensive PCs becomes possible with little configura-
tion effort. This is useful to achieve some degree of
load balancing. In particular, computationally expen-
sive functions such as filtering or undistortion can be
assigned to either sender or receiver, depending on the
computational budget.

� Network support makes it easy to span multiple oper-
ating systems, in particular if a specific tracking device
or service is only available at one particular host (e.g.,
an SGI O2 has fast video hardware but a slow CPU,
whereas for a PC the opposite may be true).

OpenTracker allows multiple senders and receivers of
tracker data to communicate asynchronously through the
use of IP multicasting (Figure 2). This approach effectively
implements decoupled simulation in a larger scope, since
each of the senders and receivers can operate independently.
It is even possible for a single host to operate as a sender and
receiver at the same time, by picking up data, then modify-
ing it and re-sending it to the network on another network
channel.

Magnetic Tracker Vision Tracker

First Render Host Second Render Host

Merge Filter Merge Filter

Figure 2. Distributing tracking data to differ-
ent rendering hosts

While there is a prefered network protocol for Open-
Tracker, several formats are understood. In the following,
we give some examples as to how a networked setup can be
used:

� A tracker server (typically a cheap PC with lots of se-
rial I/O boards running Linux) samples an Ascension
Flock of Birds at highest rate and sends the resulting
data stream via multicast to several clients using this
data to animate a collaborative virtual environment.



� The Polhemus Ultratrak uses a proprietary network
format and IP unicast packages. Unfortunately, its
closed architecture does not support input devices with
buttons such as a stylus or 3D-mouse. Therefore, we
added a tracker object to the client that is able to de-
code the Ultratrak protocol. A button source reads
button values from a standard parallel interface, and
a merge filter combines these two sources to emulate a
complete VR input device.

� A combination of vision tracking and magnetic track-
ing – see section 6 for details.

5. Software engineering with XML

XML, the extensible markup language, is the emerging
standard for web-based applications and software systems
[6]. XML is a markup definition language that allows to
define hierarchical markup languages with so-called doc-
ument type definitions (DTD). With the appropriate DTD,
standard XML tools can be used to conveniently edit, type
check, parse, and transform any XML file.

Thus, providing a simple DTD for describing hierarchies
of tracker objects opens access to software libraries and
tools that simplify several steps of the development cycle:

� A DTD editor can be used to design and maintain the
DTD.

� An XML parser enforces content format on the tracker
configuration file while building the corresponding
structure in memory, thus automatically performing
many of the consistency checks that have otherwise to
be hand-coded.

� A convenient XML editor with a graphical user inter-
face allows the end user to design the tracker configu-
ration without having to master the syntax.

� Using the extendible style language (XSL) [1], auto-
matic textual and even graphical documentation can be
created from a tracker configuration file, for example
by using the free graph drawing utility dot [4] (see Fig-
ure 3).

Markup languages are generally used to annotate tex-
tual documents with a structural information. Thus a gen-
eral XML document consists of text grouped and structured
with tags. Markup languages defined in XML consist of el-
ements, essentially expressed as tags, and a structural model
(the content model) of the possible ways these elements
may be nested. Moreover, elements are annotated by name
- value pairs called attributes.

OpenTracker maps elements to objects and attributes to
members of these objects. We are not using any textual

content but purely rely on the content model provided by
the DTD. An open source XML parser [2] builds a tree of
elements representing the given configuration file. Open-
Tracker walks the tree and creates a new object for each
element based on the elements name. The string values of
the attributes are parsed according to the objects class and
the corresponding members are set. Attributes typically de-
scribe such data as the parameters of a transformation.

The DAG structure is created by using unique IDs on el-
ements and referencing these IDs in placeholder elements.
Again XML enforces the uniqueness of these IDs and the
parser library simplifies the search for the referenced ele-
ments.

Restrictions on the number of children and the possible
types are described in the DTD. Source objects typically do
not have any children objects as they rely on data from ex-
ternal sources to compute their own data. A number of filter
objects get the value of a single child object, transform it
and pass it on. Confidence filters use any number of chil-
dren to compute their data value. The data of the different
children enters in the same way into the computation.

In another case different children objects influence the
computation in different ways. Dynamical transformations,
for example, are parameterized by the value of another ob-
ject and thus use the data value of the object to be trans-
formed differently from the data of the parameterizing ob-
ject. This is handled by using wrapper elements. An ob-
ject requiring marked children is mapped to an element that
may only have certain marker elements as children. These
marker elements in turn may have any other element as
child again. The marker elements are mapped to marker ob-
jects, that perform no special function and return the value
of their child object. They can be queried by the filter object
to derive how to use this value.

The following XML code describes a server configura-
tion for a single tracked pen using the ARToolKit video
tracking library:

<?xml version="1.0" encoding="UTF-8"?>
<!--simple test configuration for the

ARToolKit tracker server system -->
<!DOCTYPE TrackerServer SYSTEM "opentracker.dtd">
<TrackerServer>
<configuration>
<Network name="ARToolKit"

multicast-address="224.100.200.101"
port="6666"

/>
<Video camera-parameter="camera.dat"/>
<ScreenSink headerline="ARToolKit Server"/>

</configuration>
<Station name="pen" number="1">
<ScreenOutput comment="Pen station">

<Transformation translation="0 0 -0.5"
scale="0.001 0.001 0.001">

<Marker tag-file="pen.tag"
vertex="-36 -36 36 -36 36 36 -36 36"

/>
</Transformation>

</ScreenOutput>
</Station>

</TrackerServer>



Station
pen - 1

ScreenOutput
Pen station

Transformation

Marker
pen.tag

Figure 3. Graph visualization of the example
configuration

6. Results and examples

We have successfully used OpenTracker in a number of
experimental setups either using it as our sole source of
tracking data or integrating it with an existing setup.

For example, in an experimental pen-and-pad interface,
we combined a vision tracking approach (ARToolKit) for
the pad with a magnetic tracker (Ascension Flock of Birds)
for the pen. Two separate servers for video and magnetic
tracking were sending their measurements over the network
to a rendering host, where the combined data was picked
up by an OpenTracker component (Figure 2). The tracking
data from this source was transformed to register with the
tracked objects and fed into Studierstube, an augmented re-
ality environment recently described in [13]. The rendering
was then overlayed onto the video input from the camera.
Figure 1 shows the pip and a simple pen.

In this setup there are two tracked objects, a pen and pad
tracked magnetically and by video, respectively. The data
of both is automatically merged and transformed by Open-
Tracker. Then it is distributed on the network and simul-
taneously displayed on the screen for debugging purposes.
This behaviour was solely defined by the configuration file.

7. Conclusions and future work

None of the important properties of OpenTracker – such
as filtering, decoupled simulation, or configuration lan-
guages – are genuinely new. Yet we were suprised in be-
ing unable to find a publicly available solution truly suited
for the needs of a virtual reality developer – a lack which
led to the conception of OpenTracker. While to capabilities
of OpenTracker are uttlerly unspectacular, we found them
much needed.

Much remains to be done. The current version 0.1 is all
but complete. We thus invite contributors all over the world
to help improving this open source project.

For more information, check out the project home page:
http://www.cg.tuwien.ac.at/research/vr/opentracker/

Acknowledgments

This project was sponsored by the Austrian Science Fund
FWF under contract no. P-14470-INF. Special thanks to
Anton Fuhrmann for his perpetual will to comment, to Ro-
man Rath for his contributions to the implementation, and
to Mark Billinghurst for ARToolKit.

References

[1] S. Adler et al. Extensible stylesheet language (XSL) 1.0.
http://www.w3.org/TR/xsl/.

[2] Apache. Xerces XML parser. http://xml.apache.org/xerces-
c/index.html.

[3] P. Appino, J. Lewis, L. Koved, D. Ling, D. Rabenhorst, and
C. Codella. An architecture for virtual worlds. Presence:
Teleoperators and Virtual Environments, 1(1):1–17, 1992.

[4] AT&T. Graphviz. http://www.research.att.com/sw/
tools/graphviz/.

[5] F. Behmaram-Mosavat and L. M. Encarnao. A soft-
ware framework for user-centered multi-modal interaction.
CG topics, INI-GraphicsNet, Darmstadt, Germany, 12:5–6,
2000.

[6] T. Bray, J. Paoli, C. M. Sperberg-McQueen, et al. Extensible
markup language (XML) 1.0. http://www.w3.org/TR/REC-
xml/.

[7] R. Carey and G. Bell. The Annotated VRML 2.0 Reference
Manual. Addison-Wesley, 1997.

[8] T. He and A. Kaufman. Virtual input devices for 3D sys-
tems. In Proc. IEEE Visualization’93, pages 142–148. IEEE,
1993.

[9] IBM. Xeena XML editor. http://www.alphaworks.ibm.com/
tech/xeena.

[10] Icon Information Systems GmbH. XMLSpy.
http://www.xmlspy.com.

[11] ISO. Graphical kernel system (GKS). IS 7942, 1985.
[12] H. Kato and M. Billinghurst. Marker tracking and hmd cali-

bration for a video-based augmented reality conferenencing
system. In Proceedings of the 2nd IEEE and ACM Inter-
national Workshop on Augmented Reality (IWAR’99), San
Francisco. IEEE, October 1999.

[13] D. Schmalstieg, A. Fuhrmann, and G. Hesina. Bridging
multiple user interface dimensions with augmented reality.
In Proceedings of the 3rd International Symposium on Aug-
mented Reality (ISAR 2000), Munich, Germany. IEEE, Oc-
tober 2000.

[14] C. Shaw, M. Green, J. Liang, and Y. Sun. Decoupled simula-
tion in virtual reality with the mr toolkit. ACM Transactions
on Information Systems, 11(3):287–317, July 1993.

[15] P. Strauss and R. Carey. An object oriented 3D graphics
toolkit. In Proceedings SIGGRAPH’92. SIGGRAPH, 1992.


