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�� ,QWURGXFWLRQ

In the simulation of large virtual environments,
contention for limited resources such as CPU, rendering
pipeline, or network bandwidth, frequently causes a
degradation of the system’s performance. Most distributed
virtual environments therefore employ techniques to
reduce the number of messages to be transmitted over the
network.

A popular approach to build virtual environments, in
particular networked games, is to use a client-server
architecture: The virtual world is managed by the server
and (partially) replicated by connected clients, which
visualize the scene and/or navigate an avatar through the
environment. All updates from the clients are routed via
the server, which can perform arbitrary filtering functions.
The server is often also responsible for the simulation of

autonomous entities. Timely delivery of update messages
to clients is essentual to avoid visual errors (e.g. different
positions of the same object on server and client). Some
systems employ visibility information in order to decrease
the network load, by transmitting each client only updates
for those objects visible to it.

However these approaches cause a substantial
overhead to the server, as it is often required to examine
all objects in the environments for each client. For
example, to transmit only the visible object updates to a
client, it is necessary for the server to keep track of the
point of view for all clients, and continously select the
corresponding visible objects. Assume n = number of
clients = number of objects. This means examining all
objects for all clients leads to an effort of 2�Q��, which
substantially affects the scalability. Furthermore these
filtering techniques do not deal with the issue of
scheduling the remaining objects; if the number of
messages to be transmitted still exceeds the network
bandwidth, the bottleneck problem may persist.

The technique presented in this paper aims to
overcome these restrictions: it provides a SULRULWL]HG
management of the update messages from server to client,
including YLVLELOLW\� FXOOLQJ in the determinition of a
message’s priority. The method has constant effort 2�N�
per client, leading to an overall effort of O(NQ� 2�Q� for
Q connected clients. Thus it is RXWSXW� VHQVLWLYH, a crucial
requirement for scalable environments. Our approach
extends the Priority Round-Robin (PRR) queue first
introduced in [Fais00].

Moreover, we introduce the concept of DFWLYLW\
PRQLWRULQJ, an extention of PRR to cope with objects
which show rapidly changing behavior and thus do not
lend themselves to prioritized scheduling.

Our algorithm is directly applicable to typical current
online games such as Ultima Online, Everquest,
Asheron's Call, Half-Life, Quake III Arena, Unreal
Tournament etc.

The remainder of this paper is organized as follows:
Section 2 reviews related work, while section 3 gives a
brief background of the PRR algorithm on which this
work is based. It is followed by a description of the
visibility algorithm given in section 4 and how it is
combined with PRR. Section 5 presents an DFWLYLW\



PRQLWRULQJ that allows the enhanced PRR algorithm to be
employed even in environments with objects having an
unpredictable behavior (such as user controlled avatars).
A description of the testbed and the evaluation are
presented in sections 6 and 7. Conclusions are drawn in
section 8.

�� 5HODWHG�:RUN

Most virtual environments employ strategies to deal
with the network bandwidth restrictions that limit the
number of possible update messages. Many of them are
filtering techniques which reduce the number of elements
competing for the resource. They can roughly be
categorized into the following groups:

Several systems exploit the fact that a client is
typically interested only in a small subsection – an DUHD�RI
LQWHUHVW - of the virtual world, which has local scope.
Often the clients perception is limited to what can be seen
from the current viewpoint. Objects that are occluded or
too far away are not considered. Updates can be
propagated on a “need to know” basis, greatly reducing
the amount of messages that must be considered. The
regions for which communication locality is exploited can
either be given by the application designer, such as in
SPLINE [Barr96], based on a regular (e.g. hexagonal)
subdivision such as in NPSNET-IV [Mace95], by the
viewing frustum/view cone such as in AVIARY
[Snow94], or by YLVLELOLW\� FXOOLQJ [Funk95, Makb99].
Visibility culling is often carried out with potentially
visible sets (PVS) first introduced by Airey [Aire90]: An
environment is first decomposed into cells, for which
inter-cell visibility is pre-computed and used at runtime to
identify visible objects for a given viewpoint. A simple
PVS algorithm [Schm96] was also used for our test
system.

A related concept is that of temporal bounding
volumes (TBV) [Suda96, Suda97] and update free regions
(UFR) [Makb99]. A TBV is a region of space which
completely contains an object for a determined period of
time. For an object in a completely hidden TBV, no
update must be considered during the validity interval of
the TBV. UFR implement a similar concept for mutual
visibility of objects. In this paper, we construct and use
TBVs to enhance message scheduling.

Communication filtering can also be performed based
on proximity such as in DIVE [Benf93], or by explicitely
registering interest in particular objects or events such as
exemplified by NPSNET-IV or AVIARY.

A scalable distributed virtual environment requires
also some care in the choice of network topology, which
is often considered together with a message filtering
mechanism. Several systems use multicasting instead of
or together with client-server schemes to achieve better
scalability. Multicast groups are often associated with a
particular location or message type for implicit message

filtering by multicast subscriptions. Examples for such
methods can be found in NPSNET-IV, DIVE, SPLINE,
and RING [Funk96]. It should be noted that although it
was tested in a client-server environment, the scheduling
algorithm presented in this paper is independent of
network topology and can be used in any network setup.

Finally, GHDG�UHFNRQLQJ is a networking enhancement
technique used in physically based simulations where the
motion of the objects is computed from linear velocity
vectors. Each host stores a local copy of a remote object
and predicts movements of the objects based on the
current velocity. An update gets sent only when the
difference between actual movement of the object at the
remote host and the local copy exceeds a certain treshold.
Several forms of dead reckoning have been developed,
including prediction based on first-order derivatives such
as in NPSNET [Mace94], position history such as in
PARADISE [Sing95], or group dead reckoning such as in
NetEffect [Das97].

Although all these techniques may reduce the number
of messages to be transmitted by a considerable amount,
they usually require a separate examination of all objects
for each connected client (e.g. in visibility culling each
client can have a different viewpoint), leading to a
considerable effort. Furthermore, if the number of
remaining messages still exceeds the network bandwidth,
they must be scheduled or sorted in some way.

The scheduling algorithm presented in this paper fills
in this gap. While the factors used in the algorithm are
limited to a few (visual error, visibility), its freely
definable metric make it principially suitable to
accommodate any of the above filtering techniques, and
work together with other networking techniques.

�� %DFNJURXQG��3ULRULW\�5RXQG�5RELQ

The inspiration of the Priority Round-Robin (PRR)
algorithm can be found in the short-term process
scheduling known from operating system's research,
where a set of independent processes is given processor
time in order to optimize determined system's parameters
[Deit90, Silb88, Stal95, Tane92]. Two of the most widely
used algorithms are 5RXQG�5RELQ (or )LUVW� &RPH�)LUVW
6HUYHG, which is the non-preemptive version of Round-
Robin), and the 0XOWLOHYHO� )HHGEDFN� 4XHXH (MLFQ).
Round-Robin (RR) is widely used due to its simplicity,
output sensitivity and starvation-free performance, but
prevents the use of priorities. The MLFQ does enforce
priorities (it consists of a set of levels with decreasing
priorities), but has either to deal with the risk of
starvation, or must constantly monitor all processes and
thus renounce to a constant overhead.

The scheduling of processes in operating systems and
the scheduling of objects in virtual environments bears
some substantial differences: in virtual environments for
example – as opposed to process scheduling - the objects



usually need be scheduled repeatedly, and their high
number prevents an examination or sorting of all objects
(for more details refer [Fais00]). However, by combining
the basic properties of RR and MLFQ, the PRR algorithm
inherits the advantages of both, providing an output
sensitive and starvation free performance, and being able
to enforce priorities. It is therefore a valid replacement for
RR in most circumstances. We will employ PRR in our
client-server testbed to schedule position update
messages, a task which is usually handled by a simple
RR.

The priority management of PRR is based on the
assumption that if an object is not granted the resource
requested, it accumulates error, e.g. visual error. To be
useful for scheduling, this error must be modeled as an
appropriate error metric (such as deviation in position);
the goal of the PRR algorithm is thus to PLQLPL]H� WKH
FXPXODWLYH� HUURU over all objects in the environment,
called the ’overall error’.

Each object in the algorithm is assigned a so called

(UURU� 3HU� 8QLW
� �(38�, which is a prediction of how
much the error will increase in a determined time unit. If
the error is a deviation in position, then the velocity of an
object is a suitable EPU.

The main loop of the PRR algorithm consists in
traversing all levels simultaneously in a Round-Robin
fashion, but at a varying speed which is determined by the
average EPU of each level (given by the EPU of all
objects contained in the level). Hence the frequency with
which the objects in a level are scheduled is directly
related to the (average) EPU of that level. If the levels are
not traversed at a constant speed (in Figure 1 all levels
have an equal speed of one), but at a varying speed, the
latter can be chosen to give the objects in the levels a
scheduling frequency that minimizes the average overall
error accumulated by all objects.

)LJXUH� ��� � 6FKHGXOLQJ� RUGHU� RI� WKH� HOHPHQWV� FRQWDLQHG� LQ� WKH
355�DOJRULWKP�LI�WKH�WUDYHUVDO�UDWH�LV�VHW�WR���IRU�DOO�OHYHOV�

Let OHY denote the number of levels and HOHP
L
 the

number of objects in level L. If we repeatedly visit all
levels, each level traversed with its own ’traversal rate’ WU

L
,

the scheduling frequency for a level (and all objects
contained in it) is given by
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L
 denotes the ’repetition count’ of a level, describing

the number of scheduling actions an object in that level
has to wait between two subsequent selections. By
minimizing the overall error HUU accumulated by all
objects (we use an easy to calculate approximation)
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This formula is derived by expressing the overall error
with a cost function (WU

L
 being the variables) and solving it

using the Lagrange Multipliers. A detailed description of
this steps is given in [Fais00].

The main loop of the PRR algorithm consists in
simultaneously traversing all levels according to their
’speed’ WU

L
. Every time an object is selected, it is granted

the resource requested (e.g. transmitting a position
update), after which the object is re-evaluated: first a new
EPU is determined (we base it on the actual velocity),
then the object is reassigned to one of the levels according
to its EPU. Assigning the object to the level whose
average EPU is most close to the EPU of the object yields
an simple yet effective adaptation to even rapidly
changing error distributions. Afterwards the traversal rate
of the levels is modified (Equation 3) so to account for the
new error distribution.

By assuming a fixed number of levels, the effort
needed to schedule an object is constant; hence the PRR
algorithm can achieve an output-sensitive behavior. The
freely definable EPU allows us to include visibility
information in the determination of an object’s priority.

�� 8VLQJ�YLVLELOLW\�LQIRUPDWLRQ

���� 2YHUYLHZ
Visibility information is already available in many

existing virtual environments and networked games,
usually employed to limit the amount of data transmitted
over the network. In indoor scenes, rooms and building
occlude most parts of the environments; in outdoor scenes
the visibility is often limited by a radius around the user,
e.g. the so called ’fog of war’ in strategy games.



)LJXUH����9LVLEOH�DUHD�DQG�YLVLEOH�REMHFWV�IRU�D�JLYHQ�YLHZSRLQW
RI�WKH�FOLHQW�

Visibility culling of objects in a virtual environment
can be accomplished by first determining the visible area
that can be seen from the viewpoint, and then checking
which objects are inside and outside that area. Figure 2
depicts the visible area for a client, with object A and B
being visible, and object C being invisible.

Usually visibility culling is first used to reduce the
number of objects, then a plain FIFO or Round-Robin
(RR) queue is used to schedule the remaining objects;
hence the visibility information is employed to insert or
remove objects from the queue.

In contrast, we replace RR with a Priority Round-
Robin (PRR) scheduler and include visibility information
in the priority of the objects. This allows us to reduce the
effort for the server to determine which updates should be
sent to each client. As each client has its own field of
view, the server must usually examine all objects for each
client. Assuming the number of clients approaching the
number of objects, it is an effort of 2�Q��.

By employing the PRR algorithm it is possible to shift
part of this effort the scheduler, achieving an overall
effort of 2�Q� for Q connected clients. We let PRR
repeatedly schedule as many objects as the network
permits. Whenever an object is selected, PRR checks
whether it is visible or not. For a visible object the update
is transmitted, otherwise the algorithm continues its
selection, looking for visible objects, with the highest
speed permitted by the computing power and the network
bandwidth. The visibility information affects how the
object’s priority is determined: visible objects get a
priority equal to their velocity (their EPU); if an object is
invisible, the priority is chosen such as to let the object be
rescheduled when it is expected to become visible again.
In our implementation we base the prediction of when an
object will be visible again on the shortest path from the
actual position to the next visible area (other than the
actual velocity of the object).

���� 7HPSRUDO�ERXQGLQJ�YROXPHV
The determination of the time interval an object is

supposed to remain invisible is based on a technique
called ’temporal bounding volumes’ (TBV). A TBV is a
region of space (for simplicity often a circle or sphere)

which completely contains an object for a specific period
of time (called the validity interval). The TBV becomes
invalid if the object leaves the volume; hence its
’expiration date’ is determined by the movement of the
object (e.g. rotating around a fixed point, traveling along a
track, or translating freely in space) and by the size the
TBV can have. In the extreme, a TBV encompassing the
whole area of movement of the object will always be
valid.

For objects with unconstrained translational
movement, the expiration date of the TBV is directly
related to its size. The validity interval of a TBV could be
calculated by dividing the size of the TBV by the
maximum velocity of the object. However, in large virtual
environments the entities are usually avatars with an
unpredictable behavior.

Our application of the TBV consists in using them to
determine the priority of objects in the PRR algorithm:
every time an object is scheduled, PRR determines
whether it is visible or not. In the latter case, a TBV is
constructed, based on the time the object is supposed to
become visible again (thus, the size of the TBV
determines its validity interval). Given the fact that the
scheduling frequency of an object is reflected by its
priority, we assign the object a priority such as to become
scheduled again at the same moment the TBV expires
(and the object is supposed to become visible again),
providing kind of an automated ’wake-up’ function.
Figure 3 shows the TBV for an object with unbound
translation, calculated from the shortest path to the next
visible area (hatched area).

)LJXUH� ��� 7HPSRUDO� ERXQGLQJ� YROXPH� IRU� DQ� LQYLVLEOH� REMHFW
EDVHG�RQ�WKH�VKRUWHVW�SDWK�WR�WKH�QH[W�YLVLEOH�DUHD�

���� ,QWHJUDWLQJ�YLVLELOLW\�LQIRUPDWLRQ�LQ�355
In order to be usable by the PRR algorithm, we

express the time interval an object has to wait (given by
the TBV) in number of scheduling action (this value
depends on the number of objects PRR can schedule per
unit time). Hence we can directly compare the waiting
time of an object  - given by a number of scheduling
actions - to the scheduling frequency of each level - given
by the repetition count (as calculated using Equation 1).



An object is then assigned to that level whose scheduling
frequency best matches its required waiting time.

This causes a difference in how an object is assigned
to a level, depending whether it is visible or not: if an
object is visible, it is assigned to that level whose average
EPU best matches the EPU of the object (given by its
velocity). If it is invisible, that level is chosen whose
scheduling frequency best matches the waiting time
determined by the TBV. In the latter case, the EPU of the
object is not determined by its velocity; rather it
temporarily assumes the average EPU of the assigned
level. This allows the PRR algorithm to simultaneously
process visible and invisible objects.

�� $FWLYLW\�PRQLWRULQJ

One possible origin of errors in the scheduling is an
unpredictable or rapidly changing behavior of the objects.
The Priority Round-Robin (PRR) algorithm usually
computes the Error Per Unit (EPU) of an object based on
its recent simulation behavior; but if the object suddenly
changes its behavior by a noticeable amount, then the
EPU that was computed for the object when it was last
inserted into a level is no longer valid. The object would
need a new EPU, but this can happen only when it is
scheduled the next time.

Hence in the time interval between the change in
behavior and the next scheduling of the object, the
priorities and traversal rates as used by the PRR-algorithm
are not correct. In the worst case, this may lead to an
overall error which is worse than that produced by plain
Round Robin (RR) scheduling. The scheduling frequency
of the objects (given by the repetition count of the level
they were inserted in) is determined by the relation of
their EPUs; objects with a higher EPU get a higher
scheduling frequency (a bigger share of the resource) at
the expense of objects with a lower EPU. For example, an
object ranked high in relation to the other objects
concerning its EPU may suddenly slow down and produce
an error (per unit) much lower than most other objects.
But until it is rescheduled, it is bound to the fast level it
was assigned to, at the expense of other objects which
were previously slower, but are now faster (in relation of
their EPU, alias velocity). Even worse, objects rated low
and assigned to a slow level, is denied a higher scheduling
frequency until they are rescheduled, in case they should
experience a sudden speedup.

If such changes in behavior follow a specific pattern,
the PRR algorithm can take them into consideration by
analyzing the history of the object; but if the behavior is
unpredictable, as occurs very often for human-controlled
avatars in virtual environments, the efficiency of PRR is
endangered.

Hence we have developed a measure for the ’activity’
of objects, in order to quantify the frequency and ’amount’
of changes in the EPU of an object (reflected from

changes in its behavior). We do this by comparing the
SUHGLFWHG�HUURU caused by the behavior changes (summed
in a sliding average) to the SUHGLFWHG�EHQHILW achieved by
using PRR compared to RR.

Every time an object is scheduled (and thus a new
EPU is computed), the change between the new and the
old EPU, multiplied by the repetition count between the
last two schedulings, is taken as error caused by the
change in behavior. This assumes the worst case, namely
that the change in EPU occurred immediately after the
object was assigned to the level. These errors, which
include increases as well as decreases in the EPU are
continuously summed up in a sliding average, called the
’error penalty’.

The predicted benefit by using PRR over RR assumes
the best case, namely the difference in the overall error
(between PRR and RR) that would have been experienced
if all EPUs had remained unchanged; this is called the
’error benefit’. Equation 4 and 5 show the formula for the
error penalty and error benefit; QR(OHP is the total number
of objects in the environment, eSX

L
 and UF

L�
denote the EPU

and the repetition count of object L, respectively.

Whenever the error penalty is higher than the error
benefit for a determined amount of time (called the
monitoring period), the behavior of the objects is
classified as too instable to rely on priorities for the
scheduling. In this case, two strategies have been tested:
• 6ZLWFKLQJ: simply switch to RR performance, hence

ignoring the priorities assigned to the objects. All
levels are traversed at such a speed as to give the
objects the same repetition count they would get in
plain RR. This produces some undesirable peaks in
the overall error when switching between PRR and
RR performance.

• 'DPSLQJ: specify a maximum difference between
the traversal rates of the various levels, thus limiting
the influence of the priorities (EPU). We divide the
interval covered by the average EPU of all levels into
segments of equal length, same in number to the
levels in the PRR; the length of the resulting
segments is then used as maximum difference by
which the average EPU of the various levels are
allowed to vary. The nearer the EPU are brought
together, the more the PRR approaches RR
performance.

Damping is a heuristic approach, but produces good
results and a smooth transition between the various stages
(an evaluation is given in the section 8). Whenever the
error penalty is higher than the error benefit for the
monitoring period, the highest amount of damping is
applied; every time that for the duration of the monitoring

(Eq. 4)

(Eq. 5)
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period the error penalty stays below the error benefit, the
stage of the difference-restriction is decreased by one.

Damping works independently of whether visibility is
used in the PRR or not; it allows the PRR algorithm to
become a safe scheduling strategy that can cope with
almost any error distribution and objects’ behavior.

�� 7HVWEHG�LPSOHPHQWDWLRQ

Our testbed consists of a server which moves a
determined number of objects through an environment,
generated from a floor plan. A client visualizes the whole
scene from a determined viewpoint and receives position
updates of the various objects, in order to remain
consistent with the server. Due to limited network
bandwidth, only part of all pending updates can be
transmitted to the client.

The visual error, given by the difference in position of
the objects on server and client, will be minimized by the
enhanced PRR algorithm. While the simulator
continuously moves all objects, we let the PRR algorithm
select as many objects as the network permits (e.g. 10 %),
using the velocity of the objects as Error Per Unit (EPU).
As reference we use the same setup, but with a plain
Round-Robin (RR) queue instead of the PRR algorithm.
Like PRR, the plain RR transmits only the visible objects
to the client, but does not enforce priorities.

Figure 4 shows a snapshot of the evaluation testbed:
the server (simulator), located in the top panel, depicts the
floor plan and the moving objects; the client’s viewpoint
is depicted by a star, and the invisible areas are shown
shaded dark. The lower two panels show a visualization
of the visual error of the connected client; the third panel
(from the top) depicts the visual error for RR, while the
bottom panel shows the visual error for the enhanced
PRR. The visual error is depicted by a line from the actual
position of an object (on the server) to the last updated
position (on the client) - thus the longer the line, the
higher is the visual error. The graph in the panel
underneath the simulator permits to monitor the overall
error for RR and PRR scheduling.

The motion of the objects through the environment
was implemented by first digitizing and triangulating a
floor plan, and then generating a connection-graph of the
triangles. The simulator generates for each object a path
from the current position to a random destination position,
and then moves the object along this path with a given
velocity (used as EPU).

The area visible from the viewpoint chosen by the
client is also easily computed with the help of the
triangulated floor plan. Starting from the triangle which
contains the viewpoint, the 2.5D-visibility algorithm
presented by Schmalstieg in [Schm96] generates the set of
potentially visible triangles from the viewpoint.

If the object is invisible, then the algorithm determines
the shortest path from the actual to the nearest visible

triangle; from the length of the path and the actual
velocity PRR makes a safe guess of the moment the
object will become visible in the worst case (if it
immediately starts heading for the visible area), and gives
the object an according priority.

)LJXUH� ��� 6FUHHQVKRWV� RI� WKH� WHVWEHG� HPSOR\HG� WR� HYDOXDWH� WKH
HQKDQFHG�3ULRULW\�5RXQG�5RELQ�DOJRULWKP�



�� (YDOXDWLRQ�DQG�UHVXOWV

The enhanced PRR algorithm is evaluated by
comparing it to plain Round-Robin (RR) scheduling; this
allows us to evaluate the performance increase that can be
gained by substituting RR with PRR.

In the example given below, the server hosts a
simulator and moves 10000 objects (simulating avatars) at
a predetermined velocity through the environment; the
velocity is used as Error Per Unit (EPU). To simulate the
network bottleneck, although the simulator can move all
objects in every simulation step, only 10% of the position
updates (1000 in numbers) can be transmitted to the
client. The main loop of the testbed consists thus in first
simulating all 10000 objects; afterwards a PRR-scheduler,
as well as a plain RR queue can select and update 1000
objects. The actual overall error is computed and
evaluated for both RR and PRR scheduling after each
loop.

���� ([DPSOH����FOXVWHUHG�HUURU�GLVWULEXWLRQ
This example shows a case apt for the PRR algorithm,

as we have three different clusters of EPUs which can be
serviced by PRR at different priorities. We let 10000
avatars walk along random paths in the environment at
different velocities (used as EPU):
• 1000 avatars get a velocity between 2.9 and 3 units
• 2000 avatars get a velocity between 0.5 and 0.6 units
• 7000 avatars get a velocity between 0.1 and 0.2 units

The camera is placed in the same location of the map
as can be seen in Figure 4. Figure 5 shows a comparison
of overall visual error caused by a RR and a PRR
algorithm (for the same client), if only 10% of the 10000
objects are scheduled after each simulation loop.

)LJXUH� ��� 'XH� WR� WKH� FOXVWHUHG� HUURU� GLVWULEXWLRQ�� WKH� YLVXDO
HUURU�RI�WKH�HQKDQFHG�355�LV��������ORZHU�FRPSDUHG�WR�55�

���� ([DPSOH����XQLIRUP�HUURU�GLVWULEXWLRQ
As PRR relies on servicing the objects at different

priorities, according to their EPU (velocity), a uniform
error distribution prevents PRR from constructing clearly
distinct error groups. In contrast to the previous example,

each avatar gets a random velocity between 0.1 and 3
units. Hence the reduction of the overall visual error, as
compared to RR scheduling,  is ’only’ 85.1%.

)LJXUH����:LWK�D�XQLIRUP�HUURU�GLVWULEXWLRQ��WKH�YLVXDO�HUURU�RI
WKH�HQKDQFHG�355�LV�������ORZHU�FRPSDUHG�WR�55�

���� ([DPSOH����XQSUHGLFWDEOH�PRYHPHQW
In this example we produce a situation that may be

critical for PRR, but is likely to happen in virtual
environments, and especially networked games where the
motion of objects is directly controlled by a user. If the
objects experience a fast-changing, unpredictable
behavior, it makes a correct prediction of the behavior
impossible. Hence the PRR algorithm is not able to
correctly enforce priorities, as an object can experience a
sharp change in velocity (and hence of its EPU, its
contribution to the overall visual error) even immediately
after it has been assigned to a given level according to its
behavior prediction.

To simulate this situation we give all 10000 objects a
random velocity between 1 and 10 units; but after 10
simulation loops we shuffle the velocities of all objects.
An extreme behavior to this extent will rarely happen, but
it clearly shows the efficiency of the failure-safe
mechanisms in the enhanced PRR algorithm: a heuristic is
used to detect whether the ’benefit’ gained by using PRR
over RR exceeds the deterioration caused by an erroneous
prediction of the objects’ EPU. In such a case, the PRR
temporarily reduces the enforcement of priorities, as
described in Section 5.

Figure 7a shows a comparison of the overall visual
error produced by PRR and RR, if the ’damping’
mechanism is activated; in this case PRR makes the best
out of such an extreme situation (DOO objects perpetually
change behavior), and produces a performance close to
RR (better only by less than 1%). If a PRR, with no safety
mechanism, is employed (see Figure 7b), the erroneous
prediction of the priorities lead to an overall visual error
even worse than RR by 9.1%. Fortunately the employed
heuristic can provide security at no discernible expense.



)LJXUH� �D�� �E�� 3HUIRUPDQFH� RI� 3ULRULW\� 5RXQG�5RELQ� Z�R
GDPSLQJ�LI�WKH�REMHFWV�KDYH�DQ�XQSUHGLFWDEOH�EHKDYLRU�

�� &RQFOXVLRQ�DQG�IXWXUH�ZRUN

The enhanced Priority Round-Robin (PRR) algorithm
presented in this paper can bring a substantial contribution
to the development of distributed virtual environments or
networked online-games which contain a very high
number of objects. It allows to handle the transmission of
update messages from server to client at a constant effort
per connected client, determining the frequency of the
updates from priorites based on the behaviour of the
objects as well as visibility information. It can substitute
the plain Round-Robin queue used in virtual
environments to transmit the update messages to the
clients at no discernable effort, providing a scalable
technique that leads to a graceful degradation of the
systems performance caused by network bandwidth
limitations. Our experiments confirm that due to its
activity monitoring, the enhanced PRR algorithm is
superior to conventional scheduling in real-world
situations even if objects may have unpredictable
behaviour, such as user-controlled avatars.

In order to further optimize the enhanced PRR
algorithm to be employed in distributed environments and
online-games, future work will examine the scheduling of
avatars which are build according to a hierarchical human
model, and employ Levels of Detail for the accuracy of
the updates transmitted to the clients. It is planned to
construct an extended environment containing a large
number of rooms, buildings and open landscapes, and
evaluate perceptual error metrics to minimize the visual
error as perceived by the user.
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