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Abstract

We present Lazy Occlusion Grid Culling, a new image-based occlusion culling
technique for rendering of very large scenes which can be of general type. It is based
on a low-resolution grid that is updated in a lazy manner and that allows fast decisions
if an object is occluded or visible together with a hierarchical scene-representation to
cull large parts of the scene at once. It is hardware-accelerateable and it works
efficiently even on systems where pixel-based occlusion testing is implemented in
software.
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Abstract. We present Lazy Occlusion Grid Culling, a new image-based
occlusion culling technique for rendering of very large scenes which can be of
general type. It is based on a low-resolution grid that is updated in a lazy
manner and that allows fast decisions if an object is occluded or visible together
with a hierarchical scene-representation to cull large parts of the scene at once.
It is hardware-accelerateable and it works efficiently even on systems where
pixel-based occlusion testing is implemented in software.

1 Introduction

Occlusion culling is very important for efficient rendering of very large scenes. Such
scenes can consist of millions of polygons which is much more than available
graphics hardware can render in useable time. Usually only a small part of the scene
is visible. Therefore it is necessary to determine all those parts of the scene that are
completely invisible due to occlusion by other parts so that these occluded objects do
not have to be considered for drawing.

In this paper we present Lazy Occlusion Grid Culling, a new image-based occlusion
culling technique that, in contrast to many existing techniques as explained in chapter
2, is capable of efficiently handling general scenes. It is hardware-accelerateable on
systems that support simple pixel-based occlusion testing in hardware eg. as already
proposed for OpenGL [3], [9]. It works efficiently even on systems where this pixel-
based occlusion testing part is implemented in software due to missing hardware-
support by the graphics system.

The image is subdivided into a low-resolution grid of cells with an occlusion-status
for each cell. This low-resolution grid allows fast determination of occlusion or
visibility of objects in large image-areas. The occlusion-status of a cell is updated in a
lazy manner upon request of the cell-status if the image-area of the cell has been
modified. This image-based occlusion testing is used together with a hierarchical
scene-representation like an octree, a BSP-tree or any other kind of bounding volume
hierarchy so that large occluded parts of the scene can be culled at once.

2 Related Work

Several different occlusion culling techniques already exist. They can be categorized
if they operate on geometry or if they are image-based. An important feature is if and
how much a technique allows hardware-acceleration, which applies to some of the



image-based techniques, and if the required hardware is available. Many techniques
require a preprocessing step and are limited to static environments which is the case
with most potentially visible set-methods (see below). Also many techniques are only
meant to work with scenes that are densely occluded or that have some special
geometric characteristics.

Naylor [13] presented a method which realizes occlusion culling by generating a 2D
BSP-tree of the image from a 3D BSP-tree of the scene. Occlusion culling methods
that are specialized for 2½D scenes use the simplicity of the geometry of such scenes
which is based on a ground plan [14], [19].

Potentially visible set (PVS)-based methods divide space into convex cells. Only the
objects contained in a limited number of cells (the PVS) may be partially visible from
the eyepoint or from somewhere in the cell containing the eyepoint and must therefore
be drawn. PVS-based methods are suited for models like indoor-scenes, caves or
pipes which consist of cell-structures so that the PVS are small. PVS are not suited eg.
for outdoor-scenes unless they are very densely occluded as assumed in the method of
Cohen-Or et al [4]. If a scene does not offer the required inherent cell-structure it
would cause very large PVSs.

The PVS of the actual eyepoint can be computed by finding visible sequences of
portals which are the connecting holes like doors or windows in the walls of the cells
[12]. In static scenes the PVSs of all cells can be calulated in a preprocessing step.
This can be done by determining the objects that are visible from a portal and which
therefore belong to the PVS of the portal’s cell [2]. The PVS of a cell can also be
determined by recursively searching for sequences of portals through which sightlines
exists [17]. In 2D this is the case if the left and right vertices of the portals are linearly
separable. The transfer of this method to 3D requires the replacement of the portals
with their axisaligned bounding boxes. Paths of possible visibility are used to
determine the PVSs in a method which is based on a regular grid in object-space and
which is suited for cave-like structured scenes [20].

An example for the usage of PVSs on low-end hardware is the 3D game Quake [1]
which generates the PVSs of its static environment as BSP-trees in a time-expensive
preprocessing step and which then uses the BSP-tree of the actual cell for depth-
sorting.

Some techniques only use a small set of heuristically choosen occluder-polygons for
culling [5], [10], [21]. This is based on the assumption that these few polygons cover
a large area of the image and therefore occlude large parts of the scene. This
assumption is problematic because there is no occlusion culling possible in the areas
that are not covered by these few occluders and often many small polygons together
form a larger occluding area.

Image-based techniques are not limited to scenes with a distinctive cell-structure like
in indoor scenes. They are usually also suited eg. for forest-scenes where large parts
of the scene are occluded by a set of many small objects.



The hierarchical z-buffer [6] is an image-based method that uses a pyramid of z-
values to cull objects in large already completely occluded parts of the image with
only a few z-comparisons. The scene is subdivided into an octree to realize a
hierarchy of bounding volumes which are tested against the hierarchical z-buffer. If a
bounding volume is completely occluded then its sub-objects are also occluded and
can be culled. This method can be extended to error-bounded antialiasing [7]. Today
there is still no hierarchical z-buffer hardware available and the implementation of the
hierarchical z-buffer on conventional z-buffer hardware or in pure software is not
very efficient.

Sudarksy and Gotsman presented how to use dynamic scenes with temporal bounding
volumes together with the hierarchical z-buffer and the image-BSP-tree method [15],
[16].

Hierarchical coverage masks [8] use a pyramid which only stores if an image-area or
(sub)pixel is occluded instead of a z-value. Also in contrast to the hierarchical z-
buffer each entry in the pyramid has 8x8 instead of 2x2 subentries, therefore the
pyramid has fewer levels. The major characteristic of this technique is that it uses fast
table-lookups and bit-operations instead of traditional scanline-rasterization.
Geometry must be traversed in exact front back order. Traditional graphics-hardware
can be used for texturing and shading but the main hierarchical coverage masks
algorithm which processes on the coverage pyramid has to be done in pure software.

Hierarchical occlusion maps [21] work with a pyramid of averaged occlusion values
which is generated using mipmap-hardware. Therefore the occlusion-determination is
only approximative (non-conservative) and objects which should be visible may be
culled. The occlusion-pyramid is only build initially for a small set of heuristically
choosen occluder-polygons, which is not suitable for many types of scenes.

A brute-force technique is to test for occlusion by simply rasterizing a bounding
volume without modifying any buffer and querying whether any fragment passed the
z-test [6], [9]. In a more hardware-oriented proposal [3] this can be done for several
parts of the image in parallel. Another idea is to do only a sparse sampling of the
pixels covered by the bounding volume to test for occlusion [11].

Occlusion culling in walkthrough-scenarios can be done by rendering the scene up to
a given distance (near field) into a software-opacity buffer [18]. After that the pixels
that are not occluded by the near field are filled with the rest of the scene (far field)
using horizon estimation, image caching and ray casting.

3 Lazy Occlusion Grid Culling

The image is subdivided into a low-resolution grid of cells and each cell contains the
occlusion-status of its image-area. The optimal grid-resolution or number of pixels
per cell is system-dependent and can be determined heuristically by testing typical
scenes of the desired application at different grid-resolutions. The grid is based on a z-



buffer or an occlusion-buffer where a single bit per pixel shows if that pixel is free or
already occluded. Both kinds of buffer are updated conventionally when drawing
primitives. The z-buffer variant has the advantage that the objects in the scene can be
processed in an approximative near to far order. The occlusion-buffer variant needs an
exact near to far order but has the property that a once set pixel is definitively
occluded. Therefore it has the advantage that the pixel-tests (see below) are less
expensive.

3.1 Occlusion-Buffer Variant

In the occlusion-buffer variant each cell of the grid stores its status which can be
• completely free
• partially free
• completely occluded
• additionally it can be modified

A cell which is completely covered by a bounding volume is called a non-border cell
of that bounding volume. A cell which is only partially intersected by a bounding
volume is called a border cell of that bounding volume (see figure 1).

To summarize the major occlusion testing steps which are described in detail below, a
bounding volume is visible if it intersects a

• completely free cell
• partially free non-border cell

A bounding volume is occluded in the area of a
• completely occluded cell

If these tests have not classified the bounding volume as visible or occluded, a pixel-
based occlusion test is done for a

• partially free border cell
• modified not completely occluded cell

Fig. 1. Border (light grey) and non-border (dark grey) cells of a bounding volume



A bounding volume that intersects a cell which is completely free is visible. Initially
all cells are completely free, therefore the first objects in their respective image-area
can be classified as visible very fast. A bounding volume is also visible if it has a
partially free non-border cell, because the bounding volume covers the whole cell and
therefore at least one of the free pixels. If a cell is completely occluded it occludes the
bounding volume in its area no matter if it is a border or a non-border cell. If a border
cell is partially free the bounding volume may be occluded by the content of the cell.
Therefore it is necessary in this case to test if there exists a free pixel that is covered
by the bounding volume within the cell. This pixel-test is important because without it
bounding volumes would have to be classified as visible unless the cell is completely
occluded, eg. objects behind the horizon shall be occluded but the horizon does not
completely occlude its intersected cells.

A bounding volume is classified as occluded if it is occluded in all cells it intersects.
In this case the bounding volume and all its sub-objects can be culled. Otherwise the
bounding volume is visible and its sub-bounding volumes are processed recursively.
A visible bounding volume that contains primitives (usually a leaf-node in the scene-
hierarchy) draws them conventionally and marks all of its intersected cells as
modified. If later another bounding volume requests the status of a modified cell that
is not already marked as completely occluded a pixel-test is applied to this cell to
determine its status. After this the cell’s modified flag is of course cleared.

This lazy evaluation of the cells’ status has the advantage that several bounding
volumes can draw their primitives and therefore increase the probability of occluding
an area before the pixel-testing has to be done, therefore reducing the number of
pixel-tests. In the case of a non-border cell the whole cell-area is tested if it contains a
free pixel and accordingly to the result the cell is marked as partially or completely
occluded. We do not test if it is completely free because this would require to test if
all pixels in the cell-area are free. It is very probably that the intersected cells of a
tight leaf-bounding volume are really modified by its primitives, therefore we can end
the pixel-test and say that the cell is most likely partially occluded if we find the first
free pixel. In the case of a modified border cell only the cell-area covered by the
bounding volume is pixel-tested to determine if the bounding volume is occluded in
the cell. This is done because often there exist many small bounding volumes and in
this way at most only the image-area of such a bounding volume has to be pixel-tested
but not the considerably larger area of its border cells.

All pixel-tests of a bounding volume are done at last after the faster status-based
testing of all its cells has been done. Therefore pixel-tests have to be done only if the
bounding volume has not already been classified as visible by means of the faster
status-based testing in one of its cells.

3.2 Z-Buffer Variant

In the z-buffer variant each cell stores the farest z-value of its pixels (zfar) and status-
flags if the cell is completely free or if the cell is modified. Initially all cells’ zfar are
set to zmax and their status is completely free, therefore an intersecting bounding



volume is visible. A bounding volume is completely occluded in a cell’s area if the
nearest z-value (znear) of the bounding volume is greater than zfar of the cell. Otherwise
the cell is partially free relative to the bounding volume’s znear. In this case the
bounding volume is visible if it is a non-border cell. Similar to the occlusion-buffer
variant a pixel-test is necessary if the partially free cell is a border cell of the
bounding volume or if the partially free cell is modified. In the case of a border cell
the area of the bounding volume in the cell is tested for a free pixel. In the case of a
modified non-border cell its actual zfar is determined according to the z-values of all
its pixels. In contrast to that we can end the non-border cell pixel-test in the
occlusion-buffer variant if we find the first free pixel.

3.3 Extensions

A possible extension to further enhance efficiency is to quickly rate a cell as free
instead of pixel-testing if the probability that the cell is occluded is smaller than a
given threshold. This probability can be approximated by adding up the size of the
modified areas in the cell which for reason of speed can be done without considering
if the areas are intersecting.

Another extension is to test if a bounding volume’s border cell is completely occluded
(which requires to test at most all pixels in the cell’s area) if the area of intersection of
the bounding volume and the cell is larger than a given threshold. In this case the
overhead of testing in the whole cell-area instead of testing in the smaller intersection-
area is not so big compared to the possibility to detect that the cell is completely
occluded.

3.4 Hardware Acceleration

The most suited hardware-support for Lazy Occlusion Grid Culling would be given
on systems that support pixel-based occlusion testing. This means that the result of
the z-buffer or occlusion-buffer test can be requested after rasterization of a bounding
volume, giving information if at least one pixel is visible or if all pixels are occluded.
Writing to any buffer must of course be disabled during this rasterization step. Such
functionality has been already proposed for OpenGL [3], [9], [11] and we hope that it
will be soon available.

The next possibility to incorporate hardware is to access the hardware-z-buffer for
reading and to do the pixel-testing in software. In OpenGL a part of the z-buffer can
be read with glReadPixels. The speed of this function, which is able to do much more
than a simple memcopy, varies much between different systems but on several
workstations it is implemented quite fast.

On systems where the access to the hardware-z-buffer is not efficient enough a
software-occlusion-buffer or -z-buffer is used for pixel-testing parallel to the
hardware-z-buffer which is furthermore used to render the primitives in hardware.
The occlusion-buffer has the advantage that it is faster than the z-buffer in software
because the occlusion-buffer implementation needs to access only one byte per pixel
and it does not have to calculate and compare the pixels’ z-values.



3.5 Comparison to existing image-based techniques

In comparison to the Hierarchical Z-Buffer [6] which does not work efficiently if
implemented on existing graphics-hardware or in pure software, Lazy Occlusion Grid
Culling can be hardware-accelerated on systems that support a fast access to the z-
buffer or that support a z-test query and it works efficiently even if this hardware-
functionality is not available and therefore is implemented in software. A z-test query
alone would not be enough for the Hierarchical Z-Buffer because the expensive
hierarchical updates of the z-buffer-pyramid would still have to be done in software.
Graphics hardware can be used together with Hierarchical Coverage Masks [8] only
for shading and texuring because the handling of the Hierarchical Coverage Masks
can only be done in software. In contrast to Lazy Occlusion Grid Culling,
Hierarchical Occlusion Maps [21] only supports approximative occlusion culling
because of the bilinear interpolation used to calculate the maps. Also other than Lazy
Occlusion Grid Culling which uses all visible polygons as occluders, Hierarchical
Occlusion Maps only uses a small number of occluders, therefore it is not suited for
general scenes where many polygons together form a large occluding area or where
the scene is too complex to accept unoccluded image-areas where no occlusion
culling is done.

4 Implementation and Results

We have tested Lazy Occlusion Grid Culling on a 266 MHz PC with a Voodoo2 3D
accelerator under OpenGL, a typical setup as it is used for today’s mainstream
entertainment software. We have implemented both the basic occlusion-buffer and z-
buffer variant. Reading the z-buffer with glReadPixels, which is needed for the z-
buffer variant, is an extremely slow operation on the Voodoo2, therefore we made the
testing with the occlusion-buffer variant that uses a software-occlusion buffer parallel
to the usual harware-based rendering.

The test scene in figure 2 contains 32x32x32 (32.786) cubes (393.216 triangles) in the
small version and 128x128x128 (2.097.152) cubes (25.165.824 triangles) in the large
version. The test scene in figure 3 is a city model which consists of 156.518 triangles
in the small version and 2.499.248 triangles in the large version. The large version of
a scene contains the small version plus additional occluded scene parts to test how
efficiently the culling in such very large scenes works. The scenes are build upon a
hierarchy of axisaligned bounding boxes. Both images contain regions where already
the foremost objects occlude everything behind them as well as regions which offer a
far view where many smaller objects are visible that together form an occluding area.
The images have been rendered with and without Lazy Occlusion Grid Culling. In
both cases the hierarchy of bounding boxes was used to hierarchically cull the scene-
parts outside the viewing frustum. The size of the images is 640x480 and the size of
the cells has been set to 16x16 pixels per cell which has proven to be the best choice
for the platform we have used.



without LOG Culling with LOG Culling speedup
cubes small        393.216 tri    1,025 s         242.496 tri  0,195 s    18.816 tri       5,3
cubes large    25.165.824 tri  55,235 s    13.044.384 tri  0,207 s    18.816 tri   266,8
city    small        156.518 tri    0,701 s         106.294 tri  0,034 s      2.133 tri     20,6
city    large      2.499.248 tri  11,036 s      1.691.806 tri  0,034 s      2.133 tri   324,6

Table 1. Rendering times and triangles rendered with OpenGL
with and without Lazy Occlusion Grid Culling

The rendering times in table 1 show that Lazy Occlusion Grid Culling achieves a high
speedup for all four scenes, although the occlusion-buffer had to be implemented in
software. The rendering times of the large versions of the scenes are only a little bit
longer than the rendering times of the small versions (in the city they are practically
the same) which shows that the very large additional scene parts are culled very
efficiently. The current implementation which has been done only in C++ could of
course be further improved by doing careful low-level optimizations of critical code-
sections.

5 Conclusion

We have presented an image-based occlusion culling technique which is capable of
handling very large scenes of general type. By using the lazy updated occlusion
information in the low-resolution grid together with a hierarchical scene-
representation large occluded scene-parts can be culled very fast. We showed that it
can be used with different kinds of hardware-support and our results show that it
works efficiently even on systems where software replaces missing hardware-support
for pixel-based occlusion testing.
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