
ABSTRACT
Distributed Open Inventor is an extension to the popular
Open Inventor toolkit for interactive 3D graphics. The
toolkit is extended with the concept of a distributed shared
scene graph, similar to distributed shared memory. From the
application programmer's perspective, multiple workstations
share a common scene graph. The proposed system
introduces a convenient mechanism for writing distributed
graphical applications based on a popular tool in an almost
transparent manner. Local variations in the scene graph
allow for a wide range of possible applications, and local
low latency interaction mechanisms called input streams
together with a sophisticated networking architecture enable
high performance while saving the programmer from
network peculiarities.

Keywords
Distributed graphics, concurrent programming, scene graph,
distributed virtual environment, computer supported
cooperative work, virtual reality

1.  Introduction
The rapid evolution of high performance computer networks
- in particular the Internet - has created the opportunity for
the development of distributed graphical applications. On
the one hand, vertical distribution is used to enhance the
performance of graphical applications by executing on an
ensemble of separate, communicating machines, exploiting
the resulting parallelism [10]. Such a configuration, often
called decoupled simulation [24], is commercially available
via tools like Performer [20]. On the other hand, horizontal
distribution is used to enable collaborative applications, that
allow multiple users to work together, possibly over large
distances. Particularly successful domains are Computer
Supported Cooperative Work (CSCW) and Distributed
Virtual Environments (DVE). However, these systems are
generally based on distributed databases and proprietary
protocols which are both application specific and thus fail to
provide a general mechanism for graphics.

Current general purpose graphics libraries are engineered
around the concept of a scene graph, a hierarchical object-
oriented data structure. Such a scene graph gives the
programmer an integrated view of graphical and application
specific data, and allows for rapid development of arbitrary
3D applications, which is the amount of flexibility we desire.
Unfortunately, these toolkits have no built-in support for
distribution.

A general-purpose distributed graphics toolkit should not
place programming complexity on the programmer, or it will

not be used. In particular, the programmer should not be
forced to change the usual work style because of
distribution. Obviously, a straight forward approach to
achieve this requirement is to extend a toolkit that
programmers are already familiar with to support
distribution in a transparent way so that existing code
continues to work with no or only minor modifications and
new applications can be written without learning a new
framework.

Figure 1.  A single user’s view of an interactive graphical appli-
cation (top) is extended with the concept of a distributed shared 
scene graph (bottom) for multiple users.

We achieve this goal by extending a popular mainstream
graphics toolkit, Open Inventor [28] (OIV). This toolkit is
widely available and popular with graphics programmers,
and is based on the most widely accepted programming
language for graphics (C++). Our approach - Distributed
Open Inventor (DIV) - extends the basic software to support
a distributed shared scene graph, comparable to distributed
shared memory (Figure 1). The implementation is almost
transparent to the application programmer. Distributed
programs generally execute efficiently, and the programmer
need not deal with network peculiarities. Our approach is
particularly interesting from a software engineer’s
perspective, as OIV is commercially available software not
available as source code, and so we cannot rely on any
techniques that require modification of the underlying code
base.

Display

Display

User Application Scene Graph

Single User:

Multiple User:

User Application

Distributed shared
scene Graph

User Application Display

Distributed Open Inventor: A Practical Approach to Distributed 
3D Graphics

Gerd Hesina, Dieter Schmalstieg, Anton Fuhrmann, and Werner Purgathofer
Vienna University of Technology, Austria

{hesina|schmalstieg|fuhrmann|purgathofer}@cg.tuwien.ac.at



2.  Distributed shared scene graph

2.1  Motivation and overview
A scene graph is a hierarchical data structure of graphical
objects. The application builds and maintains the scene
graph, and the graphics toolkit uses it to create images.
DIV’s scene graph has the semantics of a database held in
distributed shared memory [14]: Multiple workstations in a
distributed system can make concurrent updates to the
system, and all updates are reflected at each workstation’s
view of the scene graph. The scene graph represents the
shared state of the distributed systems to both the
application, and to the users via the images rendered from it.

The DIV runtime system takes care that all views are
updated in a timely fashion, and that conflicts arising from
simultaneous or near simultaneous updates of the same data
entity are resolved so the consistency of the shared scene
graph are not compromised.

The simplest approach to a synchronous view on shared
data is to store the data only once and redirect any access via
remote procedure calls (e. g. Sun RPC [30], Java RMI [29],
CORBA [2], DCOM [22]). However, interactive graphical
applications, in particular virtual environments, require that
the data required for rendering is stored locally at the
workstation, or interactive frame rates will be impossible.
Therefore pure client-server approaches are infeasible for
our purposes.

Instead, our approach relies on replication of the scene
graph (or at least, the relevant portion) at every workstation
and keep these replicas synchronized. In this section, we
give an overview about how this goal is achieved. First an
analysis of the paths that data flows in an interactive
graphics application is given. We then consider the
characteristics of these paths, in particular, which path must
be fast and therefore optimized (such as the transfer from
the graphical data base to the rendering hardware mentioned
above). From this analysis a mapping to an appropriate
network topology is given. Our solution involves a client-
server design using scene graph replication and
multicasting.

2.2  Communication path for interactive 
graphics applications

Interactive graphical applications place the human user in a
loop with the computer. A simple model of this loop is
composed of the following stages (Figure 2):

• Input from the user
• Application specific computation
• The scene graph representing the visual state of the sys-

tem
• Display of the scene graph
This model features the following principal communication
paths within the computer system:

• Propagation of input events from the input devices to the
computation module

• Updates to the scene graph as a result of computation
• Rendering of a 3D image from the scene graph

Figure 2.  Typical communication path in an interactive graph-
ical application placing the human in a feedback loop.

Some modifications of the scene graph do not require
complex computations by the application, but can perform
simple changes to scene graph attributes directly related to
the input, but with highest possible responsiveness. The
graphics toolkit allows to set up such interactions (e.g.
dragging, camera movement) to work within the runtime
software at maximum performance, without involving user
written computation code (comparable to nervous reflexes
which do not involve the human brain). We call such
communication paths input streams (Figure 2).

Because of performance requirements, input streams cannot
be distributed over the network - the interaction would be
too slow and the network load too high. Therefore, input
streams are allowed to make local modifications to the
scene graph, with mandatory synchronization only taking
place after the input stream has been disabled (optionally
updates can be made for synchronization purposes with
lower frequency).

For the design of DIV, we must distinguish which
communication paths must be fast and hence require the
communicating components to reside at the same
workstation. Clearly, rendering must be as fast as possible,
which requires the scene graph to be stored locally and thus
created the need for replication in the first place.
Additionally, dividing interactions into input stream and
input events allows to keep input streams locally, and
distribute only input events.

2.3  Network topology
We observe than since some kind of distribution must take
place, it can also be utilized to achieve a certain degree of
vertical distribution by balancing the load of
computationally intensive task between multiple

User

Display

Application

updates
Scene Graph

rendering

Input
input
  eventsinput

streams



workstations. The computationally intensive tasks are
rendering and computation. While rendering places
together with processing input streams necessarily places
a high load on each user’s workstation, application
specific computation can be assigned to another
workstation.

Such a simultaneous horizontal and vertical distribution is
achieved by distinguishing application servers and
rendering clients. A reasonable system is composed of at
least one application server and at least two rendering
clients (Figure 3). An application server stores the master
copy of a scene graph and performs application specific
computation. A rendering client stores a replica of the
scene graph and renders the image for the user. Updates
that a server makes to its master scene graph are
distributed to all clients holding a replica using
multicasting.

Figure 3.  The system architecture separates most of the ap-
plication specific computation from the hardware intensive 
rendering executed by graphical clients.

Optionally, an application server may also perform
rendering for monitoring purposes or if an insufficient
number of workstations is available. Note that typically
the graphics hardware is the most expensive part of the
system. If no rendering is required on the server side,
inexpensive workstations without high performance
graphics can be used.

Computational scalability is achieved by introducing
multiple application servers holding mutually exclusive
sub scene graphs. Such sub scene graphs can correspond
to the content of different 3D windows [8], applications or
data sets. Increased flexibility is obtained by allowing a
client to choose to replicate all sub scene graphs, or select
any subset, depending on application semantics and user
preferences. A disadvantage of multiple servers is that
exchange of information between applications (such as
drag and drop operations) require special tailored
solutions.

The application server implicitly performs serialization of
events generated by multiple users. Via the multicasting
of scene graph changes to the rendering clients, a
consistent view of all scene graph replicas is maintained.
Placing application specific computation at a server
avoids redundant computation at each user’s workstation.
Server bottlenecks are avoided by allowing for multiple

servers (Figure 4) and by managing high performance
input streams locally.

Figure 4.  The system allows to distribute computation among 
multiple application servers as long as the scene graphs man-
aged by each server are disjoint.

3.  Replicated scene graph protocol
This section explains the protocol necessary to
synchronize two copies of a scene graph. Let us first
examine the properties of the data structure we are dealing
with. A scene graph is an object-oriented hierarchical
structure reflecting the semantic relationships of graphical
objects in the scene. It is composed of nodes, which are
implemented as first class objects in the toolkit’s
underlying object-oriented host language (C++ in the case
of Open Inventor). The toolkit typically offers a large
variety of node classes for all purposes of the application.
Each node is composed of fields which store that attribute
data for a particular node class. A directed acyclic graph
is constructed from group nodes that store links to their
children. Rendering is a by-product of traversing the
scene graph and executing each node’s rendering method.

The vocabulary of operations possible on a scene graph
consists of relatively few messages. The state of every
node is determined by a node’s fields. Reading a field’s
value does not change the state of the scene graph and
therefore need not be distributed.

The most common operation that must be propagated is
an update of a field’s value. Fields store a basic data types
such as numerical values, boolean flags, vectors, matrices
etc. The information necessary to encode such an update
can be encoded in fixed size messages and efficiently
transmitted over the network.

A special case occurs when the structure of the scene
graph itself changes - nodes may be added or removed.
Special messages are reserved to create and delete nodes.
Note that while a typical graphical application frequently
performs field updates such as changing the position of an
object, changes to the scene graph’s structure are
relatively rate. However, if node creation occurs, there is a
tendency to create a whole sub graph at once, consisting
of a substantial amount of data. To make this process
more efficient, applications often load whole sub graphs
from a file. Our implementation generalizes this approach
by introducing a message which allows all participating

Input

Display

Scene Graph

replica
input

streams

Scene
Graph

updates

Server

input
events

multicast

master
copy

input
events

Input

Display

Scene Graph

replica
input

streams

scene graph A
master copy

Server A

replica
of A

replica
of B

Client 1

scene graph B
master copy

Server B

replica
of A

replica
of B

Client 2



workstations to load a sub graph either from file (if a
common file service exists) or from a URL. This solution is
convenient for application programmers and also more
efficient than creating node by node. Deletion of group
nodes is always recursive, i. e. if a parent node is deleted
and its children are not references elsewhere in the scene
graph, the children are also deleted, hence no message for
deleting sub graphs is necessary.

Per default, nodes in OIV are anonymous unless the
programmer explicitly specifies a name. However,
references to nodes in messages require a unique node
identifier. Therefore a message for naming a node (the node
is identified by indicating the path from the root) is
introduced.

A summary of the messages necessary to keep scene graph
replicas synchronized is given in Table 1.

Figure 5.  Local variations (such as a “shelf”) allow to customize 
the behavior for each user.

4.  Local Variations
Most applications will just require to share a scene graph.
However, a potentially much larger range of distributed
graphics applications can be constructed by allowing local
variations in the scene graph. Local variations (Figure 5)

can be useful in a variety of ways:

Figure 6.  Mahjongg is a multi-user game. Note how the play tile 
labels of user 1 are hidden in the view of user 2 and vice versa.

• Individual content per user: Each user may operate on a
variety of data sets, and choose to share only some of
them, or decide on-line which data sets can be seen by
other users and which not. Reasons may include privacy
and security (compare [18]), individuality (e. g. a private
shelf or clip board) or work flow (only “polished” data is
shared).

• The same data may be viewed differently by multiple
users, which is different to the above in that structurally
identical or at least similar data is shown with different
attributes to different users. Reasons to change the repre-
sentation of one particular data set for individual users
can be motivated by their roles. For example, a customer
sees a simpler representation than the sales manager, or
a teacher sees solutions to problems that the students
may not see. Sometimes part of the data (such as labels)
may also be intentionally hidden from other users, for
example in multi-player games [31] (see Figure 6).

• Individual viewpoints are a special case of individual
content. This concept is particularly useful for virtual
environments (see section 5), where the position of a vir-
tual camera is determined by head tracking on a per-user
base.

• Some typical editing operation such as high lighting,
selection, dragging, or cursor display require locally
varying graphics. Note that these interaction concepts
work in conjunction with low-latency input streams (see
section 2.2) that short cut the distributed communication
paths.

Using DIV to construct a scene graph that is partially
distributed is straight forward: The scene graph used by the
client can vary from the scene graph stored at the server.

message parameters

update field node id, field id, value

create node node type, parent node name, child 
index

delete node node name

create sub 
graph

file name or URL, parent node name, 
child index

set node name path to node, new node name

Table 1: protocol to keep scene graphs synchronized

Client

local
“shelf”

local
root

node

replica
of global

scene

Server

master copy of global scene

updates

View of user 1

View of user 2



The only restriction is that it must be a super set of the
server’s distributed scene graph, which does not affect
applicability in practice.

Using local variations in the scene graph implies that not
the whole application specific computation can be carried
out at the application server. All program logic directly
affecting local nodes must be carried out locally at the
workstation. As both client and server execute the OIV
runtime system, there is no problem carrying out
application specific code dealing with local variations at
the client. The only consequence is that the application
programmer must distinguish between client and server
code, so complete transparency of distribution can no
longer be maintained.

5.  Application in a virtual environment
Virtual environments differ from desktop-based
interactive graphical applications primarily in their choice
of input and output devices. While output is shown -
usually in stereo - on a head-mounted display, or in a
CAVE, input is generated using a 6 degree of freedom
(6DOF) tracking system such as an Ascension Flock of
Birds. 

While there is no principle difference of tracker data from
input received from a mouse or keyboard, the high data
rate (6DOF x multiple stations x 120 updates/sec) makes
it necessary to consider the work load placed on each part
of the distributed system when processing input from
6DOF trackers. 

Furthermore, virtual environments typically demand a
high-performance, low latency setup. For example, head
tracking should directly control the virtual camera used to
render the user's view. Such a requirement is directly
equivalent to our input streams in that the communication
path from input source to final image should be as fast as
possible. Unfortunately, tracking multiple users requires
that tracker data is sent over the network at some point, as
only a single workstation can be connected to the tracker
(typically via a serial line). 

Our solution is based on the Studierstube virtual
environment [8] modified to use DIV (Figure 7). We
resolve this issue by introducing a new tracker server,
which uses its own multicast group to transmit tracker
data over the network to both application servers and
rendering clients. An additional benefit of this approach is
that computationally intensive filtering and prediction
tasks applied to the tracker data can be carried out by the
tracker server without consuming resources on other
workstations.

The way the tracker data is treated by the rendering clients
is quite different from the application servers:

• The rendering clients use the tracker data directly as
an input stream for continuous actions, for example to
control the virtual camera or to control interaction
widgets such as the rubber band shown in Figure 10.

• The application servers transform the tracker data into
input events. For example, the server notes when the
tracker hits a button area in 3D and passes a "press
button" event to the application code, which then
reacts appropriately. 

Creating interaction elements that execute in such a
hybrid client/server style requires a little effort, but it
keeps communication paths as shorts as possible. Tracker
data is always directly delivered to the workstation that
needs it, no matter whether it is a client or server.

Figure 7.  The Studierstube virtual environment has been 
modified to use DIV together with a tracker server that mul-
ticasts tracker data over the network.

6.  Implementation

6.1  Software architecture
Open Inventor is a commercial software product available
for most graphics platforms, (including most Unix
variants and Windows NT) and uses Open GL for
rendering. It was chosen because of its popularity,
flexibility and because of legacy applications available in
our lab. OIV is implemented as an object-oriented class
hierarchy in C++ and a library for runtime binding. Refer
to Figure 8 for an overview.

The obvious choice of adding distribution properties to a
class hierarchy is to modify one of the base classes to take
care of distribution, so that this property is inherited
throughout the class hierarchy. Unfortunately, Open
Inventor as a commercial product is not available in
source code, which ruled out this approach. 

Instead, we resorted to a different approach which is
equally feasible and works even if no source code is
available: OIV has a built-in concept of notification that is
used to propagate updates upwards in the scene graph
hierarchy if a node is modified. These notification events
can be monitored with a so-called node sensor. A user-
specified callback function is executed whenever
something changes in the sub graph associated with the
node sensor. The callback receives as parameters
references to the field which has changed and to the node
containing the field. Update messages can trivially be
constructed from this information, as only the new
absolute value of the field needs to be transmitted
(idempotent messages). Recording the modifications
made to a scene graph by an applications implicitly serves
as a serialization mechanism if the application receives
input events from multiple users.

A slightly more complicated situation arises if the
structure of the scene graph itself changes, i. e. a node is
added or deleted. In this case, the node sensor still calls



the user's function, indicating the group node whose
children have changed, but does not indicate which child
has been added or removed. We resolved this matter by
caching the hierarchical structure with a "shadow" scene
graph that consists of copies of only the group nodes, while
leaf nodes are just referenced. When a group's children
change, the group node is compared to its shadow to
evaluate what change has been made. The shadow data
structure is not included in the scene and thus not visible. It
has also a small memory footprint and little computational
overhead as it contains only links.

Figure 8.  DIV is a software that plugs into a standard graphics 
solution - Open Inventor - to provide distribution

6.2  Networking
DIV also relies on a thin network abstraction layer
constructed on top of UDP with multicasting. A network
service object provides services for reliable multicasting of
messages as well as utility functions such as connection
setup etc. Most of the functions performed in the
networking layer are transparent to the application
programmer, who only needs to indicate whether a scene
graph needs to be distributed - ideally a single initialization
call for a simple application that does not require local
interaction or other advanced features.

UPD was chosen as transport protocol for performance
reason and since multicast support for UPD is readily
available. However, propagation of event messages must be
reliable, which is a service that UPD alone cannot provide.
Therefore a simple reliability mechanism was added that
does not suffer from the overhead of high-level protocols
such as TCP which are aimed at more general network
applications. Packets are numbered by the server - note that
each server can have its own numbering sequence as
packets from multiple servers do not interfere with each
other. The server stores a customizable number of messages
in a history buffer, and if clients miss a packet, they may
request retransmission (although this rarely happened in our
test setup without artificially introducing network errors for
testing purposes).

6.3  Lazy naming
As mentioned in section 3, every message refers to a node
and thus needs to uniquely identify the node. OIV has a
built-in naming scheme for nodes based on a hash table,
which is highly efficient and ideal for our purposes. It also
lets users specify names for nodes in geometry files (.iv)
which is a convenient way for applications to identify nodes
and also works when the geometry file is distributed.
However, it frequently occurs that applications modify
anonymous nodes and these modifications have to be
distributed.

In case of such an event, DIV automatically detects that the
node is nameless and resolves the problem: The node is
assigned a synthetic unique name composed of a prefix and
the path from the root. This name is distributed (hence the
set node name message), and then the update message refers
to the newly named node. This lazy naming scheme creates
extra network traffic only the first time a node is modified.
As the working set of nodes that are modified in the life
cycle of an application is typically small, the resulting
overhead is negligible and independent of a potentially huge
scene graph.

7.  Results
Several distributed multi-user applications were
implemented with DIV. To verify that DIV indeed provides
a programming environment that is convenient for
programmers familiar with scene graph toolkits, and that
distribution is almost transparent, we have extended existing
single user applications written for OIV. The fact that DIV
is mostly equivalent to OIV allowed to realize our test
applications in a few days.

The first example that was chosen for distribution is the
maze game (Figure 9) featuring a hand-held labyrinth toy
which can be tilted to make a ball roll through the corridors.
The objective is to guide the ball to the goal while avoiding
the holes in the maze's floor. The game was distributed for
multiple users, allowing each user to see and manipulate the
maze. Updates were intentionally made relative so that the
resulting tilt is equal to the sum of the steering motions of
all users, which creates an interesting and entertaining
collaborative task.

Users can also see each other's point of view represented by
a simple avatar, a feature which makes use of a locally
varied scene graph (each user's scene graph contains avatars
for the other users, but not for the user).

A second example was constructed from a multi-user
painting application implemented in out virtual environment
"Studierstube". Multiple users can collaboratively apply 3D
paint into a common work volume. Each user wears a head-
tracker and a tracked "brush" tool; the data from the head
and tool tracker is directly fed as an input stream to the
virtual camera and cursor, respectively.



Figure 9.  The shared maze game allows to users to collabo-
rate (or work against each other) using multiple worksta-
tions.

Figure 10.  The shared spraying application allows multiple 
users to paint collaboratively. The top image shows a user 
drawing a rubber band, which is an example of a local graph-
ical variation connected to an input stream. Note how the sec-
ond user’s view (bottom image) does not show the rubber 
band.

Parameters such as paint color, size of paint droplets and
paint pressure are controlled with local interaction
widgets, which represent local variations of the scene
graph - each user can have an individual current color etc.
Furthermore, we make use of local variations combined
with input streams for the line drawing utility (Figure 10),
which displays a rubber band while the user is dragging.
When the rubber band is released, a line of paint droplets
is created and added to the shared scene graph.

8.  Related work
A lot of research has been dedicated to building common
virtual places in which users can interact with each other
and with the underlying simulation. This research has
produced a number of platforms such as NPSNET [34],

SPLINE [33], AVIARY [26], MR Toolkit [25], DIVE [4],
NetEffect [5], or RING [9]. Years of research and
experiments with or for these platforms have led to the
evolution of several techniques for implementing efficient
networked virtual environments. However, these systems
are specially designed for the purpose of the DVEs (such
as training, playing or scientific visualization) and not
designed for supporting general distributed interactive 3D
graphics applications. DVEs as well as online games such
as Ultima Online [17], Everquest [27], and QuakeWorld
[12] and commercial toolkits like dVS/dVISE [11] or
World2World [23] only distribute a minimum sub set of
application state and rely on a priori distribution of
graphical data.

Over the past years VRML [1] has become widely
accepted as a file format for exchanging 3D data over the
Internet. VRML97 [32] is used for some DVE platforms
[13]. However, with few exceptions [3] little work has
concentrated on a general purpose programming toolkit
for distributed graphics based on VRML.

CSCW such as DistView [19] or GroupKit [21] systems
provide automatic distribution of data for desktop tasks.
While the application area is similar to ours, these
systems are not designed with support for interactive
graphics in mind. The distributed mechanisms do not
provide support for integration in existing programming
paradigm for 3D such as scene graphs. Furthermore, the
use of synchronous updates for all operations conflicts
with the performance requirements and scalability goals
of distributed graphics.

Popular graphics toolkits, e. g., Open Inventor [28], and
Java 3D [6], provide a comfortable programming model,
but very limited support for distribution. Some of them -
like Performer [20] - allow to distribute stages in the
graphics pipeline over multiple processes, but no general
distribution is available.

Finally, there are some general distributed graphics
toolkits which resemble many aspects of out approach.
TBAG [7] has an elegant distribution mechanism based
on a shared constraint graph. However, assertions
regarding constraints must be shared by all processes,
which restricts the scalability of the approach. Moreover,
a constraint graph is somewhat different from a scene
graph in its use. IntelligentBox [16] uses a mechanism of
collecting events and propagating it over a network to
synchronize a replica, which is similar to our
implementation of a shared data structure. However, no
details of the underlying network mechanism is given, so
it is hard to judge the efficiency. Finally, recent work on
Repo-3D [15] shares many of our goals. It uses an
implementation based on Modula-III and a replicated
object package to achieve distribution. On top of the
distributed shared memory model provided by the
software system, an interpreted language called Repo and
a companion graphics toolkit called Repo-3D form the
development system. Unoftunately, from the description
given in the paper it is hard to judge the issue of
scalability as the underlying networking mechanisms, in
particular networking topology, are not explained in
detail. Furthermore, while Modula-III is certainly a good
choice for language-level embedding of distributed



objects, in our opinion the user acceptance of a mainstream
language like C++ would be higher.

9.  Conclusions and future work
This paper has presented a practical approach to distributed
graphics, realized as DIV, the Distributed Open Inventor
library. DIV is founded on the notion of a distributed shared
scene graph, a powerful data structure that unifies graphical
and application data with distributed control. Our
implementation extends the popular Open Inventor toolkit
and thus allows programmers to continue software
development in a familiar style and software development
environment. Our approach is almost completely
transparent to the application programmer and allows
existing applications to be distributed with very little effort. 

We are currently working on a more complete integration of
DIV and Studierstube software. All of the interaction tools
designed for Studierstube can be realized with DIV, but
current implementation semantics do neither distinguish
shared from local state nor input events from input streams,
which is essential for distribution with reasonable
performance. Further plans involve the development of new
interaction styles that make only sense within a truly
distributed framework.

10.  Acknowledgments
This work has been supported by the Austrian Science
Funds (FWF) under project no. P-12074-MAT. Special
thanks to Hermann Wurnig for working on the
implementation and to Michael Gervautz.

11.  References
[1] Bell, G., Parisi, A., Pesce, M. The Virtual Reality Modeling Lan-

guage, Version 1.0 Specification, 1995. URL: http://www.vrml.org/
VRML1.0/vrml10c.html.

[2] Ben-Natan, R. CORBA: A Guide to the Common Object Request 
Broker Architecture, McGraw Hill, 1995.

[3] Broll, W. DWTP-An Internet Protocol for Shared Virtual Environ-
ments. In Proc. of ACM VRML'98, 49-56, 1998.

[4] Carlsson, C., and Hagsand, O. DIVE: A Multi-User Virtual Reality 
System. In Proc. IEEE VRAIS ‘93, 394-400, Sept. 1993.

[5] Das, T. K., Singh, G., Mitchell, A., Kumar, P. S., McGhee, K. NetEf-
fect: A Network Architecture for Large-Scale Multi-User Virtual 
Worlds. In Proc. of the ACM Symposium on Virtual Reality Software 
and Technology (VRST’97), 157-164, 1997.

[6] Deering, M., and Sowizral, H. Java3D Specification. Technical 
Report, Sun Microsystems, Aug. 1997. URL: http://java.sun.com/
products/java-media/3D/.

[7] Elliot, C., Schechter, G., Yeung, R., and Abi-Ezzi, S. TBAG: A High 
Level Framework for Interactive, Animated 3D Graphics Applica-
tions, In Proc. ACM SIGGRAPH ‘94, 421-434, Aug. 1994.

[8] Fuhrmann, A., and Schmalstieg, D. Multi-Context Augmented Real-
ity. Technical Report TR-186-2-99-14, Institute of Computer Graph-
ics, Vienna University of Technology, 1999. URL: http://
www.cg.tuwien.ac.at/research/TR/.

[9] Funkhouser, T. RING: A Client-Server System for Multi-User Vir-
tual Environments. 1995 Symposium on Interactive 3D Graphics, 85-
92, April 1995.

[10] Gelernter, D. Mirror worlds. Oxford University Press, 1992.
[11] Ghee, S., Mine, M., Naughton-Green, J., and Pausch, R. Program-

ming Virtual Worlds. SIGGRAPH 94 Course Notes 17, 1994.
[12] Id Software. Quake World, online computer game, 1996. URL: http://

www.quakeworld.net/.
[13] Lea, R., Honda, Y., Matsuda, K., and Matsuda S. Community Place: 

Architecture and Performance. Proceedings of  ACM VRML'97, 41-
50, 1997

[14] Levelt, W. G., Kaashoek, M. F., Bal H. E., and Tanenbaum, A. S. A 

Comparison of Two Paradigms for Distributed Shared Memory. Soft-
ware - Practice and Experience, 22(11), 985-1010, Nov. 1992.

[15] MacIntyre, B., and Feiner, S. A Distributed 3D Graphics Library. 
SIGGRAPH 98 Conference Proceedings, Annual Conference Series, 
361-370, 1998.

[16] Okada, Y., and Tanaka, Y. Collaborative environments of Intelligent-
Box for distributed 3D graphics applications. The Visual Computer, 
14(4), 140-152, 1998.

[17] Origin. Ultima Online, online computer game, 1997. URL: http://
www.owo.com/.

[18] Pang, A., and Wittenbrink, C. Collaborative 3D Visualization with 
CSpray. IEEE Computer Graphics & Applications, 17(2), 32-41, 
1997.

[19] Prakash, A. and Shim, H. S. DistView: Support for Building Efficient 
Collaborative Applications Using Replicated Objects. In Proc. ACM 
CSCW ‘94, 153-162, Oct. 1994.

[20] Rohlf, J., and Helman, J. IRIS Performer: A High Performance Multi-
processing Toolkit for Real-Time 3D Graphics. In Proc. ACM SIG-
GRAPH ‘94, 381-394, 1994.

[21] Roseman, M., and Greenberg, S. Building Real-Time Groupware 
with GroupKit, a Groupware Toolkit. ACM Transactions on Com-
puter Human Interaction, 3(1):66-106, March 1996.

[22] Rubin, W., and Brain, M. Understanding DCOM. Prentice Hall PTR, 
1999, ISBN 0-13-095966-9.

[23] Sense8 Corporation. World2World - Technical Overview. 1997. 
URL: http://www.sense8.com/.

[24] Shaw, C., Green, M., Liang, J., and Sun, Y. Decoupled Simulation in 
Virtual Reality with the MR Toolkit. ACM Transactions on Informa-
tion Systems, 11(3):287-317, 1993.

[25] Shaw, C., and Green, M. The MR Toolkit peers package and experi-
ment. In Proc. of VRAIS ‘93, 463-469, 1993.

[26] Snowdon, D., and West, A. AVIARY: Design Issues for Future 
Large-Scale Virtual Environments. Presence, 3(4), 288-308, 1994.

[27] Sony Corporation. Everquest, online computer game, 1999. URL: 
http://www.everquest.com/.

[28] Strauss, P. S., and Carey, R. An Object-Oriented 3D Graphics Tool-
kit, In Computer Graphics (Proc. ACM SIGGRAPH ‘92), 341-349, 
Aug, 1992.

[29] Sun Microsystems. Java Remote Method Invocation - Distributed 
Computing for Java. March 1998. URL: http://java.sun.com/market-
ing/collateral/jav
armi.html.

[30] Sun Microsystems. Remote Procedure Call Protocol Specification. 
Network Working Group RFC1050, April 1988.

[31] Szalavari, Z., Eckstein, E., and Gervautz, M. Collaborative Gaming 
in Augmented Reality. Proceedings of VRST’ 98, 195-204, Taipei, 
Taiwan, Nov. 2-5, 1998.

[32] The VRML Consortium Incorporated. The Virtual Reality Modeling 
Language, International Standard ISO/IEC 14772-1:1997, 1997. 
URL: http://www.vrml.org/Specifications/VRML97/.

[33] Waters, R., Anderson, D., Barrus, J., Brogan, D., Casey, M., McKe-
own, S., Nitta, T., Sterns, I., and Yerazunis, W. Diamond Park and 
Spline: Social Virtual Reality with 3D Animation, Spoken Interaction 
and Runtime Extendability. Presence, 6(4), 461-481, 1997.

[34] Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K. P. NPS-
NET: Constructing a 3D Virtual World. In Proc. 1992 ACM Sympo-
sium on 3D Graphics, 147-156, March 1992.


