Dissertation

Studierstube:
A Collaborative Virtual Environment
for Scientific Visualization

ausgefihrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften unter der Leitung von

A.o. Prof. Dipl.-Ing. Dr. Michael Gervautz
Institut Nr.186
Institut fir Computergraphik

eingereicht an der Technischen Universitat Wien

Technisch-Naturwissenschaftliche Fakultat
von
Dipl.-Ing. Anton L. Fuhrmann

Wahlberggasse 2, A-1140 Wien
Matr.-Nr. 8525331

Acknowledgements

Special thanks to my mentor Michael Gervautz, who not only was the
first person to suggest that I started this thesis, but also arranged for
the necessary means. His sometimes barbed comments where what
kept me on track during the previous three years. His corrections of
my papers (“..apply the Gervautz operator one more time...”) always
hit their weakest spot, thereby improving the papers and me.

Thanks also to Meister Eduard Groller, without whose psychological
and scientific support this thesis would have been impossible, to Di-
eter Schmalstieg, Robert Tobler and Helwig Loffelmann for their help
and suggestions and to Gerd Hesina (Figure 31), Markus Krutz, Rai-
ner Splechtna (Figure 19), Hermann Wurnig (Figure 6, right) and
Andreas Zajic for their implementation work.

Thanks also to all the other guys at the institute, who created an
atmosphere of creative chaos which I would not like to have missed
for all the rendering power in the world.

This work has been supported by the Austrian Science Foundation
(FWF) under project no. P-12074-MAT.

Table of Contents

1 Kurzfassung (German ADStract) ...ccccccceeeeeeeeeeeerreeneeeeceeeeeeeenennnns 5
AN 011 7 X o1 AR II
3 Problem Statementeeeeeiieiiieeieeeeeeeieeeeeeeeeereneeeeeeeeeesesesssannes 4
4 Proposed SOIUTIONuueeeeeeeniiiiiieeeeiiieieeieeeeeeeeneeeeeseeeeeeessssssssnnnes 7
5 Structure of the Thesiscccoovummmueeieiiiiiieieereereeeeeeeeeeeeeeneeneeees 10
6 Introduction to Studierstubeeeeiiirrrrrrreeeereiieeeeeennnnnne. 13
T Related WOTK ... eeieieieeeieeeieereceeeeeeeeennneeeeeeeeeesesssssssssssssssssees 17
8 Workspace Concept and Design........ceeveeeeeeeeeceeeeeeeeeeenneennnne 21
8.1 Hardware Setup........ccccoeeeiiiiiiieiiiiieee e, 22
8.2 Design Analysis of the Workspaceccccceeevvvveeennnnnn. 25
8.3 User Interaction in Workspacecccccoooovvvviiiiieennee... 28
8.4 Input and Output Contextsoovveeeiiieieeeeiiiieeeeeennnn. 31
8.5 Multi-user Aware Applications.............ccceeeeeviiieeennnnnn. 33
8.6 Implementationcccooeeiiiiiiiiiiiiiiiieeieieee e, 38
9 Fast Calibration for Augmented Realityccueeeeerennnnnnee. 46
9.1 OVEIVIEW oniiiiiiiii e 46
9.2 INtroducCtioncoooiiueiiiiiiiie e 47
9.3 Registration in Augmented Realitycccceeoooo. 49
9.4 Previous Work......ooooviiiiiii e 51
9.5 Requirements............coooveeiiiiiiiieeiiiiiiieeeeicee e, 52
9.6 Calibration Procedure.............ccooviiiiiiiiiiiiiiiiieiei 54
9.7 Fast Calibration..........ccooooiviiiiiiiiiiiiiieeee e 58
9.8 Distortion Compensation.............couueeeeeeivieeeeeeiieeeeeennnn. 59
9.9 Registration of Virtual to Real Objects............cccceee..... 61
9.10 Implementation Details............ccooovvieeiiiiiiiiiiiieee . 63
9.11 ReSULES ..o 65
10 Occlusion in Collaborative Augmented Environments.....68
T1O.1 OVEIVICW ..oovnniiiiieiee e 68
10.2 Introductionoooeeiiiiniiiiiiiiee e 68
10.3 Requirements for Occlusion in "Studierstube"............. 74
10.4 Occluding with Phantomscooeeiiiiiiiineiinnnn.... 75
10.5 Implementationccccooovviieeeiiiiiiee e 81

11 Studierstube as a Frontend for Scientific Visualization ..88

11,0 OVEIVIEW .o e 88

11.2 Studierstube/AVS Interfaceooooeeeeeeeieeieeeieeeeeeene, 88

11.3 Collaborative Visualization..............cccooooeeiiineiiinnnnn. 90
11.4 Visualization of Dynamical Systemsccc..cooovunn.... 93
12 Real-Time Techniques For 3D Flow Visualization............. 95
12,1 OVEIVICW ..ovnniiiiieeieeeeeee e 95
12.2 Introduction and Motivationcccooeeviviiiinniiinnnnnnnn. 95
12.3 Related Workooiiiiieiiiieeeee e 96
12.4 Dashtubes: Streamlines with Animated Opacity......... 97
12.5 Adaptive Texture-Mappingcccceeeeevvvveeeeerrireeeeennnnnn. 101
12.6 Streamline Placementc.cccooooiiiiiiiiiiiiiiiiiiii, 106
12.7 Focussing and Contextccoovveeeiiiiiiieeeeiiiiieeeeennne. 107
12.8 Implementationccccooovvvuieeiiiiiiieeeeeieee e, 112
13 RESUILS cuuneeiiiiiiieeeeeeccccceeeereeeerenecseeeeeeeeeeennnnneeseseeesesssnnnssnnnnsseeens 119
13.1 Scientific Visualization in Studierstube..................... 119
13.2 Studierstube as a generic user interface 123
13.3 Scientific Collaborations...........ccccoeeeiiivieeeeiiiiieeeeennnn. 131
I DAY RO E: X7 o) o DNt 138
14.1 Studierstube Workspace...........coooueeeiiiiiieeiiiiiiieeeeenn. 138
14.2 Collaborative Scientific Visualization 141
14.3 Unresolved problemsccccoeoiiiviieiiiiiiieeeeiieeeeee, 142
15 CONCIUSION ..uceeeeeeeeiceieeeireeeerenceeeeeeeeeeeeannnseeseeeeeeesssnnnssssssssaeens 145

16 R CI CINICES . ceunieeiietieeeiieeieeeeeieteieeeeeeseeeeseerssesssserssesssssssessssssnnes 146

1 Kurzfassung (German Abstract)

Diese Arbeit beschreibt den Studierstube Workspace, eine interaktive
Arbeitsumgebung fiir kollaborative Visualisierung in Augmented
Reality. Wir erarbeiten Konzepte fiir einen kollaborativen
Arbeitsbereich, in dem mehrere Benutzer gleichzeitig verschiedene
Anwendungen bedienen konnen. Das gemeinschaftliche Arbeiten der
Benutzer innerhalb eines Raumes mit mehreren gleichzeitig
ablaufenden Anwendungen eroffnet vollig neue Moglichkeiten der
Kollaboration und Interaktion. Wir beschreiben, wie multiple
Interaktionspfade zur Implementierung der zugrundeliegenden
Mechanismen genutzt wurden, und berichten uber Strategien und
Erfahrungen im Umgang mit und der Entwicklung von Multi-
Anwender Applikationen.

Augmented Reality besteht aus der Uberlagerung von
computergenerierten Bildern tiber die Wirklichkeit. Um die
raumlichen Abhéangigkeiten zwischen reellen und virtuellen Objekten
— die sogenannte Registrierung — korrekt darstellen zu konnen,
missen diese Bilder unter Verwendung von Transformationen erstellt
werden, die einen Punkt im virtuellen Raum genau auf seinen
Konterpart in der Realitit abbilden. Dazu préasentieren wir ein
einfaches und schnelles Kalibrationsverfahren, welches keine
zusatzlichen MeBgerate oder komplizierte Prozeduren erfordert. Der
Benutzer wird dabei interaktiv durch eine Reihe von einfachen
Schritten geleitet, welche 1thm eine Anpassung der Transformationen
auf seinen Augenabstand und seine Kopfabmessungen erlauben.

Eine weitere Verbesserung der Registrierung wird durch unsere
Methode zur Korrektur von Linsenverzerrungen erzielt. Wir benutzen
dazu Standard OpenGL Hardware, welche eine Entzerrung in
Echtzeit ermoglicht. Weiters wird eine Technik um bewegliche, vom
Computer verfolgbare Gegenstinde zu 1hren virtuellen
Reprasentationen zu registrieren.

Die Qualitat und Konsistenz der virtuellen Umgebung hingt auch
von der korrekten Verdeckung von virtuellen durch reelle
Gegenstande und umgekehrt ab. Wir haben ein Verfahren entwickelt,
das nicht nur fir den Korper eines Benutzers und vom Computer
verfolgbare Gegenstiande anwendbar ist, sondern dariuber hinaus noch

irritierende Effekte aufgrund mangelhafter Registrierung reduziert.
Unser Verfahren basiert auf der simulierten Verdeckung von
virtuellen Objekten durch virtuelle Reprasentationen realer Objekte.
Benutzer werden durch kinematische Ketten simuliert, welche dann
zur Verdeckung herangezogen werden konnen.

Wir demonstrieren die Giultigkeit unseres Gesamtkonzeptes der
kollaborativen Visualisierung innerhalb einer virtuellen Umgebung
durch die Einbindung eines kommerziellen wissenschaftlichen
Visualisierungssystems 1in unsere Arbeitsumgebung. Mehrere
Anwendungsbeispiele zur Visualisierung dynamischer Systeme
1llustrieren unser Konzept.

Um die speziellen Eigenschaften der virtuellen Realitat in die
Visualisierungsmoglichkeiten des Gesamtsystems einflieBen zu
lassen, haben wir animierte, strichlierte Stromungslinien entwickelt.
Dazu prasentieren wir eine texture-mapping Technik, welche die
Details entlang jeder Stromungslinie auch bei stark variierender
FluBgeschwindigkeit konstant halt. Weiters wird gezeigt, wie man
eine gleichmaBige Verteilung der Stromungslinien im Raum erzielt.

“Magische” Lupen und “magische” Kisten werden als spezielle
Interaktionmethoden zur Erforschung dicht mit Stromungslinien
gefiillter Volumina verwendet. Dadurch wird eine Uberforderung des
Benutzers mit visuellen Details vermieden.

Wir geben einen Uberblick iiber die Anwendung von Studierstube in
verschiedenen Bereichen. Weiters wird gezeigt, wie verschiedene
andere Forschungsinstitutionen Studierstube verwenden.

Eine umfangreiche Evaluation der geleisteten Arbeit in Bezug auf
ithre Anwendbarkeit auf wissenschaftliche Visualisierung und ihrer
Eigenschaften als neuartiges Konzept fiir kollaboratives Arbeiten in-
nerhalb der virtuellen Realitidt rundet die Ausfithrungen inhaltlich
ab.

2 Abstract

This thesis describes Studierstube Workspace, an application frame-
work for collaborative visualization in Augmented Reality. We develop
a concept for a collaborative working environment that simultane-
ously supports multiple users as well as multiple applications and in
multi-tasking. The co-presence of multiple users interacting with
multiple concurrently executing applications opens up new possibili-
ties in the field of collaborative work. We describe how multiplicity in
the interaction paths is used to implement the necessary underlying
mechanisms and report on strategies and experiences regarding the
development of multi-user aware applications.

Augmented Reality overlays computer generated images over the
real world. To correctly depict spatial relations between real and vir-
tual objects — the so-called registration — these images have to be gen-
erated using transformations which correctly project a point in virtual
space onto its corresponding point in the real world. We present a
simple and fast calibration scheme, which does neither require addi-
tional instrumentation nor complicated procedures. This allows us to
calibrate the virtual environment for specific users. The user is inter-
actively guided through a series of simple initialization steps, which
allows even inexperienced users to adapt the calibration to their eye
distance and head geometry.

To further improve the registration between real and virtual objects
we describe a method for correcting the distortions introduced by the
camera lens in real-time using standard OpenGL hardware. A simple
technique for registering tracked objects to their augmentations is
also introduced.

The quality and consistency of the augmentation also depend on the
correct occlusion of real objects by computer-generated objects and
vice versa. We developed methods that are not only appropriate for a
tracked users body and other real objects but also manage to reduce
irritating artifacts due to misregistrations. Our technique is based on
simulating the occlusion of virtual objects by a virtual representation
of the real object. The user is modeled as kinematic chains of articu-
lated solids which is used for occlusion. Registration and modeling

errors of this model are reduced by smoothing the border between vir-
tual world and occluding real object.

We demonstrate the validity of our concept of collaborative visuali-
zation in a virtual environment with the integration of our virtual
environment into a commercial visualization system and illustrate it
with several visualizations of dynamical systems.

To integrate the properties of our environment into the process of
scientific visualization we created animated, opacity-mapped stream-
lines as visualization icon for realtime 3D flow visualization. We pre-
sent a texture mapping technique to keep the level of texture detail
along a streamline nearly constant even when the velocity of the flow
varies considerably and describe an algorithm which distributes the
dashtubes evenly in space. Magic lenses and magic boxes are applied
as interaction techniques for investigating volumes filled densely with
streamlines without overwhelming the observer with visual detail.

We present applications of Studierstube in a number of different ar-
eas and collaborations with other research institutes already using
Studierstube.

An extensive evaluation of the performed work regarding its appli-
cability on scientific visualization and its properties as a new concept
for collaborative work in virtual reality concludes the thesis.

3 Problem Statement

Data acquired by satellites, generated by supercomputer simulations
or logged for documenting the transactions of the stock market can
lead to datasets in the Terabyte range. Trying to understand under-
lying patterns using only the numerical output of such datasets is
next to impossible. One of the main tools aiding human understand-
ing of this flood of information produced by almost all aspects of the
modern world is Scientific Visualization.

Computer graphics has been described in its early stages as “a solu-
tion looking for a problem”. If not in anything else, at least it has
found its problem in the area of Scientific Visualization.

In [Schroeder1996] Visualization is defined as:

“Visualization 1s the process of exploring,
transforming, and viewing data as images (or
other sensory forms) to gain understanding
and insight into the data.”

Visualization is described not as a static result but as an ongoing pro-
cess of data processing resulting not in an image but in an under-
standing of the data behind the image. Furthermore, [Schroeder1996]
lists characteristica distinguishing visualization from its parent disci-
pline computer graphics as:

“l. The dimensionality of data is three dimen-
sions or greater. Many well-known meth-
ods are available for data of two dimen-
sions or less; visualization serves best
when applied to data of higher dimensions.

2. Visualization concerns itself with data
transformation. That 1s, information 1s re-
peatedly created and modified to enhance
the meaning of data.

3. Visualization is naturally interactive, in-
cluding the human directly in the process

of creating, transforming, and viewing
data.”

Thus, visualization is further defined as a highly interactive process
working with high-dimensional data in an iterative process along the
Visualization Pipeline as illustrated in Figure 1.

_[ua }

d
-

4

Transform '7 Map Display

Figure 1: The visualization Pipeline (adapted from [Schroeder1996])

For complex visualizations, the process may require the expertise of
more than one person. A possible scenario consists of one expert in
scientific visualization performing adjustments and selections in the
“map” stage — applying different visualization methods — and one or
more specialists providing and analyzing the underlying datasets; for
example stock market experts analyzing the performance of a portfo-
lio. Another scenario would be a group of scientists collaborating on a
project and preparing a visualization of the results for presentation to
the public.

While all of the participating users have to share a common percep-
tion of the data, their different fields of expertise may make it neces-
sary to customize their view of different properties of the visualization
and/or customize their interfaces. A stockbroker may only want to be
able to select which stocks to visualize in a selected time-frame, while
the assisting visualization expert needs access to mapping parameters
and the economist may change parameters of the underlying simula-
tion model.

Summarizing the statements above, we conclude that a work envi-
ronment for visualization should solve the following problems:

Display of three dimensions or more, e.g. animations
Realtime modification and display of data

Highly interactive, complex manipulations possible
Collaboration of multiple users

Shared but individually customizable view of data

4 Proposed solution

The requirements of the previous section lead us directly to the con-
cept of a shared virtual environment for scientific visualization:

The characteristic properties of a virtual environment are:
— Realtime 3D display

— Highly interactive

— Sophisticated 3D interaction

A shared virtual environment must provide the following additional
features:

— Individual views and viewpoints
— Individual interfaces
— Collaboration and conflict handling techniques

Technical progress in recent years gives reason to believe that Virtual
Reality (VR) has a good potential to become the user interface of the
future. At the moment, VR applications are usually tailored to the
needs of a very specific domain, such as a theme park ride or a virtual
mock-up for design inspection. Like in current Graphical User Inter-
faces where a large variety of tasks — like drawing, word processing
and communicating — can be executed and coordinated via a single,
consistent interface at the same time, our system should support not a
single, specialized interface customized for a single application but a
new metaphor for general interaction.

We believe that Augmented Reality (AR), the less obtrusive cousin of
VR where computer generated images are overlayed over reality, has
a better chance to become a viable user interface for everyday applica-
tion than a fully immersive Virtual Environment, where one can only
perceive the synthetic images. It not only allows for direct social user
interaction without mediating layers of software but also for the pos-
sibility of including objects of the real environment — tables, mirrors,
architectural models etc.- into the interaction concept.

Collaboration should be supported not only in the form of a special-
ized application among others but by the very concept and setup of
the virtual environment. Our basic concept includes the idea of a

shared work environment where many users are able to collaborate in
a natural unhindered way. This idea is illustrated by Figure 2: a sim-
ple setup, incorporating virtual objects like the globe into a real setup
— the table — and naturally incorporating social interaction into the
environment.

Figure 2: Illustration of basic concept: a shared virtual environment

The envisioned environment must satisfy these essential require-
ments:

Sophisticated Visualization Techniques: Since our main target for
the time is the application of our system in scientific visualization,
the development of new, sophisticated visualization methods
utilizing the special properties of virtual reality — realtime 3D
display, fast changing viewpoints, highly interactive use — has to
be a major objective in our research.

Collaboration: The discussed system 1s designed for multiple
concurrent users and must support collaborative work. While the
co-presence of users in the same room allows many issues to be
resolved using social protocols, the user interface design must
incorporate appropriate “groupware” mechanisms so that technical
concurrency issues as well as conflicts between users competing for
an application can be resolved.

Multi-application: A Workspace has very much in common with
modern multi-tasking desktop GUIs. A user should be able to
interact with multiple concurrently executing applications in turn.
To further complicate requirements, multiple users must be able
to work with any desired application — like for example a
calculator shared by two persons in the same room — and even
work with the same application (the same instance) at once, as in
the case of architects working on different floors of a model
building at the same time.

— Augmentation: It must be applicable to a shared augmented

reality environment. This has two important consequences:
Firstly, the organisational principles for the interface must be
appropriate to 3D (and it 1s not trivial to transfer user interface
elements from 2D). Secondly, there can be only one common three-
dimensional space, which i1s shared among all participants and
imposes some spatial constraints on the interface design.

Clearly, such a demanding set of features for a user interface requires
a powerful user interface metaphor that is equally expressive in 3D as
the desktop metaphor in 2D. We propose as our metaphor a "Work-
space” which acts as an interface layer between applications and user
and can be customized by the users for their needs.

5 Structure of the Thesis

After an introduction into the basic concepts of our virtual environ-
ment Studierstube in chapter 6 we give an overview over relevant
related work in chapter 7. Chapter 8 contains an in-depth explanation
of the conceptual basis and resulting design decisions of the Studier-
stube Workspace, the framework of our system. Chapters 9 and 10
describe new approaches we developed to solve problems in the areas
of calibration and occlusion, which we encountered in the course of
our work. The integration of scientific visualization into our system is
described in chapter 11, followed by a detailed description of new
visualization techniques in chapter 12.

The thesis concludes with an evaluation of results and a short over-
view over resolved and unresolved aspects of our work in chapter 13.

This thesis contains material partially previously published in:

A. Fuhrmann, H. Loéffelmann, D. Schmalstieg:
Collaborative Augmented Reality: Exploring Dy-
namical Systems. Proc. of IEEE Visualization 1997,
pp. 459- 462, November 1997.

A. Fuhrmann, H. Loffelmann, D. Schmalstieg, and
M. Gervautz: Collaborative Visualization in Aug-
mented Reality. IEEE Computer Graphics and Ap-
plications, 18(4): pp.54-59, July/August 1998.

A. Fuhrmann and E. Groller: Real-Time Tech-
niques for 3D Flow Visualization. Proc. of IEEE
Visualization 1998, pp. 305-312, November 1998.

A. Fuhrmann, G. Hesina, F. Faure, and M. Ger-
vautz: Occlusion in Collaborative Augmented En-
vironments. Proceedings 5th Eurographics Work-
shop on Virtual Environments, ISBN 3-211-83347-1,
pp. 179-190, Springer-Verlag, Wien, 1999.

10

A. Fuhrmann, D. Schmalstieg, W. Purgathofer:
Fast Calibration for Augmented Reality. To appear
in: Proceedings of ACM Virtual Reality Software &
Technology '99 (VRST'99), short paper, London, De-
cember 20-22, 1999. Extended version available as
technical report TR-186-2-99-16, Vienna University
of Technology, 1999.

A. Fuhrmann, D. Schmalstieg: Concept and Im-
plementation of a Collaborative Workspace for
Augmented Reality. Technical report TR-186-2-99-
04, Vienna University of Technology, 1999.

A. Fuhrmann, D. Schmalstieg: Multi-Context
Augmented Reality. Technical report TR-186-2-99-
14, Vienna University of Technology, 1999.

G. Hesina, D. Schmalstieg, A. Fuhrmann, W. Pur-
gathofer: Distributed Open Inventor: A Practical
Approach to Distributed 3D Graphics To appear in:
Proceedings of ACM Virtual Reality Software &
Technology '99 (VRST'99), London, December 20-22,
1999.

During the development of the thesis the following additional papers
have been published:

D. Schmalstieg, A. L. Fuhrmann, M. Gervautz, and
Zs. Szalavari: 'Studierstube' - An Environment for
Collaboration in Augmented Reality'. 1996.

Z. Szalavari, M. Gervautz, A. Fuhrmann, and D.
Schmalstieg. Augmented: Reality Enabled Collabo-
rative Work in 'Studierstube'. EURO-VR '97, 1997.

A. Fuhrmann, D. Schmalstieg and M. Gervautz:
Strolling Through Cyberspace with Your Hands in
Your Pockets: Head-Directed Navigation Virtual
Environments '98 (Proceedings of the 4th

11

EUROGRAPHICS Workshop on Virtual Environ-
ments), pp. 216-227, Stuttgart, Germany, June
16th-18th, Springer-Verlag, 1998.

D. Schmalstieg, A. Fuhrmann, Z. Szalavari, M.
Gervautz: Studierstube - An Environment for Col-
laboration in Augmented Reality Extended abstract
appeared in proceedings of Collaborative Virtual
Environments '96, Nottingham, UK, Sep. 19-20,
1996. Full paper in: Virtual Reality - Systems, De-
velopment and Applications, Vol. 3, No. 1, pp. 37-49,
1998.

Z. Szalavari, D. Schmalstieg, A. Fuhrmann, M.
Gervautz: Studierstube - An Environment for Col-
laboration in Augmented Reality, Virtual Reality:
Research, Development & Applications, 1998

12

6 Introduction to Studierstube

We propose a system that allows multiple collaborating users to si-
multaneously study three-dimensional scientific visualizations in a
»study room“ - German: ,Studierstube“ (inspired by the classic play
,Faust® by J.W.Goethe).

Each participant wears an individually head-tracked see-through
Head-Mounted Display (HMD) providing a stereoscopic real-time dis-
play (Figure 3).

. . View for second user
View for first user

T 1 | |

Virtual object

Figure 3: Illustration of Studierstube setup: A shared virtual space

The use of individual displays and head-tracking for each partici-
pant (for a description of the details of the hardware setup see section
8.1) allows stereoscopic, undistorted images to be presented to multi-
ple users. There are no implicit constraints regarding the viewpoint.
Unlike to other setups, users may stand face to face, which in combi-
nation with the see-through property of the HMDs allow users to see
each other and interact directly. This also provides a direct feedback
for han-eye coordination, since the user may directly perceive his
hands instead of only seeing a simulation of their real position. The

13

Figure 4: Adjusting the parameters of a visualization with the Per-

sonal Interaction Panel (PIP).

ability to directly see the surroundings also reduces the fear and dis-
orientation new users perceive in a completely immersive setup. The
possibility of bumping into obstacles is also reduced.

Rendering separate images for each user gives great flexibility in the
choice of viewpoint, but also makes the rendering effort proportional
to the number of users, whereas CAVE [Cruz-Neiral992] and (single-
user) Workbench [Kriger1994] require only a constant rendering ef-
fort.

The defining features of Studierstube are:

— Augmented props: We exploit the capabilities of AR to construct a
three-dimensional wuser interface needed for controlling the
presentation and possibly the simulation by introducing tracked
real-world objects that combine physical items and overlaid
computer graphics, such as the Personal Interaction Panel (PIP)
[Szalavari1997]. The PIP is used as a device for handling virtual
objects (Figure 4) or as a cutting plane, but mainly as basis for
conventional 2D user interface elements - historically one of the
weak points of VEs. The demands of scientific visualization — for
example when visualizing properties of a real model in a virtual

14

windtunnel — may make it necessary to provide the geometry and
position of real objects into to the virtual environment.

— Customized views: In addition to individual choice of viewpoint,
customized views of the data are possible, for example one user
may want to see stream lines added to the basic image, while
another may not. Two users in the same room may see different
aspects of the same object at the same time, for example different
visualizations of an airflow around the same model.

— Usage of space: The space in the Studierstube can be used
similarly to a CAVE [Cruz-Neiral1993a] (multiple users looking out
at the environment), but also allows a workbench setup
[Kriiger1994] (users gathering round a desk, interacting with
objects on it).

— Organizational advantages: While the cost of the Studierstube’s
hardware components are certainly higher than a conventional
desktop visualization station consisting of only a graphics
workstation, they are moderate compared to a setup like the
CAVE. This is particularly important as the potential users of the
Studierstube - research groups - are typically operating on a tight
budget. Furthermore, the setup consumes little space and 1is
relatively easy transportable.

Scientific visualization serves not only as a testbed and demonstra-
tion application for the features of our proposed environment but as a
viable benchmark for our progress in the direction of a true shared
virtual environment as general user interface concept.

On one hand, scientific visualization has a high demand for sophisti-
cated interface techniques for user input and display, on the other
hand many visualizations need a tight collaboration between experts
in different fields. Its need for interaction on many different levels,
like configuration of a simulation and visualization pipeline, input or
adjustment of purely numerical parameters of the simulation and fi-
nally direct interaction with the visualization and feedback via com-
putational steering make a monolithic implementation as single ap-
plication unpractical. A modular concept of interacting applications
and interface elements seems necessary.

15

In this thesis we address the following problems, which we identified
as crucial for the implementation of our concept of a collaborative vir-
tual environment for scientific visualization:

— a scalable system architecture with a consistent Application
Programmer Interface (API)

— 1interaction elements and techniques supporting collaborative work
— calibration methods to improve precise interaction
— solving occlusion problems in the augmentation

— visualization icons and visualization focussing methods specialized
for our virtual environment

In this thesis we address the following problems, which we i1dentified
as crucial for the implementation of our concept of a collaborative vir-
tual environment for scientific visualization:

— a scalable system architecture with a consistent Application
Programmer Interface (API)

— 1interaction elements and techniques supporting collaborative work
— calibration methods to improve precise interaction
— solving occlusion problems in the augmentation

— visualization icons and visualization focussing methods specialized
for our virtual environment

16

7 Related Work

The design of our collaborative virtual environment Studierstube —
first introduced in [Schmalstieg1998] - builds upon legacy knowledge
from very different fields. In the following, we summarize some of the
work that we consider most influential for our work.

Several research groups have created other augmented reality appli-
cations, either using video composition [Bajural992] or see-through
HMDs [Feiner1993b], like us. While those systems are intended for
individual users, the shared space project [Billinghust1997] has fo-
cused on building collaborative augmented environments.

Other prominent attempts to create collaborative semi-immersive
settings are the CAVE™ [Cruz-Neiral992] and the virtual workbench
[Kriger1995].

Both systems present stereoscopic images to the user via large dis-
play screens and LCD shutter glasses:

The CAVE is a small room, composed of three back-projected walls
and a front-projected floor, in which computer-generated images are
displayed. The Workbench is essentially a table on which computer
generated images are projected, resulting in a typical setup used by
e.g. surgeons, engineers and architects. The resource requirements
are less demanding than those of the CAVE, and the horizontal work-
space 1s very useful for manipulation with hand-held tools.

Common advantages of both systems are high resolution, wide field
of view, insensitivity towards lag for rotational head movements, and
a strong feeling of immersion.

While these systems are frequently used simultaneously by several
users, they are not strictly group systems: Only one “leading” user
sees correct head-tracked stereo graphics, while for the remaining us-
ers the images are often severely distorted. Recently, a workbench
extension for two users was presented [Agrawalal997], which - unlike
the Studierstube setup - does not easily scale beyond two users be-
cause of inherent limitations of the display hardware.

A different area which has inspired our design are systems for col-
laborative work. While such groupware [Marcal992] has already been

17

integrated into commercial desktop environments, support for col-
laboration in virtual environments is currently an active area of re-
search. However, most work focuses on remote training such as
NPSNET [Macedonial994] and social interaction (Diamond
Park/SPLINE [Waters1997]), collaborative visualization such as
[Wo0d1997] and C-Spray [Pangl1997] [Gerald1993] and tele-meetings
such as DIVE [Carlsson & Hagsand, 1993]. While such remote sys-
tems are not directly related to our approach of physical co-presence,
they implement many useful ideas on how collaboration can be sup-
ported.

Graphical user interfaces are another field which influences our
work. The desktop metaphor that was originally conceived in the
Xerox STAR project [Smith1983] is ubiquitous in today’s work envi-
ronments such as X-Windows [Gettis1990]. The challenge lies in
bridging the gap from the widely accepted document-centric 2D work
style to a spatial 3D Workspace. While the use of 3D makes radically
new Iinteraction styles possible [Conner1992], judicious borrowing
from 2D often eases the transition from the desktop to the virtual
world. In particular, there are some attempts to organize content as
well as re-use existing 2D developments [Angus1995] [Dykstral993]
[Feiner1993a]. In some sense, the PIP [Szalavaril997] used in our
system also falls into that category as a container for 2D as well as 3D
user interface elements.

A few researcher have dealt with the problem of spatially arranging
and managing data from different contexts. The cognitive coprocessor
architecture [Robertson1989] uses so-called 3D Rooms to provide mul-
tiple virtual Workspaces for a user. [Feiner1990] describes a system of
nested volumes for the visualization of high-dimensional data. The
most directly related approach to ours is the CRYSTAL system
[Tsa01997] that allows a user to organize his or her work in 3D win-
dows. The taxonomy in Figure 5 was originally introduced for the
CRYSTAL system, which supports multiple contexts and applications,
but lacks true multi-user support. Note that “CRYSTAL in the CAVE”
is not really a multi-user application, as only one user can be active
and the other users are passive observers. In contrast, the Stud-
ierstube Workspace design which this thesis focuses on aims at the
construction of a system that 1s scalable in all three properties.

18

Early adopters of virtual reality (VR) systems soon realized that one
of the immediately useful applications comes from the field of scien-
tific visualization, where scientists try to understand complex data
sets and can benefit from true 3D, stereoscopy, and interactive explo-
ration, e.g., GROPE [Brooks1990], the nanomanipulator [Taylor1993],
and the virtual Windtunnel [Bryson1991].

Multi—@ntext

CRYSTAL
............................ .
L
» CRYSTAL in the CAVE/
K on Responsive Workbench
Studiefstube @
; Ed >
The Responsive Multi-task
Workbench

“AWindow on
Shared Virtual
Environments*

NPSNET

Multi-user

Figure 5: Taxonomy of virtual environments (adapted from:
[Tsao01997])

The need to support collaboration of human users lead in two direc-
tions: remote collaboration [Bryson1993a, Pang1997] and collabora-
tive virtual environments (VEs) where users come together in one
place, and can interact and communicate in a natural way.

In the latter category, two approaches have been successfully used
for scientific visualization: The CAVE [Cruz1993b], and the work-
bench, with two variants - Responsive Workbench [Kriuger1995] and
Virtual Workbench [Obeysekare96].

The combination of CAVE and a supercomuter (CM-5) for computa-
tional steering of scientific visualizations in [Roy1994] demonstrated
impressively how virtual reality utilizing high-performance equip-
ment can alter the way data is perceived and manipulated.

19

Finally, from a software engineer’s perspective, development frame-
works for user interfaces are notoriously huge and complex. A modu-
lar 1mplementation as well as support for rapid prototyping via
scripting is essential. In the area of 3D user interfaces, current
prominent examples with features that have guided our design are
ALICE [Pausch1993], MR [Shaw1993], Java3D [Sowizral1998] and
the VRML97 ISO standard [Carey1997].

20

8 Workspace Concept and Design

In this chapter we present Studierstube Workspace, an application
framework for augmented reality. We develop a concept for a collabo-
rative working environments that simultaneously supports multiple
users as well as multiple applications and in particular multi-tasking.
The co-presence of multiple users interacting with multiple concur-
rently executing applications opens up new possibilities in the field of
collaborative work. We describe how multiplicity in the interaction
paths is used to implement the necessary underlying mechanisms and
report on strategies and experiences regarding the development of
multi-user aware applications.

Figure 6: Collaborative work in STUDIERSTUBE Workspace (com-
posited image): 3D painting application window (with fo-
cus, middle) and object viewer window (without focus,
lower right)

As a user interface, Studierstube enables multiple concurrent users to
interact with each other and with the application via the shared space
provided by augmented reality as illustrated in Figure 6. Studier-
stube 1s a software toolkit which distinguishes itself from a dedicated
environment by ist ability to execute a number of completely different

21

applications concurrently. Previously only one application could exe-
cute at a time, and operate only on one data context - like most VR
systems, the user interface was neither capable of multi-tasking nor
of multi-data context operation.

Studierstube is intended to be a collaborative AR user interface in
which a variety of tasks can be performed. Such a user-interface is
opposed to a dedicated application that is designed for only a single
purpose (e. g., a driving simulator19).

We introduce an extension of our previous concept [Schmal-
stieg1998] that combines all these properties: multi-user, multi-
tasking and multi-data context.

We give an analysis of the design space for such a collaborative AR
Workspace. As a result of that analysis, we present a user interface
design for such a Workspace that fulfills the three requirements listed
above. Finally, we discuss our prototype implementation of a devel-
opment framework for the Studierstube Workspace together with ini-
tial experiences and observations.

8.1 Hardware Setup

A typical Studierstube per-user setup consists of one semi- transpar-
ent headmounted display (HMD), one tracked pen and one tracked
PIP (Figure 6).

The HMDs we use - Virtual I-O i-glasses - are very lightweight and
unobtrusive, but only of limited resolution (230x263) and small field
of view. As input devices we use a 6DOF pen with multiple buttons
and the Personal Interaction Panel (PIP) [Szalavari1997] (see section
8.1.1 below).

Rendering is performed by SGI and InterGraph workstations, an
additional Linux workstation services the magnetic tracker and dis-
tributes the tracker data via a LAN to the graphic workstations.

22

8.1.1 Personal Interaction Panel

The Personal Interaction Panel (PIP) [Szalavari1997] consists of a
magnetic tracked pen and clipboard which contains augmented in-
formation presented to the user by see- through HMDs. It allows 2D
interaction and three dimensional direct manipulation to be done in
parallel. Unlike many other interfaces it implements a 2D interface in
3D rather than 2D besides 3D. Using the PIP is similar to using a
notebook’s flat surface in the real world. Our evaluations have shown
that most test persons were familiar with the interface in a very short
time and found the two- handed interaction metaphor natural and
appealing.

8.1.2 Setup for Video Documentation

The augmented nature of our VE can also be exploited for documenta-
tion purposes:

@ video

g camera
) graphic workstation
real environment

~

x@ =

TV monitor

Figure 7: Setup for video documentation (digital overlaying)

We replaced one HMD by a video camera with attached tracker
(Figure 7). The resulting images were overlaid in a workstation with
the scene rendered from the viewpoint of the camera and the result-
ing images output directly to video tape. This method — which was
also used to generate most of the pictures from the point of view of a
user (e.g., Figure 11, Figure 14, Figure 29) — also enables the audi-
ence to view the augmented environment via a video screen. The re-
sulting pictures can be transferred at NTSC resolution (640x480) to
video tape.

Another, more straightforward method for capturing augmented re-
ality on video tape i1s to mount a video camera behind a semi-
transparent display as used in the HMDs (Figure 8). This is easier to
implement, but results in a loss of picture quality, since the overlay-
ing of computer generated images is performed using the optical sys-
tem of the HMD, thereby reducing contrast and introducing distor-
tions. We use this documentation setup only when we want to docu-
ment properties of the optical system as for example in Figure 24.

]

X

o) &

D

TV monitor

Figure 8: Setup for video documentation (optical overlaying)

24

8.2 Design Analysis of the Workspace

This section provides an analysis of the design space for a user inter-
face that satisfies the requirements stated in the introduction, namely
support for augmentation, collaboration, and multiple applications.
To illustrate our choices, we will first describe a few example applica-
tions, that were chosen to characterize everyday activities that users
may perform in the proposed work environment. From these exam-
ples, general guidelines for the design of the Workspace can be de-
rived.

— Calculator: The calculator has a desktop-like interface on the PIP
(Figure 9). Only one user may enter data at one time. Results are
displayed on the PIP, and so no additional interaction or output
elements are necessary.

P

Figure 9: Calculator application overlayed onto PIP

— 3D object viewer: The 3D equivalent to an image viewer
application on a desktop is a simple object viewer. It supports the
loading and display of multiple static objects in the Workspace
(Figure 10). It does not support any interaction with the displayed
objects, but allows to resize and move their representations via
their surrounding 3D frames. Every object is self-contained in such
a frame, and every user may move or resize it. Only one user at a
time may open a new object, but the “object open” operation 1is
accessible to every user.

25

Figure 10: Viewing objects using the PIP

3D Paint Application: Contrary to the “object viewer” application,
where one of many static 3D objects can be manipulated only by
one user at a time, a 3D paint application should allow many users
to manipulate a shared “scratch volume” at the same time (Figure
6). It shall be the equivalent to a blackboard: a space where a lot of
users may display their ideas and add or modify the ideas of
others. Each user should be able to specify his own painting tools
properties - colour, width etc. - without modifying the painting
mode of others.

Collaborative games: A typical collaborative application is an
implementation of any multi-user (as opposed to a solitaire) game
(Figure 11). In a game of chess, white and black pieces may only be
moved alternating, but every user can see the complete game
state. A different example is a war game scenario consisting of
terrain and different forces, where the (static) terrain exists as a
real miniature model on which the forces are augmented. In this
case all users can interact with each other and the forces
simultaneously. Every user may only move his own forces.
Collaborations between different parties may result in shared
access to forces and to information on enemy territories outside of
the own range.

26

Figure 11: Playing (silly) games in Studierstube

— Educational demonstration: In an educational setting a Workspace
can be thought as an extension of the classroom into virtuality.
The standard setting of one presenter and many viewers/students
is of course a collaborative one, albeit a highly asymmetrical.
Examples for such an asymmetry are a presentation where only
the presenter may change parameters or a test situation where the
teacher may see the work of each student, but where students
should not be able to copy each others results.

The mentioned examples are intended to illustrate that the semantics
of applications in the Workspace can be vastly different. Some appli-
cations are mainly oriented towards a single user or a group of iso-
lated users, whereas others only make sense with multiple present
users. In some cases the roles of the users are symmetric, while other
cases exhibit asymmetry. Nevertheless, the design paradigm under-
lying these applications can easily be summarized: Every interaction
path should support multiple instances.

Not only does the Workspace supply the junction point, but it also
acts as an implicit “traffic control”. To perform this task, the under-
lying framework has to support multiplicity in four distinct ways:

— Multiple users: Clearly the basic requirement for a collaborative
setting

27

— Multiple applications: Only the support of multiple active
applications at the same time enables a productivity scenario
comparable to desktop environments.

— Multiple input contexts: By input context we mean the interaction
state for input as perceived by a particular user. The same
application may present the same interface elements - normally on
the PIP - to different users, but the state of the elements (e.g., a
selected colour) is presented on a per-user basis. Different users
then see different colours on their PIP, and a change of selected
colour by one user does not affect the selction performed by
another user.

— Multiple output contexts: A single application may have more than
one output context, normally represented as a 3D window. These
contexts may be homogeneous (i.e. representing the same object in
the applications context, e. g., a different view of the same building
in a CAD system), or heterogeneous (e. g., a windows that shows
attributes of an object selected in another window). Both the
homogeneous and the heterogeneous case will use multiple 3D
windows to present the different sets of information.

In the following sections we will detail how the Workspace imple-
ments these properties.

8.3 User Interaction in Workspace

A 3D Workspace requires interface elements for efficient manipula-
tion and customization by the user. Here we give an overview how
input and output is organized from the user’s perspective. The rela-
tionship among the user interface components below will then be ex-
plored from a more technical side in the next sections.

One of our design goals was the extension of as many 2D GUI
mechanisms into our VE as possible. As pointed out previously
[Angus1995], there are two important reasons for this approach:

Firstly, since many 2D elements have been developed and refined
over the last years and have proven their worth, it would be counter-
productive to completely discard the well-developed solutions for
these elements.

28

Secondly, most users are accustomed to the use of 2D GUIs. An ap-
proach that builds upon widely accepted user interface elements is
more likely to ease the migration from conventional desktop comput-
ing to VE Workspaces.

While we do build upon the legacy of 2D GUIs, we do not want to
impose unnecessary constraints upon our interface: we use 2D tech-
niques where they prove to be of advantage - either by the nature of
the data to be input or by the conventions associated with a specific
operation - and extend them or completely abandon them when ap-
propriate.

8.3.1 2D widgets in AR

For the straightforward integration of conventional 2D interface ele-
ments like buttons, sliders etc. we use PIP, a simple board with at-
tached tracking sensor, which functions as base for the virtual 2D in-
terface elements (Figure 12) in two ways: it allows the user to position
the 2D interface conveniently using the non-dominant hand and addi-
tionally provides the necessary haptic feedback when using a slider or
button. “Floating menus” or similar virtual interfaces lack this feed-
back and can therefore only be used when in the field of view. Every
application may display its own interface in the form of a PIP “sheet”,
which appears on the PIP when the application is in focus. The PIP
and pen are our primary interaction devices. Both of them are tracked
with 6DOF and provide the means for flexible interaction in 2D and
3D. The PIP cannot only be used as passive base but also as interac-
tion and selection tool in itself. Its use as “virtual camera” to make
3D-snapshots of the scene as well as “fishnet” metaphor for selecting
objects by sweeping it through space has been demonstrated [Schmal-
stieg1999].

29

Figure 12: 2D interaction elements on the PIP used for parametriza-
tion of flow visualization

8.3.2 3D Windows in AR

The use of windows as abstraction and interaction metaphor for an
output context 1s a long-time convention in 2D GUIs. It's extension to
three dimensions seems logical [Feiner1990, Tsaol1997] and can be
achieved quite straightforward: Using a box instead of a rectangle
seems to be the easiest way of preserving the well- known properties
of desktop windows when migrating into a VE. It supplies the user
with the same means of positioning and resizing the display area and
also defines its exact boundaries (Figure 1). Obvious differences of
these 3D windows (“boxes”, see Figure 14) to their desktop counter-
parts can in many cases be resolved easily. Positioning a box by grab-
bing a designated part of its geometry may of course include the rota-
tion of the window to an arbitrary orientation. Resizing is achieved by
grabbing a corner and repositioning it with 3DOF, thereby changing
all measurements of the box in one movement.

Differences appear in a case easily resolved in two dimensions:
overlapping display contexts. On the desktop this is easily handled by
a 2%D approach, rendering one window “on top” of another, effectively
implementing a stacking order of windows. In three dimensions the
equivalent solution would be a similar explicit order in which the win-
dows are rendered - possibly based on importance or least recently
used criteria - where each window clears the volume it defines before
rendering its contents. This leads to an unambiguous assignment of

30

each point in the working volume of the virtual environment to at
most one box.

8.4 Input and Output Contexts

The difficulty in designing a user interface for multi-user multi-
tasking comes from the fact that the semantics of applications in the
Workspace can be vastly different. A setup where multiple users are
sharing the same work volume and the same set of applications sig-
nificantly increases the combinatorial possibilities of interaction. This
situation is opposed to the desktop world, where each user in a multi-
user system has a separate desktop.

Some applications in the multi-user Workspace are rather oriented
towards a single user or a group of isolated users, while others only
make sense with multiple present users. In some cases the roles of the
users are symmetric (such as in a game of chess), while other cases
exhibit radical asymmetry (such as a teacher with students).

Nevertheless, the design paradigm underlying these applications
can easily be summarized: Every interaction path should support mul-
tiple instances.

By interaction path we mean the way data flows from the user to the
application and vice versa. To control this flow of data, the Workspace
framework introduces input contexts and output contexts. The rela-
tionship among multiple users, input contexts, applications and out-
put contexts is depicted in Figure 13.

input —
- - . { N'\\.
user context context J ..' h*‘?‘-\? = ':-.‘_\\.___
inputs forwards L N
data data I
user i i iy Application
application
user application /".-;"
perceives displays S| P
data output data ~J|
wiandow
context

31

Figure 13: Relationship of Workspace components (left) and their
implementations (right). Note how the human user acts in
a loop with the application, mediated by input and output

contexts.

8.4.1 Input Context

By input context we mean the interaction state for input as perceived
by a particular user. There are two distinct ways in which a user may
mnput data to a Workspace application:

1.

The application presents a number of user interface widgets like
buttons or sliders on the surface of the PIP - a so-called PIP sheet,
somewhat akin to a conventional dialog box (Figure 61). The input
context in this case 1s the state of a particular instance of a PIP
sheet.

. The application accepts 3D input (e. g. clicks and drags) in the

client volume of a 3D window belonging to the application - this
mnput style allows the design of direct manipulation of the
application’s data. Every user may lay a focus on one particular
window at any time (note the color-coded focus on the left window
in Figure 14), this focus is equivalent to an input context.

8.4.2 Output Context

An output context is manifested in workspace as a 3D window - an
application may display its data in one or multiple windows. Multiple
output contexts can be either homogeneous or heterogeneous:

Homogeneous output contexts display information of the same kind
in the same way. The difference between two homogeneous output
contexts of one application is only in the actual data context being
displayed. In the desktop world, this style is known as multiple
document interface (MDI) - multiple data contexts can be opened
at once, and the same interaction possibilities are available for
each data context (Figure 6).

32

— Heterogeneous output contexts display information structurally
different. For example, a 3D view of a data context may be
displayed in one window and a schematic view in another.

Figure 14:Painting application with multiple output contexts (win-
dows) and color selector displayed on the PIP. The painting
application has two open windows, input is directed to the

left window, which has the focus

8.5 Multi-user Aware Applications

This section explains how a multi-user aware application (MUA) is
designed by sup-porting multiple instances of input and output con-
texts. Every user can potentially interact with every application,
which creates a matrix of potential interaction paths (Figure 15).
Every such interaction path requires an instance of an input and out-
put context that routes information between user and application. By
allowing multiple instances of the same context type, the required
multiplicity and independence of interaction from and to multiple us-
ers can be guaranteed.

Note that this multiplicity is not equivalent to running multiple in-
stances of one application concurrently (e.g., one application instance

33

per user), as any user may interact with any data of the application at
any time, and the actions of multiple users may influence each other.
Figure 15 shows the multiplicity relationships of Workspace compo-
nents.

Output contexts are represented as 3D windows. For Multiple
Document Interface (MDI) style interaction, a separate window 1is
opened for each data context. However, a window not only represents
an output context, but also defines an input context. Input regarding
a particular window may either be by direct manipulation of the data
in the window, generally via a user’s pen, or indirect via a PIP sheet.

3D
window * Lwindow
User

w%w S

I
=]

input
Figure 15: Multiplicity relationships among Workspace component -

3D
MU

A@

a context for a particular application is defined by every
pairing of a user and a window

The proposed multiplicity of interaction paths implies some changes
in application design. Full support of all possible interaction paths
leads to some extensions to the applications interface. A multi-user
aware application (MUA) has to take into account additional informa-
tion concerning which user i1s interacting with it and keep user-
dependent information. While in some cases multiple instances of sin-
gle-user applications are sufficient (e.g. calculator and object viewer
as described in section 3.) only a MUA can support a fine-grained col-
laborative workstyle where both users can interact with the applica-
tion without extensive context switches.

34

While simple single-user applications shall be able to function in the
Workspace without any knowledge of the multi-user setup, a multi-
user aware application has to recognize and support one or all of the
following situations:

8.5.1 Different Internal States for Each User

Depending on the applications requirements possibly extensive user-
context information has to be kept for each user. Many standard op-
erations allow different semantics when extended to multiple users:
Shall a cut-and-paste sequence access a shared clipboard or should
there be a clipboard for every user? Is there one common or are there
many individual command histories?

In these abstract cases both variations make sense and can only be
decided on a per-application or per-environment basis. The Workspace
supplies all relevant user-specific information to the application pro-
gram via one of its manager classes (section 7.2) and leaves this policy
decisions to the application.

8.5.2 Multiple Input Foci on One 3D Window

The same window receives at the “same” time input from more than
one user. While idempotent operations are possible, in many cases
input from different users requests special consideration. An example
would be two “dragging” operation at the same time. Our Workspace
implementation supplies all MUAs with all necessary information to
differentiate between actions executed by different users via the 3D
event system (section 7.1). The application is left to decide whether to
support a concurrent workstyle or lock the application when one user
1s already accessing it.

8.5.3 Multiple Users Input on the Same PIP Sheet

Since the PIP as our primary input device has to be used in MUAs
too, special considerations for its behaviour are necessary. Normally,
every application displays all of its 2D interface elements on its own

35

“sheet” on the PIP, meaning a combination of widgets only displayed
on a users PIP when the users inputs focus resides within the applica-
tion. Since a user can acquire an additional focus of a MUA while an-
other user is already working with it - e.g. by selecting an output
window of the application - the same PIP sheet will appear on the
PIPs of both users.

A MUA has to manage a different state of its associated PIP sheet
for every user. Since this state may be visible - e.g. in the position of a
shider - it 1s not sufficient to create multiple renderings of the same
sheet on different PIPs, but also to supply each sheets instance with
its own state. Again, a Workspace manager exists which allows to dis-
tinguish between PIPs on a per-user basis.

8.5.4 Direct Manipulation in the 3D Window

Multiple users may simultaneously lay their input focus on the same
window and manipulate the contained data. The application receives
the users’ activities in the form of 3D events (see section 8.6.1 on the
3D event system). Depending on the operation, such concurrency may
or may not make sense. As the application receives events in serial-
ized order, it is straight forward to implement mechanisms to control
concurrency.

Applications relying on direct manipulation generally offer several
activities at once. As a result, users perceive their doing as concurrent
work on the same data, while really they are engaged in two separate
activities in the same general context. In contrast, actual engagement
of two or more users in the very same activity is mostly undesirable:
What should be the outcome of two users trying to drag the same ob-
ject into two different directions?

As the content of the window and hence the possible operations will
be very different from application to application, Workspace provides
locking mechanisms of different granularity:

e For coarse-grained concurrency control, the window focus policy can
be decided by the application: It may either allow multiple users to
focus a particular window simultaneously, or only one user is al-
lowed to have a focus. In the case of a single user focus, a second

36

user may either ”"steal” the focus from the first user holding the fo-
cus, or is forced to wait until the first users voluntarily gives up the
focus (usually by focusing on another window).

e On a finer grain of interaction, some utility interaction classes,
such as object draggers, are implicitly locked during operation by
one user. This effectively disables all other users to gain control
while a user is manipulating e.g. a slider.

Finally, should true multi-user interaction on one widget be desired
(e. g., the joint definition of a rubber box by two users holding oppo-
site corners), it is the applications responsibility to implement the
desired behavior from the 3D events sent to the widget.

8.5.5 Indirect Manipulation via PIP

For homogeneous windows (windows representing different instances
of the same class), the structure of the PIP sheet is the same for every
window, but the state of the interface (e. g., the position of a slider
widget) in the most general case depends on the window and the user.
For example, a selected color may be presented on the PIP. The color
will differ from user to user and can be manipulated individually.
However, when a user switches focus from one window to another, a
different interface state on the PIP becomes active - the state is also
individually different from window to window. In other words, the
degree of sharing can be set on a per-widget base. In general, four
configurations make sense:

— Different interface state for every window and every user

— Different interface state for every user, but for a given user the
interface state is the same for all windows

— Different interface state for every window, but for a given window
the interface state is the same for all users

— Only one state for all windows and users

States may also be shared by groups of users or groups of windows,
but we have found little use for this option.

37

8.6 Implementation

The Workspace software development environment is realized as a
collection of C++ classes which extend the Open Inventor (OIV) Tool-
kit [Strauss1992] (Figure 16). The rich graphical environment of OIV
allows rapid prototyping of new interaction styles. We also use the file
format of OIV to enable convenient scripting of the properties of an
application and to include our custom classes. A further advantage of
OIV i1s its availability on IRIX and Windows NT, which allows for
some flexibility in the selection of equipment.

Application App: App: App: JAVA | AVS
Layer shell Mah- JAVA | AVS ’
Jongg inter inter-
face I: face |
I
API '
3D window
system
manager
classes
3D event handling
system
layer
device I/O
Open Inventor

Figure 16: Studierstube Workspace architecture schematic

OIV represents scenes using scenegraphs - directed acyclic graphs -
which can not only contain geometry but also active interaction ob-
jects. We make use of this property by implementing most elements of
the workspace as scene graph nodes that are capable of processing 3D
events. This allows efficient design of user interfaces like for example
PIP-sheets by simple writing an OIV ASCII file which includes the
necessary widgets.

38

8.6.1 3D Event System

Open Inventor’s event system has been extended to process 3D
events, which 1s necessary for choreographing complex 3D interac-
tions. Since OIV does not support 3D interaction with 6DOF but nor-
mally projects 2D input into 3D space, we had to implement a new 3D
event class, which distributes events containing 6DOF information
through the scenegraph using bounding box information. A new class
hierarchy of 3D interaction objects allows for the easy integration of
active components in a scenegraph.

These objects respond to events generated by a 6DOF input device -
in most cases the pen - by altering their appearance, position or in-
ternal state. They can filter events depending on user or type or
“grab” an input device, redirecting all input to only one object.

This basic 3D interaction classes have been subclassed for the PIP to
implement standard 2D widget behaviour (buttons, radiobuttons,
sliders and dials, see figure 3). Additional features like highlighting
and flyover help are supported for these widgets.

The more general mechanism for full 6DOF interaction are in most
cases implemented by the Studierstube applications. This is done
similar to 2D GUIs by opening a 3D window object and attaching a
window callback function which receives all events generated in the
windows volume (move, drag and click). Some commonly used types of
3D interaction like move and resize of passive objects have been inte-
grated into special scenegraph components, which allow the scripting
of simple applications in OIV ASCII files.

8.6.2 Output Contexts

Output contexts in Workspace are implemented as 3D windows. The
3D window class is a container associated with a user-specified scene
graph. This scene graph is normally rendered with clipping planes set
to the faces of the containing box, so that the content of the window
does not protrude from the window’s volume. Nested windows are
possible. The window i1s normally rendered with associated ”decora-
tion” that visually defines the windows extent and allows it to be ma-
nipulated with the pen (move, resize etc.). The color of the decoration

39

also indicates whether a window has a user’s focus (and hence be-
comes an input context for that user).

The representation of a 3D window can be maximized, 3D window, or
minimized:
— Minimized windows are only accessible via its application icon in

the application loader and consume no space in the working
volume.

— 3D (normal) window 1s displayed with a surrounding frame, which
allows positioning and resizing via dragging of the edges
respective corners.

— Maximized windows do not have the frame of 3D windows,
effectively consuming the whole display volume. Since only one
application window may be displayed in this state, maximizing
forces all users to work with the same application.

Output context multiplicity 1s straight forward as all users can see all
windows. An application wishing to display multiple output context
simply creates multiple windows and associates the desired context
with it. Maintaining homogeneous output contexts simply requires
that those application methods that manage window content are pa-
rameterized by window. To simplify MUA development, application
programmers can subclass a foundation class that already encapsu-
lates such behavior.

8.6.3 Input Contexts

A PIP sheet as an input context has both an important function as a
means of interaction as well as a visual representation. PIP sheets
are therefore realized as OIV scene graphs mostly composed of
Studierstube interaction widgets (such as buttons etc.). However, the
scene graph may also contain passive geometry (e.g., 2D and 3D
icons) that are useful to convey user interface state or merely as deco-
ration.

In general, the internal state of widgets depends on the context, 1. e.
it 1s parameterized by user and window. A context switch can have an
impact on the visual representation of a widget (e. g., current position
of a slider) and therefore requires a widgets to be rendered using a

40

different internal state. Active context switches occur if a user
changes the window focus. Passive context switches occur - unnoticed
by the users- if the system progresses from one user to the next as all
users’ views of the environment are rendered in turn.

Input received from a widget (such as triggering of a button) will
usually be addressed at the currently focused window. However, the
semantics of any interaction via widgets is dependent on the applica-
tion and can therefore not be predetermined. For example, an opera-
tion may affect all windows rather than only the active one.

Upon the creation of a PIP sheet, an application may also indicate
that the state of particular widget i1s to be shared by all windows (per
user), all users, or all windows and users. Any of these sharing op-
tions simply results in fewer states per widget and is trivially imple-
mented.

Note that in principle the same options for sharing not only apply to
interface state, but also to data representing the internal state of the
application. However, our framework currently only supports multiple
contexts on the interface level. It is the applications responsibility to
manage context switches of internal state.

Naturally, any widget shared by multiple users is implicitly locked
during its operation by the user who initiated manipulation, to pre-
vent errors and undesired behavior resulting from contention and
race conditions.

8.6.4 Studierstube Manager Classes

The manager class in Studierstube Workspace give access to high-
level interaction concepts. While the basic interaction element classes
implement widgets like sliders, buttons or 6DOF draggers and do not
depend on any interaction concepts besides the 3D event system (sec-
tion 7.1), these classes implement the specific Workspace concepts
like support for multiple application, multiple windows and multiple
users.

41

8.6.5 Application Manager

The Workspace job management allows loading a new application into
Workspace and starting and stopping of applications. This function is
mostly used by the application loader sheet (section 8.1) but may be
used by any application to start a helper application like an object
viewer or to stop another application. Starting and stopping applica-
tions has to be executed synchronously (between screen updates) with
the application, which the application manager achieves this by
sending an EXIT message via the message manager (section 7.6).
Upon receiving this message, the application may perform necessary
clean up functions and then exit.

8.6.6 Resource Manager

The Workspace resource management implements inquiry and setting
of Workspace and device attributes as listed in Table 1.

resource attributes

workspace dimensions,

number of users

pen associated user,

geometry

HMD associated user,
geometry,

calibration

PIP associated user,
geometry,
sheets,

active properties:

(fishnet, snapshot)

Table 1: resource attributes

Some of this attributes, like PIP sheets and pen geometry, are obvi-
ously used by most applications, but some of them, like number of us-
ers, concern only MUAs. HMD geometry for example is only set when
an application wants to attach augmented information to a user and

42

HMD calibration only i1s accessed by the Workspaces calibration util-
ity.

The ability to attach active components to a PIP sheet as demon-
strated in the landscaping application (section 8.6) in the form of a
“fishnet” - to select by sweeping (Figure 65)- or to use it as a magic
lens (Figure 62) can be accessed via this manager.

8.6.7 Window Manager

The Workspace window management implements the creation and
destruction of window objects and the setting of window attributes.

Callback functions for rendering and event processing and exten-
sions like “drag-and-drop” between windows can be specified via this
manager.

window attribute content

focus on / off

title bar display on /off
representation minimized, 2D,

3D, maximized

cursor cursor geometry

Table 2: 3D window attributes

The window manager furthermore manages the states of the dis-
played windows. The most important attributes of 3D windows are
listed in Table 2.

The representation of a 3D window can be maximized, 3D window, 2D
window or minimized.

— Minimized windows are only accessible via its application icon in
the application loader and consume no space in the working vol-
ume.

— 2D windows are displayed as a flat frame through which the appli-
cations geometry can be seen.

43

— 3D (normal) window 1s displayed with a surrounding frame, which
allows positioning and resizing via dragging of the edges respec-
tive corners.

— Maximized windows do not have the frame of 3D windows, effec-
tively consuming the whole display volume. Since only one appli-
cation window may be displayed in this state, maximizing forces
all users to work with the same application.

Displaying an application in a 2D window reduces space consumption
too, but still allows viewing the applications display in realtime. All
application output is still rendered in 3D, thereby generating the ef-
fect of watching it through a “window in space” or “magic mirror”,
which can be placed like a framed picture somewhere in the Work-
space. This mechanism is very efficient when an applications output
has to be watched while working in another window. It is imple-
mented using our SEAM interaction element25. Interaction with ap-
plications in this state can only be accomplished via the PIP.

8.6.8 Message Manager

The Workspace application-level message passing implements a gen-
eral communication mechanism between studierstube Workspace ob-
jects, mainly between applications themselves or between applica-
tions and managers (table 3).

44

System events implement task management and are generated by
the application manager (section 7.3). They are routed to special
methods of the application. Window and application messages (Table
3) are generated by the window manager or another application and
are passed through the specified receiver windows window-function
(section 7.5).

Most of these messages are familiar from conventional 2D window
managers, only their additional qualifiers distinguish them from 2D
events. The introduction of real 3D coordinates and user identification
enable the full functionality of Mult-User aware Applications (section

8.5).

Message Description Receiver
WM_RESIZE window has been resized window
WM_CLOSE window has been closed window
WM_EVENT 3D event has occurred in window window
WM_WINDOW_GOT_FOCUS window has lost a user’s focus window
WM_WINDOW_LOST_FOCUS window has got a user’s focus window
AM_SHUT_DOWN application is being shut down application

AM_REMOVE_APPLICATION

request to shut down an application

App. manager

an application

AM_APP_TO_FOREGROUND called when a user changes to an- application
other application

AM_APP_TO_BACKGROUND called when a user changes to an- application
other application

MM_DELIVERY_REPORT delivery result of a message sent by application

Table 3: selected Studierstube Workspace’s messages

45

9 Fast Calibration for Augmented Reality

9.1 Overview

Augmented Reality overlays computer generated images over the real
world. To correctly depict spatial relations between real and virtual
objects, these images have to be generated using transformations
which correctly project a point in virtual space onto its corresponding
point in the real world (Figure 17).

Figure 17: Augmented Personal Interaction Panel

(inset miscalibrated)

This requires precise knowledge of the viewing projection of the head-
mounted display (HMD) and its position. Methods to calibrate the
projection parameters of the virtual cameras to that of the HMD have
been presented in previous work (section 9.4). Most of these methods
are complicated or use special equipment for the calibration process.

We present a simple and fast calibration scheme, which does not re-
quire additional instrumentation or complicated procedures. This al-
lows us to calibrate HMDs for specific users. The calibration process is
presented to the user as interactively guided initialization step, which

46

enables even inexperienced users to adapt the calibration to their eye
distance and head geometry.

The calibration is stable - meaning that slight errors made by the
user do not result in gross miscalibrations - and applicable for see-
through and video-based HMDs. Additionally we show a method for
correcting the distortions introduced by the camera lens in real-time
using standard OpenGL hardware and for registering tracked objects
to their augmentations.

9.2 Introduction

Virtual Environments (VEs) present to the user computer generated
1mages in the same way a real environment would be perceived: each
eye perceives an image depending on its position and the direction of
view. These images are generated according to the users heads posi-
tion in space. The position is tracked by special sensors and used to
move the virtual cameras inside the VE accordingly.

Slight errors in this process - introduced by erroneous measurements
or wrongly defined camera parameters - result in distortions of the
view presented to the user, like a wrong perspective or parallax, giv-
ing a false apparent position of the virtual objects. Additional errors
are introduced when the camera model used for generating the virtual
1mages does not contain parameters for simulating the distortion of
the real cameras lens (Figure 18). Most hardware accelerated ren-
dering — e.g, OpenGL [W001997] — is done using a simple camera
model which does not take lens distortions into account.

47

Figure 18: Lens distortion (red lines rendered with idealized camera)

While these distortions are only annoying in an immersive setup -
where the user only perceives the virtual environment - they can in
many cases be overcome. The hand-to-eye coordination of the user for
example adapts to the altered visual feedback given by the virtual
image of the hand. Nevertheless resulting differences between the
visual and the kinesthetic sense may result in motion sickness
[Pausch1992].

In Augmented Reality [Feiner1992], where computer generated im-
ages overlay the users view of the real surroundings, such distortions
cannot be tolerated. When a user perceives two different loci of inter-
action, one given by the real image of his hand and one by the virtual
image on a different position, the perceived clues conflict and hand-to-
eye coordination is severely impaired.

In Figure 17 the Personal Interaction Panel [Szalavaril997] is
shown, a simple tracked board, which is augmented with interaction
elements to act as a kind of instrument panel for controlling the pa-
rameters of a scientific visualization. The big image shows correct
overlaid computer graphics, the inset a slight misalignment as de-
scribed above. Clearly controlling a virtual slider while seeing the real
and virtual pen in different places is irritating and leads to problems
when interacting with the virtual input elements.

48

To guarantee the necessary correct alignment of real and virtual en-
vironment, some prerequisites have to be fulfilled. In this chapter we
present simple solutions for two of the most important goals:

— HMD calibration (calibration of virtual camera)
— alignment of virtual to real objects

Several approaches have been proposed in the past to attack the
problems of calibration and registration (section 9.4). However, they
are generally not designed to be operated by untrained users. This is
a fundamental problem as every user is different, and consequently
some per-user setup is inevitable for high-resolution AR. However, a
complex or cumbersome process will lack user acceptance and will
mostly be ignored.

If augmented reality 1s to be deployed outside of research labs, pro-
cedures must be simple and may not require trained operator inter-
vention.

In this chapter, we present a simple, stable and interactive method
to implement camera calibration. The method requires little effort on
the side of the user and should thus be more appealing to novice users
and experts in proliferated lab practice alike. It is usable for see-
though HMDs, does not require additional hardware, and is numeri-
cally stable. Furthermore a fast solution for the correct alignment of
real and virtual objects is presented.

9.3 Registration in Augmented Reality

The alignment of virtual objects and their associated real counter-
parts 1is called registration. The desired result is correct registration of
the images of the real and virtual objects. To achieve this alignment,
a couple of different criteria have to be fulfilled.

9.3.1 Correct Sensoric Input

Tracking data - especially data acquired by magnetical trackers as in
our case - 1s, like all measurements, prone to errors. Time lag, nonlin-

49

ear distortions and noise have to be compensated, otherwise no regis-
tration is possible.

This lies beyond the scope of this thesis, relevant publications are
[Azuma1994, Bryson1993b].

9.3.2 Registration of Real and Virtual Objects

Stationary and moving real objects in the working volume which are
to be augmented have to be registered to their virtual counterparts.
E.g. to attach a virtual label to a specific part of a real model, the sys-
tem would have to know the models position and dimensions. For
moving objects this knowledge has to be updated in real-time using
tracking data.

A simple interactive method for registering virtual to real geometry
1s discussed in section 9.9.

9.3.3 Camera Calibration

To achieve image registration, meaning alignment of real and virtual
world when projected on the retinae of the user, we also need a pre-
cise description of the projection from the real world onto each retina.
This step, called camera calibration for the remainder of this chapter,
has to determine the intrinsic and extrinsic parameters of the virtual
camera which has to mimic the projection of the real environment.

In the course of this chapter, a simple, stable and interactive method
to implement camera calibration is presented. While specifically de-
veloped for our shared augmented environment Studierstube, the
calibration procedure is generally applicable wherever quick adapta-
tion of camera parameters to a specific user is asked for.

50

9.4 Previous Work

9.4.1 Photogrammetric Approaches

In photogrammetric camera calibrations [Tsail986, Faugeras1993,
Janin1993, Tuceryan1995], as used in data extraction from aerial
photos and computer vision, data points in 3D and their 2D projection
are measured. From these quintuple an optimization algorithm pro-
duces camera parameters, in many cases via the intermediary form of
an projection matrix, from which camera parameters have to be ex-
tracted afterwards.

The main disadvantage of these methods when applied to our sce-
nario lies in the relatively large sample of data points they need to
converge (50-100) and tendency to behave unstable when presented
with erroneous data.

9.4.2 Direct Measurement of Camera Parameters

Some previous approaches use additional hardware for calibration:

Oishi et.al. [O1sh11995] use a "shooting gallery"”, which presents cali-
bration patterns at varying distances to the user, whose head has to
be fixed in a previously defined position. The user has to tag all these
points to achieve calibration.

Azuma et.al. [Azumal997] use orientation markers on a calibrated
box, which require the user to align at the same time two pairs of
these markers to each other and a virtual to a real crosshair to define
the eye position and orientation. Additional markers allow the meas-
urement of FOV and aspect ratio.

9.4.3 Object Registration

Stationary objects in the real environment can be registered offline by
measuring their position and dimensions in the tracker coordinate
system.

51

By using image processing techniques [Berger1997, Whitaker1995,
Kutulakos1998] this can also be done for moving (rigid) objects during
the simulation, but the necessary processing power and the low preci-
sion [Whitaker1995] and the lack of the for interaction necessary
depth information [Berger1997] preclude us from following this ap-
proach. Furthermore image processing methods are only easily appli-
cable for video-based augmented environments and suffer under line-
of-sight problems.

Best results have been achieved when using pointer-based object
registration Whitaker et. al., where users have to touch predefined
landmarks on a real object with a tracked pointing device.

Like Whitaker et. al. we are using magnetical trackers on our mov-
able augmented objects (PIP and the associated pen which also dou-
bles as a 6DOF mouse). Methods of registering these movable tracked
objects in the Augmented Environment are discussed in section 9.9.

9.5 Requirements

In the following, we discuss the requirements for a calibration method
that can be used for augmented reality setups in everyday situations.
More concretely, this section analyses requirements for a method that
which allows untrained users to calibrate the HMD to their personal
parameters, resulting in improved registration.

9.5.1 Reduced User Effort

As stated before [Azumal994, Bajural995] calibration requires in
most cases direct interaction of the user. In the stated cases this in-
teraction required a principal understanding of what different cali-
bration steps were supposed to achieve (e.g. calibration of field-of-
view) and complex interactions with the system (see section 9.4). We
want to reduce user interaction to a guided approach, which in few,
simple steps allows the user to calibrate the HMD without needing
special training or understanding. This allows for a setting where a
high throughput of different users is to be expected, e.g. a scientific
exhibition or a museum.

52

As an example for a similar calibration procedure may serve the joy-
stick calibration of many computer games: "Move the joystick to the
four corner positions and press button afterwards". In other words: we
want to maintain interactivity while reducing user effort.

9.5.2 Usable for See-Through HMDs

When using see-through HMDs, which optically overlay the com-
puter images over reality, the users eyes - specifically their position
relative to the display surface of the HMD - are an integral part of the
registration problem and have to be taken into account when cali-
brating the virtual cameras. To achieve correct registration for a spe-
cific user we have to calibrate the HMD while it is being worn by this
user. Even slight differences in eye-distance and distance between eye
and optical system of the HMD lead to misregistration.

9.5.3 No Additional Hardware

Previous approaches [Azumal994, Oishil1995] make use additional
hardware for calibration. They deliver high-quality calibration results
at the expense of a complicated setup and considerable user effort.

We want to avoid the use of additional hardware as far as possible,
since it raises additional calibration problems (How to register the
calibration hardware itself?) and reduces mobility of the whole sys-
tem.

9.5.4 Numerically Stable

Since the precision of the calibration depends on the users interaction,
we have to find a method which presents us with a stable solution.
This means that errors in some of the input data points should still
produce a viable solution and not render the resulting calibration
completely unusable. This instability may happen when a projection
matrix is optimized without regard to its inherent redundancies. The
requirement of reduced user effort implies an upper limit of the
amount of input data which could further increase instability.

53

9.6 Calibration Procedure

We use the usual pinhole camera model for calibration, since non-
linear lens distortions are to be rectified independently (section 9.8).

The following parameters have to be calibrated:
— eye position
— position of (middle of) image plane
— orientation of image plane
— aspect ratio
— (horizontal) field of view

Our camera model takes into account the physically decoupled nature
of eyepoint and image plane (Figure 21) in a see-through HMD. Since
the users eye generally does not lie centered over the projection plane
not only the determination of the viewing direction but also of the ori-
entation of the image plane is necessary.

We have implemented a two-step optimization procedure, which op-
timizes these cameras parameters for a given set of data quintuple.
Each quintuple contains the 3D coordinates of one sample point and
its 2D projection.

The full calibration procedure consists of the following steps:

1. Acquisition of Calibration Data: The user samples the positions of
virtual markers with a 6DOF input device in an interactive
process.

2. Geometric determination of camera parameters: Using inherent
geometric properties of the acquired data, a viable solution is
determined geometrically.

3. Numerical Optimization: A further optimization step calculates a
solution for off-axis projection.

User interaction is normally only necessary in step 1, but exceeded
error tolerances in one of the further steps may prompt the user for
reentry of some data samples.

54

9.6.1 Acquisition of Calibration Data

The properties of see-through HMDs make their calibration signifi-
cantly different from the calibration of video-based HMDs.

Video-based HMDs are essentially immersive HMDs with attached
cameras. The cameras supply the video streams which - after being
overlaid with the computer generated images - are fed into the HMDs.
Calibration of video-based augmentation [Bajural995] only deter-
mines the parameters of the video camera. Differences between the
cameras parameters (FOV, interpupillary distance, etc.) and the users
eyes are not taken into account, since the alignment of real and vir-
tual 1images can be guaranteed in the first step. The discrepancies in
the complete system only result in the same effects as in an immer-
sive VE, as discussed in (Why calibration).

The advantage of a video-based Augmented Environment is that the
video 1mages of the real environment can be used to directly gather
calibration data. We can present calibration patterns to the HMD and
extract the coordinates of the projected data points from the captured
image using image processing techniques.

The only place where the complete augmented image is visible when
using a see-through HMD is at the retina of the user. While one may
use a video camera in the position of the users eye, the resulting cali-
bration will only be valid for the position of this camera. The data
gathering stage of our calibration scheme, in which we have to ac-
quire quintuple of 3D coordinates of a point and its 2D projection,
therefore has to rely on the user to identify whether a real point in
space and its virtual projection match.

To achieve this, we turn the image processing approach - presenting
a real calibration pattern and identifying points on its projection -
around and present the user with a virtual calibration pattern, on
which real points have to be aligned. The user sees a real marker on a
tracked pen (Figure 19), which he has to align with a virtual marker
presented via the HMD. When the alignment is achieved (Figure 20)
the user presses a button on the pen and the next virtual marker is
displayed. At the press of the button, tracking data of the sensors at-
tached to the pen and the HMD 1s sampled. The position of the pen is
transformed in the coordinate system of the HMD tracker sensor,

55

which eliminates influences of the head position. The resulting 3D
point gives us - together with the known 2D location of the virtual
marker - one quintuple of calibration data.

Figure 19: physical setup for calibration

Figure 20: View through the HMD - virtual
marker overlays real marker

56

sample points

4
.
B S
tracked pen
wireal markear
T
— . \ls

Figure 21: geometric determination of HMD parameters

9.6.2 Geometric Determination of Camera Parameters

Since we want to keep the number of sampled data points low (section
9.5.1), we need to maximize their information content with respect to
our problem. We do this by imposing geometric constraints on the
sampled points to allow direct determination of a viable start solution
for our numerical optimization step.

In Figure 21 the distribution of sample points for correct calibration
1s depicted as black circles (1-8). Every pair of samples lies on a line
connecting one corner of the image plane with the eye point, essen-
tially defining in this way the viewing pyramid.

In a first optimization step this gives us the location of the eyepoint
as a least-squares solution for the point lying nearest to all of these
lines. Averaging their direction gives us a good approximation of the
viewing direction. As a first approximation at this stage we assume
that the viewing direction is normal to the image plane. Intersecting
this approximated image plane with the planes defined by the lines
(1/2), (3/4), (5/6) and (7/8) gives us approximations for the horizontal,
respective vertical directions in image space. Averaging the verticals
(A/C, B/D) and the normals of the horizontals (A/B, C/D) gives us an
approximation of the up-vector (u) for our camera model.

If the aspect ratio of the display area is not known it may be ap-
proximated in a similar manner from the intersection points of the
lines through the sample pairs with the image plane (A, B, C, D), but
in most cases this parameter i1s known for a given HMD.

57

This intermediate solution already gives a good approximation of the
calibration problem. Differences between calculated and measured
projections of the data point are in the range of 1-2%.

Since this solution only holds for eye positions on the axis of the op-
tical system, we have to append a optimization procedure to account
for off-axis positions of the eye.

9.6.3 Numerical Optimization of Parameters

Since - as already mentioned above - the solution at this stage i1s al-
ready very good, we do not have to apply sophisticated optimization
techniques to it. A simple multi-dimensional least-squares optimiza-
tion [Press1988] is being applied to the geometric solution reached in
the previous step.

The parameters optimized in this step are the normal vector of the
image plane, field of view (FOV) and - if needed - aspect ratio. The
optimizations reaches a stable solution after 20-100 iterations and
leads to errors in the range of 0.5-1%.

9.7 Fast Calibration

The procedures described above implement a full user-specific calibra-
tion of an unknown HMD with attached tracker sensor. It needs user
input of 8 sample points per eye (a total of 16 samples per HMD) and
yields a virtual camera pair which is optimized for a specific user, but
may be used satisfactory by others, if they are not willing to repeat
the full procedure. Ideally we want a calibration which separates the
user-specific parameters (eye position) from parameters fixed for a
given HMD/tracker sensor setup similar to the one used in Studier-
stube.

Given a sufficiently linear behavior of the optical system of the HMD
which projects the display surface - LCD or CRT - onto a virtual im-
age somewhere in front of the user, we can assume that each point on
the display surface corresponds to a point fixed in space relative to the
HMD (Figure 21). It should then be possible to determine this projec-
tion of points in 1image space (pixels) on a plane in the HMD coordi-

58

nate system. This would reduce the calibration problem to the deter-
mination of the eye position. It eliminates the need for more than one
sample point along a edge of the sample frustum, since the (now)
known 3D location of the virtual marker in real space in combination
with the position of the real marker gives us a line in space through
the eyepoint. This reduces the number of sample points per eye from 8
to 2.

We are using the full calibration data gathered from a sufficiently
large user population to determine not only the orientation of the im-
age plane but also its positions in real space in a least-squares opti-
mization step similar to section 3. When the eye distances of the users
vary sufficiently (ranging from children to adults) this optimization
terminates with a solution applicable for a wide range of users.

While theoretically applicable with only 2 sample points per eye we
normally use all 4 corner locations. This reduces the user effort versus
the full calibration from 16 to 8 points while keeping the error margin
low. The resulting errors (0.7-1.5%) are slightly higher than when full
calibration is applied but the solution is still better than an "aver-
aged" camera without user-specific calibration.

9.8 Distortion Compensation

A further problem for correctly registering and Augmented Environ-
ment are non linear distortions introduced by the optical system of
the HMD. Especially in video-based HMDs the short focal length of
the cameras lens can introduce radial distortions as the typical barrel
distortion depicted in Figure 22. These distortions result from differ-
ent focal lengths of the optical system for different points in the image
plane. Equivalent distortions may be introduced by the optical system
inside a see-through HMD.

Photogrammetric calibration schemes like [Tsai] mostly include
some parameter(s) for describing a radial distortions, which allows a
rectification of image data on a point-by-point basis.

Since this approach does not work on a standard OpenGL graphics
hardware, where only linear and perspective distortions are possible,
we use an approach similar to the one used in [Bajural995], where

59

video images are non-linearly distorted before being fed into a video-
based HMD.

To implement a general image distortion using OpenGL hardware
acceleration we take advantage of the OpenGL texture mapping
mechanism. To rectify an image we use it as a texture and map it
onto a screen-aligned segmented plane, the rectification grid. By us-
ing the inverse of the distortion function the image becomes rectified
(Figure 23).

In most cases a precise definition of the distortion function is not
available, therefore we have to acquire it by measuring the distortion
via a calibration pattern. Photogrammetric approaches deliver closed
form solutions for the distortion function, [Tsai1986] for example
gives a first-order radial-lens distortion parameter for rectification.

Since we are sampling the inverse distortion function at discrete
points - the vertices of the rectification grid - we do not need to deter-
mine the closed form of the function at all. All we have to do is take a
distorted image of the calibration pattern in Figure 22, measure the
positions of the intersections and map these positions as texture coor-
dinates onto the undistorted rectification grid. The texture hardware
then rectifies the distorted images, using linear interpolations inside
the grids squares.

AT IT LT T &
HT T
r | 7 \ 1
||
\ /
il 7
L/
aasuns 7]'ﬁ

Figure 22: distorted video image of calibration pattern

60

CLHHTHTRHE

.z - [L] [

Figure 23: distortion compensated image

To apply this method to see-through HMDs one just has to distort the
computer generated image instead of a video image. This is imple-
mented by rendering OpenGL graphics into a separate region of the
frame buffer and then using this region as a texture map. In this case
of course the distortion has to be the same as the one seen through
the HMD. Calibration data for this case can be gathered by letting the
user click a lot of on markers lined up like the intersections of the rec-
tification grid or - a simpler and faster approach - by capturing an
image of the calibration pattern through the HMD.

The coordinates of the intersections can then be measured by hand
or with a feature recognition algorithm.

9.9 Registration of Virtual to Real Objects

Registration of real objects to virtual counterparts has several uses.
In the case of a physically based simulation for examples a virtual
ball has to bounce on a real table, or annotations and instructions
have to appear aligned to components of a real object [|[Feiner1992].
We have used tracked approximations of the users head and limbs to
simulate the occlusion of virtual objects by the users body [Fuhr-
mann1999].

We have used an approach similar to [Whitaker1995] for registering
static objects, but use a simpler method for registration of tracked
objects. Tracked objects are objects like the PIP, or the occluding body
geometry in section 10, which in the virtual world are represented as

61

rigid objects moving according to the tracker sensors attached to their

real counterparts.

Figure 24: registration of virtual to real object: a) front view - mis-
aligned

b) front view — aligned, c¢) side view — misaligned, d)

registered

In our approach the user is presented with a augmented view of the
real object, overlaid with its (non-aligned) virtual representation
(Figure 24a). Using keystrokes, the augmented geometry may be
move screen-aligned to cover the actual object. Rotation around the
center of the object in the image plane are supported also. The user
aligns the virtual object with the real from one viewing direction as
shown in Figure 24a and Figure 24b, then turns the physical object
around to look at it from another direction (Figure 24c). The proce-
dure 1is repeated until satisfactory registration is achieved (Figure
24d).

This procedure is easily implemented and the user interface is intui-
tive enough for most users. Since the registration process has to be
performed for each tracked object only once - baring changes in the
attachment position of the tracker sensor - the necessary user effort is

62

kept small. It allows for fast registration of arbitrarily shaped objects
without the need to attach markers on the object.

9.10 Implementation Details

The HMD calibration has been implemented in Open Inventor (OIV)
[Strauss1992], the same graphics toolkit in which Studierstube has
been implemented. The extended camera model has been imple-
mented as an OIV extension, making it possible to save user-specific
calibrated cameras in the standard OIV file format. The calibration
runs as a separate module and allows the user to calibrate the HMD
on the fly anytime during his work in the Augmented Environment.
While this is normally done only once per user, passing a HMD to an-
other user may make this necessary during a working session.

The procedure itself has been implemented as user-guiding step-by-
step "calibration wizard" comparable to the "setup wizards" of com-
mercial software. The user is shown virtual markers directly corre-
sponding in size and shape the real marker, therefore not only
prompting for a correct alignment in two dimension, but also differen-
tiating between different distances. Figure 25 a and b show the mark-
ers according to the upper right corner at near and far location re-
spective. When the optimization procedure detects one or more meas-
urements beyond the tolerated error margin the user gets prompted to
repeat the necessary steps. During the calibration process the user
may repeat botched measurements by using a "back" button on the
pen.

As an unforeseen advantage proved the separation between calibra-
tion of left and right eye. Since some people have problems closing a
single eye, they expected to have difficulties with having to align
markers. These problems did not occur, since the virtual marker is
only presented to one eye at a time.

The calibration method has been applied to stationary cameras,
thereby fixing their position in space without the expense of an addi-
tional tracker sensor. We use this setup to generate videos for docu-
mentation purposes.

63

All the augmented illustrations in this chapter have been captured
with a digital camera directly through the optical system of our HMD
- virtual-io 1-glasses - and have been generated using a SGI Indigo 2
graphics workstation.

The distortion compensation has been implemented and tested on a
SGI 02 R5000 workstation, using the O2 system camera as video
source.

b)

Figure 25: guiding the user through differently sized virtual mark-

ers. a) far sample point, b) near sample point

64

9.11 Results

Figure 26 shows the results of a full registration procedure. The vir-
tual marker is in this case tracked and follows the real marker on the
tracked pen over the whole working volume, independent of the users
heads position and orientation.

The video images in Figure 27 demonstrate the real-time distortion
compensation. The texture mapping method described in section 9.8
has been applied to a life video stream captured by a Silicon Graphics
02 system camera. The distinct barrel distortion in Figure 27a has
been compensated in Figure 27b.

A first simple implementation of this method rectified the video at a
rate of 22 frames per second (including video capturing time) on a SGI
02 R5000.

Figure 26: resulting registration of virtual

to real marker

65

Figure 27: a) distorted video image,

b) distortion compensated image

The advantages of the presented calibration method lie mainly in its
simplicity of application and its tolerance to user errors. While testing
other methods we observed a certain reluctance in many participants
to apply the calibration procedure when presented with a reasonable -
but not user-specific - calibrated HMD. Our method - especially when
embellished by the user guidance interface - seems to be more toler-
able to the ordinary user. The simple task of matching one distinctive
image with another proved to be easier to accept than any more tax-
ing schemes.

The disadvantages of the method lie mostly in its dependence on
precise user input and tracker precision for high-quality results. We
are planning to improve our measurements by applying appropriate

66

filtering directly to the marker measurements already transformed
into head-tracker coordinates. Since tracking delays and loss of high-
frequency information are not relevant during the calibration proce-
dure we expect to improve the precision considerably.

The use of gradient methods for optimization are another topic for
improvements although the numerical optimization step seems to be
stable and is fast enough for interactive expectations.

67

10 Occlusion in Collaborative Augmented
Environments

10.1 Overview

Augmented environments superimpose computer enhancements on
the real world. Such augmented environments are well suited for col-
laboration of multiple users. To improve the quality and consistency
of the augmentation the occlusion of real objects by computer-
generated objects and vice versa has to be implemented. We present
methods how this can be done for a tracked user's body and other real
objects and how irritating artifacts due to misalignments can be re-
duced. Our method 1s based on simulating the occlusion of virtual ob-
jects by a representation of the user modeled as kinematic chains of
articulated solids. Smoothing the border between virtual world and
occluding real reduces registration and modeling errors of this model.
Finally, an implementation in our augmented environment and the
resulting improvements are presented.

10.2 Introduction

One of the main advantages of using an augmented environment
[Feiner1993, Azumal997] for collaboration as opposed to an immer-
sive setup 1s the direct interaction of participants in reality. While the
collaborators in an immersive setup always have to rely on more or
less satisfying representations of each other, ranging from disembod-
ied hands or heads to complete bodies visualized in plausible poses,
users of an augmented scenario always are able to directly see each
other and the interface devices they are using. This combination of
reality and virtuality leads to the problem of correct occlusion be-
tween real and virtual objects, which of course does not exist in an
Immersive environment.

Even when using semi-transparent HMDs, where virtual objects
only appear as transparent overlays over reality, wrong occlusion can
hide gestures or facial expressions of participants. When applied in a

68

video-based augmentation setup virtual objects can completely hide
real objects if not occluded properly. In Figure 28 the geometry in-
tended to be displayed between the users hands and the PIP seems to
be floating above the PIP. More confusion arises when moving the
pen: ist virtual counterpart correctly occludes the PIP, while the real
pen is almost invisible.

Figure 28: PIP geometry wrongly occluding users hands

Even discounting the importance of the social interaction, wrongly
occluding virtual objects subject the users brain to conflicting depth
clues: the parallax of the stereo-rendered objects gives a farther dis-
tance than the one inferred by the occlusion of real objects. This not
only leads to misconceptions of spatial properties by the user, result-
ing in errors when trying to grab objects, but also increases eyestrain
and the probability of motion sickness.

10.2.1 Influences of the Display System

As already mentioned, the properties of the display system influence
the severity of the occlusion problem, as outlined in the following ta-
ble:

69

Table 4. occlusion order vs. display system

occlusion virtual object real object

) order occluding occluding

display system
real object virtual object

(example)
back-projection/ impossible inherent
screen based
(CAVE [Cruz-

Neiral992],responsive
workbench [Kriiger1994])

semi-transparent HMD inherent semi-visible /
(Studierstube [Schmal- software solvable
stieg1998])

video + immersive HMD inherent software
(UNC [State1996b]) solvable

In screen-based augmented environments - fishtank scenario - or
projection based setups - like the CAVE - occlusion of virtual objects
by real ones is simple and straightforward: real objects are always
between the display surface and the eye and therefore always occlude
virtual objects. This yields excellent results as long as no real object is
placed placed behind (nearer the projection screen) a virtual one. In
this case the real object incorrectly occludes the virtual object in front
of it. The only exception for this would be the projection-based virtual
office [Raskar1998], where front projection is used. Since the virtual
objects are projected on top of the real ones - normally on walls or
desktops - real objects can be excluded from this projection by pro-
jecting nothing (displaying black) in the relevant portion of the dis-
play area. This could for example be used to exclude pictures or win-
dows from being projected onto, but also - when using the proposed
optical tracking mechanism - to exclude the users hands from being
projected on. Nevertheless the occlusion of the display surface by real
objects still manifest: users hands and arms for example may drop
shadows on the surface, thereby occluding parts of objects virtually in
front of the shadow.

70

When using HMDs, the display surface is always between the eye
and real objects. Without further processing virtual objects always
occlude--- real ones. The only difference - albeit only gradual - exists
between see-through HMDs utilizing semi-transparent mirrors and
immersive HMDs being fed video images by headmounted cameras:
the first only overlays semi-transparent computer-generated images
over reality while the second one may display completely opaque ob-
jects.

Since the only case where the occlusion problem is solvable we con-
centrate on setups where the displayed virtual objects overlay images
of reality. This can of course also be a desktop-based system, where
video images are displayed overlaid by graphics.

10.2.2 Influences of the Tracking System

Tracking of users (heads), input devices and real objects to be aug-
mented is a major task which influences strongly the quality of the
augmentation. Immersive environments can tolerate discrepancies
between reality and computer generated images which would be 1m-
possible to ignore in an augmented setup. Since In an Immersive
situation the user only relies on computer generated images for hand-
eye coordination, errors between hand position in reality and pro-
jected hand/cursor position in the environment almost never lead to
problems when interacting with the virtual environment.

In an augmented environment however, misalignment between
tracked real objects and their representations in virtuality - which do
not have to be visual representations: an input wand may only be rep-
resented by its "hotspot", the point in space where its function takes
place - can cause severe problems for the user to operate in the envi-
ronment. Additionally, lag between reality and the computer-
generated environment is much more noticeable than in an immersive
situation, since the position of virtual objects in respect to the real
surroundings can be immediately compared. This results in "swim-
ming" behavior of the virtual scene, which may also lead to motion
sickness.

When addressing the problem of occlusion, another quality of the
tracking system used matters: the ability to supply the simulation

71

with additional information regarding the occluding objects. Ideally,
we would like the tracking system not only supply us with the posi-
tion and orientation of one or more reference points on the occluding
object, but also to deliver complete geometric information which en-
ables us to determine which parts of virtual objects to occlude.

This yields the following classification by tracking system:

Table 5: occlusion order vs. display system

Supplies only positional data supplies additionally geometric
information
Magnetic tracking video tracking delivering depth
Mechanical tracking map from stereo [Wlokal995]
Optical tracking using beacons |Video tracking delivering contour
[State1996b] data [Berger1997]
video range tracking [Raskar1998]
using invisible structured light
laser range tracking

Tracking systems providing occlusion data

A very efficient and self-contained approach would be video-based
augmentation using stereo headmounted cameras and a HMD. Stereo
video data could be used for inside-out tracking of the users position
and orientation and also to generate a dense depth map of the visible
scene usable for occlusion. While this approach seems to be the most
promising in respect to versatility, it has still to overcome some draw-
backs. The computational complexity of the depth map reconstruction
allows only coarse approximations of the scene depth to be computed
in real-time. Wloka and Anderson [Wlokal995] only produce coarse
approximations of occlusion in acceptable time. This will probably be
solved with increasing computing speed of future systems. Another
drawback, which cannot be solved without additional tracking infor-
mation is the line-of-sight problem: objects not visible in the video
images cannot be tracked. While tracking of these objects 1s not
needed for solving occlusion, tracking of the users hand outside the
viewing frustum may be necessary. Especially when using two-
handed interaction as we do when using the Personal Interaction
Panel (PIP), the user must be able to use his proprioceptic sense alone

72

to manipulate virtual input devices without relying on his hand-to-
eye coordination. This manipulation outside the users field of view 1is
one of the essential advantages of two-handed interaction and avoids
display cluttering and occlusion by interaction elements.

Berger [Berger1997] presented a contour-based approach to occlu-
sion which delivers outstanding results while using essentially only
2D image processing methods. This reduces the computational costs
drastically, but also suffers from the line-of-sight problems mentioned
above.

Approaches using special hardware, as for example laser range
scanning devices, while providing excellent data are in most cases
prohibitively expensive and suffer in many cases from line-of-sight
problems similar to the ones cited above. This holds especially in a
collaborative situation where users standing close together examine
and object between them, as in Studierstube.

Tracking systems providing only positional data

At the moment most virtual environments -immersive and aug-
mented- use tracking systems providing only position and orientation.
This includes commercial magnetic and mechanical tracking devices
and advanced beacon-based optical tracking systems like the one de-
veloped at UNC [Ward1992] or the structured-light approach of [Ras-
kar1998].

Sophisticated optical tracking systems like this, or hybrid opti-
cal/magnetic solutions like the one used in [State1996b] deliver high
precision tracking data but unfortunately no additional data usable
for occlusion.

10.2.3 Registration Problems

The problem of registering the users head position with the position of
the virtual camera and the virtual objects with the real environment
has already been covered extensively [Taylor1993, Azumal994,
State1996a, Whitaker1995]. Here - like in the previously cited ap-
proach to occlusion by [Berger1997] - a 2D image-based approach pre-

73

sented by Kutulakos [Kutukalos1998] seems to be an adequate solu-
tion for video-based systems.

The registration errors present us with especially annoying artifacts
when occluding virtual objects. Slight errors produce a visible gap be-
tween virtual and real object (Figure 29) or overlapping effects which
occlude a slice of the real object that is supposed to appear in front of
the virtual.

N k

Figure 29: (a) Occlusion with head phantom,

(b) misregistration (in circle) due to time lag.

Since registration of the commonly used magnetical trackers is noto-
riously instable, these errors tend to appear in most augmented envi-
ronments. We try to present a solution for reducing the visual impact
of these artifacts.

10.3 Requirements for Occlusion in "Studierstube"

The collaborative augmented environment we have developed allows
multiple collaborating users to simultaneously study three-
dimensional scientific visualizations in a "study room" - German:
"Studierstube". Each participant wears an individually head-tracked
see-through HMD providing a stereoscopic real-time display. The use
of individual displays and head tracking allows providing stereo-
scopic, undistorted images for every user. The see-through property of
the HMDs allows users to see each other and avoids the fear of
bumping into obstacles.

74

Objects in Studierstube may appear - unlike in projection based dis-
play systems - both between and beside users. Interaction and col-
laboration within arm reach of the users is possible and supported by
scientific visualization applications we have presented in [Fuhr-
mannl997] and [Fuhrmannl1998]. Since the resulting scenarios lead
often to situations where users heads, hands or bodies or the PIP had
to occlude virtual objects, we had to find a method for efficient han-
dling of these occlusions.

The properties of Studierstube and our chosen hardware and soft-
ware setup presented us with the following requirements for solving
the occlusion problem:

-View independence supporting multiple users
Studierstube has to support multiple users. Occlusion methods there-
fore have to support a view independence of methods, ideally holding
the computational cost proportional to the number of users.

- Minimize number of trackers
Representation of users bodies has to be supported with a minimal
number of additional trackers. Otherwise the tracking requirement of
multiple users could quickly exceed our hardware capabilities and the
users tolerance to setup overhead for use of the environment.

- Minimize rendering overhead
Since occlusion is only annoying when it does not work, the tolerable
overhead for correctly simulating it is relatively low. We have to keep
rendering passes, additional geometry or image-processing to a mini-
mum.

Since our Studierstube uses - like most virtual environments at the
moment - commercial magnetic trackers we need another approach to

the occlusion problem which does not rely on tracking of geometry or
depth.

10.4 Occluding with Phantoms

Since we are using a tracking system, which does not supply geomet-
ric information of occluding real objects, we have to acquire this in-

75

formation previously. This can easily be done by modeling or digitiz-
ing sufficiently precise representations of the objects offline and
placing them inside the virtual scene.

We call these mockups of real objects "phantoms". By rendering
them in an appropriate way occlusion of the virtual objects by real
objects can be simulated (Figure 30). Rendering of phantoms can be
performed differently, depending on the display system used:

Semi-transparent HMDs only need black areas where reality should
be visible. To correctly occlude objects in this setup phantoms have
therefore only to be rendered in black, without any special rendering
order. This 1s fast and easy to implement.

When combining images for a video-based approach externally using
a luminance- or chroma-keyed system the same method can be ap-
plied. For presentation purposes or when generating movies of our
environment we usually apply digital compositing using one machine
- an SGI Octane - for simultaneously digitizing video data and ren-
dering virtual objects overlaying the video information.

The previous rendering approach would only produce a black avatar
in front of the video image. To correctly render occluding geometry we
had to restructure the scenegraph to guarantee all phantom would be
rendered before any visible geometry. This can be done in a pre-
processing step and does not influence rendering times. The following
OpenGL sequence is executed for each frame:

76

Table 6. OpenGL rendering sequence for occlusion

reset z-buffer
\!
render video background

\

enable z-buffer testing &
writing,
disable RGB writing

\
render phantoms
A
enable RGB writing
\J

render visible part of scene

This results in "invisible" phantoms, which only are registered in the
z-buffer of the rendering hardware. Normal geometry is only rendered
where it lies nearer to the viewpoint as a phantom.

10.4.1 Occlusion of Static Objects

The simplest case of occlusion of real by virtual objects is when the
real objects are previously known and static over the duration of the
simulation. Examples for this would be furniture and fixtures of the
room used as workspace.

Examples for occlusion of static objects can be found in [Breel1996].
We have applied this method to simulate occlusion of virtual objects
by laboratory furniture in Studierstube.

77

10.4.2 Occlusion of Tracked Rigids

The occlusion of virtual scenery by non-stationary rigid real objects
can be handled in much the same way as the above case of static ob-
jects. The position and orientation of the phantom - since they are no
longer constant over the duration of the simulation - have to be cou-
pled to the real object, in our setup by the mounting of an additional
magnetic tracker sensor on each occluding object.

We have used this approach to model occlusion of virtual objects by
tracked real objects like the PIP in Studierstube (Figure 30).

Figure 30: Personal Interaction Panel (PIP) occluding
scientific visualization.

10.4.3 Occlusion for Tracked Articulated Objects

A more general case than tracking simple rigid objects for occlusion
purposes is the use of tracked articulated objects for occlusion. The
primary application of this in our environment was the occlusion gen-
erated by participant's bodies moving in front of virtual objects.

To achieve this under the requirements stated above we modeled a
coarse articulated representation of a user. This approximation is

78

used as a "phantom avatar", which is supposed to mimic all poses and
gestures of the tracked user to allow rendering of correct occlusion. It
consists of rigid segments corresponding to body parts, which have to
be animated in real-time according to incoming tracker data. To
achieve this we have to mount additional trackers on the user.
(Figure 31) shows how this was done. Since the head position is al-
ready tracked via the HMD, only three additional tracker sensors
were used: two on the lower arms and one on the back of the user, a
scheme comparable to the one used by Badler [Badler1993]. Similar
results have been obtained by Waldrop [Waldrop1995] with the use of
three sensors per arm for implementing avatars in a distributed vir-
tual environment.

Figure 31: User with 4 sensors and HMD.

Based on a reduced number of sensors our simulation has to imple-
ment a number of additional constraints regarding joint stiffness and
degrees of freedom to correctly simulate the posture of the user. Since
our system 1is based on rigids we also are not able to simulate defor-
mations of the body, but are planning to implement this in a later
version based on a simplified, segmented spine.

79

10.4.4 Compensate Registration Errors by "Blurring" the
Phantom

As already stated before, slight registration errors between phantom
and real object result in annoying artifacts when occlusion occurs.
This can be caused by errors between tracker data and real position of
the sensor, due to time lag or misregistration of real and virtual envi-
ronment or by differences between the shape of the user and phan-
tom geometry. The first two causes can be addressed in one of the
ways cited above, whereas the last case defines a new problem.

While theoretically possible, a pixel-perfect representation of for ex-
ample the users forearm may be possible to model, such precision is in
most cases unnecessary. Even discounting remaining errors from the
tracker misregistration deformation of body and even changed clothes
can invalidate the precision in modeling the shape of a body part in a
fixed posture. Furthermore a precise and therefore finely tessellated
model of the avatar would consume too much of our polygon budget.

We are therefore proposing to represent this margin of error in our
phantom avatar. We do not render a hard edge between occluded ob-
ject and occluding phantom but a soft transition covering the error
margin (Figure 32). This transition shall enable the user to perceive
details of both virtual object and occluding real object, while not sig-
nificantly reducing the visual occlusion clue.

Figure 32: Use of a blurred phantom with different gestures.

A further application of this transitional "blurring" effect are body
parts where much additional tracking effort would have to be spent
just to implement precise occlusion: the users hands. Without using

80

the almost always cumbersome and inaccurate gloves to track exact
hand and finger positions, not enough data is available to correctly
occlude this part of the users body. When using some kind of "prob-
ability blurring" in this area, which renders the avatar the more oc-
cluding, the higher the probability of a part of the hand appearing in
it is, we are able to provide satisfactory occlusion (Figure 33). Since
finger and hand gestures are desirable extensions of collaboration in
our environment we want each user be able to see them.

|

» I

Figure 33: a) "Probabilistic" function of hand,

b) corresponding phantom

10.5 Implementation

10.5.1 Integrating Occlusion into Studierstube

The integration of the necessary extensions for occlusion into Studier-
stube proved to be relatively straightforward. The whole system is
based on the Openlnventor [Strauss1992] Rendering/Simulation li-
brary, which reduces the addition of new functionality to the Studier-
stube environment to the simple process of adding a new dynamaically
loadable module. The necessary tracker data is delivered by the
Studierstube tracker interface, which delivers positions and orienta-
tions in Openlnventor fields, a high-level interface element, which
allows easy connections to the separately developed simulation li-
brary [Loffelmann1997a].

81

10.5.2 Kinematic Simulation of Avatar Posture

The phantom avatar used for occlusion is modeled as articulated sol-
1ds representing a human body. A geometry used for occlusion is at-
tached to each solid. Some of the solids are directly connected to the
trackers attached to the user (Figure 34).

Figure 34: Phantom avatar with position of tracker sensors (“I”) and

joints (points).

Dynamics is used to animate the avatar. This allows us to intui-
tively rigidify the degrees of freedom of the joints using damped
springs. An upward force applied to the body maintains a standing
position. The resting positions of the springs define the natural, com-
fortable posture of the avatar.

Our simulator, detailed in [Faurel1998], solves the inverse kinemat-
ics problem while taking into account masses and forces. Forces are
applied at the beginning of each time step. The motion i1s then inte-
grated over time, leading to new positions. In addition, the position of
the solids bound to the trackers are set accordingly to the input data,
regardless of forces or velocities. Possible violations of geometric con-
straints induced by forces, time integration and tracker input are
then cancelled by computing appropriate displacements of the other
solids.

82

The displacements are computed by solving the dynamics equation
(JM'JHA=b (1)

where matrix M is a block-diagonal matrix which represents the mass
of the system and J a sparse matrix which codes for the geometric
constraints. Vector b represents the geometric errors to cancel. Vector
A gathers Lagrange multipliers of the constraints. They act much like
integrated forces. The corresponding motion corrections are are thus
M-1JTA. Velocity updates are deduced from position corrections by
applying Stoermer's rule [Press1992]. This integration scheme con-
siders displacements instead of velocities. This avoids us to differenti-
ate the possibly noisy tracker data.

An 1terative solution of equation (1) is performed. A minimization of
the norm of the error is performed over the search space defined by
the components of vector A. This approach has two useful features for
our application. First, in presence of overconstrained solids, such as
the upper arms of the character in figure 5, a compromise between the
constraints 1s found. Second, the iterative minimization allows the
user to trade-off accuracy for computation time, making the approach
suitable for the real-time animation of complex scenes.

10.5.3 Implementing "Blurred" Phantoms

To implement the "blurring" we want to exhibit the avatars, we have
essentially two approaches of realizing this effect:

Image-based blurring

The first method that comes to mind when an operation like "blur-
ring" is requested 1s of course an image-based approach. Rendering an
avatar blurred by some kind of convolution operation seems to be the
simplest way to implement the desired effect.

But a normal convolution using only software for a video-resolution
image may not be completed in real-time (e.g. for frame rates >10Hz)
without the use of special hardware. Convolution techniques utilizing
OpenGL hardware as presented in [McReynolds1998] may be fast
enough, but depend in our case on the ability of moving data fast be-

83

tween image buffer and texture buffer, which is not present in all
OpenGL [W001997] implementations. Using the OpenGL accumula-
tion buffer would provide an elegant solution for this problem, but
unfortunately would require N? rendering passes of the whole scene
for an NxN convolution matrix.

Furthermore certain properties of the image-space approach may not
result in the desired appearance of the occlusion: we want the margin
of error to be specified in absolute, real-world measurements, to allow
for a fixed error produced by e.g. different clothing or hairstyles. An
image-based approach would deliver the same amount of blurring for
near and far parts of the avatar. The above mentioned "probabilistic
blurring" would also not be easily implementable using a single con-
volution over the avatar.

Object-based blurring

Another approach to the implementation of smooth transitions for
occlusion is to implement a "blurred geometry" of the avatar. This
consists not of a single surface representation of the geometry repre-
senting a body part, but a layered approach of successively bigger and
more transparent shells around the geometry (Figure 33a). These
shells can be modeled as the same geometry rescaled around the cen-
troid of the object, since most of the avatars geometry is convex.

Of course this approach does not yield a "smooth" transition, but one
consisting of a discrete number of steps in occlusion, but it should be
sufficient to implement a reasonable small number of steps - say three
to ten - to obtain satisfying results in most cases. Since this geometry
undergoes the same perspective transformations as everything else,
the error margin can be specified in real-world measurements as op-
posed to the image-based approach above.

A further advantage of this method is the ability to implement "Lev-
els of Detail" for phantoms: with increasing distance we can "switch
off' more and more of the intermediate shells, to reduce geometric
complexity and therefore polygon count for objects farther away. This
allows us to vary the number shells and of transition steps according
to distance. In distant phantoms only one or two transitions, covering
maybe an equivalent amount of pixels of distance between two shells

84

in image space are rendered. Phantoms nearer the observer are rep-
resented by more shells, resulting in approximately the same number
of pixel per transition step. This behavior is readily implemented us-
ing the standard Openlnventor LOD-node, which references more or
less of the scaled versions of the same geometry representing the ava-
tar.

10.5.4 Results

Registration of the avatar geometry to the user proved to be a rela-
tively time consuming process. Since misregistrations of the tracking
sensors' position relatively to the geometry resulted not only in visual
artifacts (Figure 29b) but also in artifacts of the simulation, registra-
tion had to be done very carefully. Once registered, the main problem
was an additional time-lag introduced by the kinematic simulation,
which could only partially be corrected in this version. The visual re-
sults in a typical scientific visualization situation as in (Figure 30)
were satisfying and gave users a much better overall impression of
the situation and the spatial relationship between real and virtual
scene.

The object-based implementation of "blurred" occlusion was easy to
implement and gave in the cases where hand-gestures made rigid
modeling difficult a satisfactory compromise between correct occlusion
and tracking effort (figure 2 and 3). It produced noticeable artifacts
along the intersections between rigid limbs, which can be corrected by
using stencil masks when rendering the different shells, a correction
which will be implemented in the next version of our occlusion sys-
tem.

The main difficulty for the animation of the avatar is to have it accu-
rately overlap the image of the user (Figure 35). As mentioned before,
the geometry has to be carefully adjusted to the body of the user
(Figure 36). Additionally, the positions of the trackers and of the
joints with respect to the geometry have to be precisely modeled. This
1s done interactively before performing the animation. Joint positions
are difficult to adjust because they are inside the body of the user,
thus invisible. We adjust them iteratively using different postures.

85

Figure 36: Same user as above represented as avatar.

86

Figure 37: Occlusion of a background polygon.

There are several sources of error in the final result (Figure 37). The
geometric models do not fit perfectly to the body of the user. The hu-
man body is a much more complex structure than our avatar. Limbs
are not rigid, especially when covered with cloth, and the joints of the
human body differ from our simple joints. If the calibration of the vir-
tual camera does not fit perfectly to the real camera used for video
input, the avatar may overlap the user in some postures but not in
others. Future work include a more realistic body structure, especially
for shoulders, back and neck, and semi-automatic calibration of the
virtual camera.

87

11 Studierstube as a Frontend for Scientific
Visualization

11.1 Overview

Scientific visualization is a tool, it provides the means to extract spe-
cific information from gathered data or a simulation of real phenom-
ena. But not every person capable of formulating a problem and in-
terpreting visualization results is also capable of wielding this tool.
Therefore scientific visualization frequently requires experts with dif-
ferent background to cooperate closely, in particular because many
valuable insights only occur in face-to-face discussions over the rele-
vant data. We believe that augmented reality (AR) [Feiner1992],
which combines a familiar physical surrounding with the visualiza-
tion of synthetic data, represents an ideal working environment for
collaborative visualization.

In this chapter we show how a combination of AR and a visualiza-
tion system [AVS92], results in STUDIERSTUBE becoming a three-
dimensional user interface for scientific visualizations. Several exam-
ples constructed in DynSys3D [Loffelmann97a] - developed for the
visualization of complex dynamical systems in AVS — conclude this
chapter.

11.2 Studierstube/AVS Interface

To combine augmented reality and scientific visualization, a new in-
tegrated solution could be developed, but employing an existing, gen-
eral-purpose scientific visualization system - in our case, the Ad-
vanced Visualization System (AVS) - allows a wider spectrum of ap-
plications and eases development [AVS1992]. Since this desktop-
based system is not designed for the real-time requirements of AR, we
use decoupled simulation [Shaw1993]: The visualization system and
the AR user interface (called display server in an analogy to X-
Windows) run as completely independent processes, typically execut-
ing on separate machines connected by a LAN. As shown in figure 2,

88

the system 1s composed of two loops: the display loop, a tightly cou-
pled human-in-the-loop component, where real-time response is es-
sential, and a loose coupling between display server and visualization
application for the exchange of visual information. Since the display
server continually updates the images sent to the HMDs, delays of

several seconds for recomputation of the visualization do not impair
the use of the VE.

images geometric data

VY R
-

display visualization
@ server server
e N T

interaction mapping
parameters

Figure 38: Decoupled simulation model
Our objective was to enable users familiar with AVS graphical way of
constructing dataflow networks to quickly integrate the AR system
into their visualizations, similar to the work presented in [Cruz-
Neiral993b, Roy1994]. We implemented a set of interface modules
which automatically establish network connections to the display
server and transfer data between the AVS dataflow-network and
Studierstube (figure 4). These included an AR-output module and AR-
input modules for every interaction method: slider, dial, button and
pen click- and drag-events. To reroute output geometry to Studier-
stube, the user drag an AR-output module into his AVS-network and
connects it like a standard AVS component (figure 3) to any output
supplying geometry data. For the generation of different visualization
icons which are updated independently, more than one AR-output
module is used. When using customized views we can change the de-
fault behavior of this modules from displaying data on all HMDs to a
different selection of users per module. Similarly, input modules can
be connected to the input parameters of the visualization. For sliders
or other 2D input elements in this way we can specify which user may
access them via his PIP. The LAN-connections to the display server
and the administrative exchange of parameters like slider extrema
are performed behind the scenes by a separate process in an AVS co-
routine. Changes in the AVS-network are therefore instantly reflected

89

in the configuration and display of the corresponding elements of
Studierstube.

| display server
rendering -
scene
database

. interaction

Figure 39: Display server and hardware configuration

network
interface

11.3 Collaborative Visualization

As stated before, scientific visualization often implies collaboration of
a group of experts. A common scenario in our visualization depart-
ment is for example a visualization-expert and a mathematician
working together on the visualization of a dynamical system, like de-
picted in Figure 40. The mathematician supplies his knowledge of the
simulation and knows what features he is looking for and the visuali-
zation expert applies various modeling methods and parameterizes
the mapping. In case of a commercial project the group often contains
- at least in the last phase of work - one or more customers to whom
the finished work is presented.

90

Figure 40: Collaborative work in Studierstube (Mixed Mode Oscilla-
tions)

To support this working method, our environment has to supply the
following features:

— social interaction

— 1input devices and paradigms which allow for shared and private
interaction

— 1interaction with the visualization
— customized views to display only data relevant for a specific user

In most collaborative situations, direct conversation between persons
1s preferable over every other medium. When a group of people has to
work together on one problem, every electronic layer between them
acts as an obstacle to efficient exchange of ideas. Due to the aug-
mented nature of our VE, users can see each other even if parts of the
faces are hidden by the HMD - and can perceive their relative posi-
tions and gestures in a way which cannot be efficiently replicated by
an avatar. "Can you turn the object this way?" accompanied by an ap-
propriate gesture is sufficient to convey the request to another user. A
completely immersive environment frightens and disorients novice
users more than AR.

11.3.1Interaction with the Visualization

All geometrically interpretable input e.g. seedpoints for streamlines
or other position information is done by clicking or dragging the 3D
mouse in the Studierstube’s workspace. In this way a direct manipu-
lation of visualization output can be performed. The display server
provides instant local feedback to the user in form of points or lines as
markers for the completion of the gesture (figure 5).

11.3.2 Personal Interface

Our main input device for non-geometrical interaction with the visu-
alization is the PIP. All numerical or state information is input via
conventional 2D user elements on the PIP. These are allocated by

91

connecting the corresponding input module to the AVS dataflow net-
work. An additional parameter specifies on which users PIP the input
element appears, thus putting the input element literally into the
hands of the appropriate user. Thus every experts PIP is supplied
only with the input elements that are relevant for him.

11.3.3 Customized Views

Since our scenario postulates the collaboration of different experts, it
1s likely that not the whole information necessary for one expert
should be presented to all users. The visualization-expert for example
may want to display a streamsurface as wireframe to check the tes-
selation, whereas the mathematician may want to map local proper-
ties like torsion to the color of the surface. Our AVS output modules
take as additional parameter whether the data routed to the envi-
ronment should be presented to all or only to some users.

11.3.4 Reconfiguration of Visualization

During most visualization sessions at least a partial reconfiguration
of the dataflow network takes place. It may be the introduction of a
new visualization-icon or only the wish to manipulate a former not
directly accessible parameter via the PIP. Such reconfiguration can-
not be accomplished by using interaction from within
STUDIERSTUBE but must be done on the AVS desktop interface.
Since all changes can be made on the running system, the other users
may continue working on the visualization while e.g. the visualization
expert sits down on the workstation to reconfigure the network. Even
in this case interaction between users 1s possible: Firstly small
changes are possible while wearing the HMD, so a quick look over the
shoulder into the VE shows the results, secondly comments from the
other users can steer the reconfiguration work.

92

11.4 Visualization of Dynamical Systems

DynSys3D 1s a multi-purpose workbench for the rapid development of
advanced visualization techniques [L6ff97b, Lo6ff97¢] in the field of
three-dimensional dynamical systems, designed to support incre-
mental and parallel implementations of new ideas in this field.

The system 1s based on AVS [AVS92], which is a general purpose
visualization system based on data flow paradigm.

DynSys3D modules are usually built from at least three principal
components: Dynamical System, Numerical Integrator, and Visuali-
zation Technique. They are separated by rather narrow interface
specifications. By this separation, for example, new dynamical sys-
tems can be visualized with approved visualization techniques with-
out recompiling them. Similarly, a new numerical integrator can be
plugged into this system without touching any visualization module.
Currently, our most important visualization icons — streamlines,
streamsurfaces and dashtubes [Fuhrmannl998] - and a set of spe-
cialized input modules — 2D sliders and buttons and 3D feedback - are
implemented.

One design guideline of DynSys3D, namely that all of its modules
have to produce standard AVS output (geometry), was very important
for the integration of DynSys3D and Studierstube: A simple utility
that converts AVS geometry into the Studierstube’s format (Open In-
ventor) was sufficient to export geometry. Interaction messages from
the VE are sent to DynSys3D’s input modules as AVS geometry items,
points for 3D mouse positions, lines for mouse drag events (color
plates 2-4).

Governed by the data flow paradigm underlying AVS, the user’s
commands are routed via the display server to input modules of an
AVS network, whereas the results of the computation are sent to out-
put modules, and from there onward to the user (Figure 42). However,
AVS’ execution scheme invokes modules only when the user generates
input events. Consequently, the network communication with the dis-
play server had to be implemented as a coroutine inside AVS, which
forwards the user’s commands to an AVS input module. This explic-
itly triggers re-evaluation of the AVS net; the coroutine also collects

93

the results (usually new or modified geometric data) and forwards it
to the display server.

display) (“AVS - P
server 3D input
module
- visualization
3D input DynSys3D
module
|
network
coroutine

Figure 41: AVS/DynSys3D configuration

= [=
=1

Figure 42: An AVS network for interaction via Studierstube

12 Real-Time Techniques For 3D Flow Visualization

12.1 Overview

Visualization of three-dimensional steady flow has to overcome a lot
of problems to be effective. Among them are occlusion of distant de-
tails, lack of directional and depth hints and occlusion. In this chapter
we present methods which address these problems for real-time
graphic representations applicable in virtual environments. We use
dashtubes, 1.e., animated, opacity-mapped streamlines, as visualiza-
tion icon for 3D-flow visualization. We present a texture mapping
technique to keep the level of texture detail along a streamline nearly
constant even when the velocity of the flow varies considerably. An
algorithm 1s described which distributes the dashtubes evenly in
space. We apply magic lenses and magic boxes as interaction tech-
niques for investigating densely filled areas without overwhelming
the observer with visual detail. Implementation details of these
methods and their integration in our virtual environment conclude
the chapter.

12.2 Introduction and Motivation

Many visualization techniques for two-dimensional flows have al-
ready been investigated in detail [Post1993]. Visualization of 3D flow
phenomena, however, tend to produce complex images with often
heavily overlapping geometry. Occlusion, ambiguities in depth and
orientation of flow strain the viewer's abilities to interpret the visu-
alized data.

The main point of this chapter is to show how real-time graphics in a
virtual environment can be used to overcome some of these problems.
Stereo cues, interactive and intuitive changes of the viewpoint and
the feeling of immersion allow users to get a better impression of the
structure of the 3D flow in a virtual environment as compared to a
desktop system.

95

We present a combination of selected visualization and interaction
techniques, which enable the user to rapidly explore complex 3D vec-
tor fields. Fast texture-based visualization techniques, which utilize
the graphics hardware to get real-time performance, are applied to
streamlines. A new parameterization scheme allows a direct mapping
of a wide range of flow velocity to texture velocity without loss of de-
tail. These techniques together with interactive 3D focussing enable
the user to quickly identify and explore areas of interest. The focussed
volume 1s selected with magic lenses and magic boxes that also use
mainly hardware accelerated features. Animation is realized in the
texture coordinate domain with moving opacity maps. This reduces
occlusion and cluttering by simulating particle traces. An automatic
streamline placement algorithm [Jobard1997] is extended into the
third dimension to generate an even distribution of streamlines in the
virtual environment.

12.3 Related Work

Several techniques for the visualization of 2D and 3D flows inspired
this work. Some examples of texture based techniques for the visuali-
zation of 2D flows are [Cabrall1993], [W1jk1993], [Stalling1995]. We
already applied texture-based visualization techniques 1n
[Loffelmann1997].

FROLIC [Wegenkittl1997a] is a variation of OLIC (Oriented Line
Integral Convolution, [Wegenkittl1997b]) based on LIC [Cabral1993].
OLIC uses sparse textures and an asymmetric convolution kernel to
encode the orientation of the flow in still images. Costly convolution
operations as done in LIC and OLIC are replaced in FROLIC by ap-
proximating a streamlet by a set of disks with varying intensity. The
visualization icons we call dashtubes are basically 3D streamlines
with animated texturing and apply similar techniques to 3D flows.

[Interante1997] use LIC for 3D flow volumes. Halos around stream-
lets offer additional depth and ordering cues. The high cost of volume
rendering, however, precludes an interactive exploration. Texture
splats as discussed in [Crawfis1993] encode direction and orientation
of 3D flows. Fast splatting operations are realized with hardware
supported texture mapping. Animated texture splats illustrate the

96

flow dynamics. While these techniques produce good results, their
rendering times are prohibitive for real-time applications.

[Max94] presented various techniques for visualizing 3D flows close
to contour surfaces. Motion-blurred particles are generated in the vi-
cinity of surfaces. Particles are started automatically on a lattice.
Generation and deletion of particles is density based. Line bundles
are realized as texture splats with antialiased lines as texture. Hairs
are 3D particle traces originating on the surface. Additional informa-
tion is encoded in the color, length and transparency of these hairs.

Streamline placement is an important task to achieve an approxi-
mately uniform coverage of phase space. An image-guided streamline
placement has been presented in [Turk1996]. Another approach for
creating evenly spaced streamlines uses a regular grid [Jobard1997].
For each grid element a list of passing streamlines determines
whether there is still space for the placement of another streamline.

Queues of streamline vertices administer possible seedpoints for new
streamlines. Tapering of streamline widths produce hand-drawing
effects. Directional glyphs illustrate flow orientation. A 3D variation
of the streamline placement in [Jobard1997] was used in our ap-
proach (see section 3).

12.4 Dashtubes: Streamlines with Animated Opacity

Streamlines are an intuitive way of visualizing flow. Their applica-
bility in 3D-space however is limited, since they do not provide the
visual cues needed. Normally, lines are rendered with the same width
regardless of distance to the viewpoint so they lack perspective distor-
tion, which is a significant cue for judging distance.

Additional techniques like halos [Interrantel997] are necessary to
resolve the ambiguities of overlapping lines. When visualizing flow,
streamlines need to be enhanced to convey the direction of the flow.
This can be done by directional color variations or by placing icons
along the streamline as shown in [Jobard1997]. Texture based tech-
niques like LIC can be modified to include directional variations as
we have shown in [Wegenkittl1997a] and [Wegenkittl1997b]. A more
direct approach however is the visualization of flow by animation. In

97

the 2D case we use FROLIC combined with lookup-table animation to
do this in real-time. [Bryson1991] has successfully used streaklines -
2D particles moving along the vector field - in the virtual windtunnel
to animate flow in space. This technique depends on continually up-
dating the position of all particles with every animation step, leading
to a considerable consumption of processing power.

In this chapter we present dashtubes as visualization tool for steady
3D-flow. Dashtubes are generalized cylinders extruded along the di-
rection of the flow (Figure 43). Their geometry is displayed with ani-
mated, opacity mapped texturing to visualize velocity and direction of
flow. They appear as "dashes" - short opaque segments - moving along
the direction of the flow.

Our requirements for dashtubes are:

— Volume-filling properties: the dashtubes have to exhibit an even
distribution over the volume of interest. Otherwise the omission of
interesting features would be probable.

— Reduced occlusion: we need a method which reduces the occlusion
of distant features by features near the observer. This demand is
almost the opposite from the volume-filling properties mentioned
above.

— Animation of flow: the velocity and direction of the flow should be
visible in the animation. Dash velocity should directly correspond
to flow velocity.

— Visibility of dashes: the length of the dashes should not vary too
much with velocity. High velocity areas would otherwise produce
long dashes and gaps, which do not give the desired appearance,
while low velocity would lead to very short dashes and eventually
to aliasing artifacts.

— Fast Rendering: Since one of our main points is the real-time
applicability, we want a fast, hardware-assisted rendering method.
Like FROLIC we would like to use the graphics hardware to do the
animation, leaving the CPU time for simulation and interaction.
This 1s advantageous as the graphics hardware has anyhow to
update the 1mage continuously when rendering a virtual
environment.

98

The design of dashtubes meets the mentioned requirements. To avoid
the occlusion of distant parts of the visualization by closer features
and to generate the desired effect of particles moving along the dash-
tube we render it partially invisible. This is done by using an opacity
texture, which includes transparency information for the rendering
hardware. Since semi-transparency does not work well in combination
with z-buffered visibility resolution, we only map completely opaque
or complete transparent values to the geometry. Thereby we avoid
artifacts produced by the order in which we render different parts of
the scene. The dashtubes are assigned texture coordinates, which cor-
respond to a temporal parameterization along streamlines.

Figure 43: Streamline geometry without texturing

99

Figure 44: Dashtubes with opacity-texture

When combined with an appropriate opacity texture, this leads to the
desired dashed appearance, with opaque dashes intermitted by empty
sections (Figure 44). Since animating the texture image itself is a
relatively time-consuming operation on most graphics hardware, we
just transform the texture coordinates along the direction of the tube.
In OpenGL this can be done by modifying the texture transform ma-
trix, which has the additional advantage that it works even when
more than one texture map is used. Animation is an essential part of
the method, since otherwise structural information visible in Figure
43 would be lost in the opacity-mapped representation (Figure 44).

Early tests showed that the animated texture produces annoying
visual artifacts at the ends of the dashtubes. The opaque segments
entering and leaving the surface of the extrusion exhibited an irri-
tating “blinking” behavior, comparable to the pulsation we had to
overcome in FROLIC. We treated this by reducing the radius of the
first and last cross-section of the dashtubes to null, thereby tapering
the extrusion at the ends (Figure 43 and Figure 44). This yields
smooth transitions at both ends, comparable to a "fade-in” effect.

100

12.5 Adaptive Texture-Mapping

As most texture mapping techniques, our method is prone to aliasing.
When the length of one dash in image-space is reduced to a single
pixel width or below annoying artifacts make the distinction of dashes
difficult. Even worse, the speed and direction of the visualized flow
becomes impossible to observe.

These effects appear when the viewpoint moves away from the tex-
ture-mapped tube or when the flow velocity is very low. In both cases
a large texture area is mapped to a small region of the screen.

Therefore we need a method to reduce aliasing while preserving the
essential properties of dashtubes: a high contrast texture moving
along the tube at the speed of the visualized flow which contains dis-
tinctive opaque and completely transparent sections. Furthermore the
maximum length of a dash and gap sequence must not be too big.
Otherwise the appearance of the dashtube as a line of moving parti-
cles would suffer. Long dashes, while giving a good impression of the
direction of the flow, occlude much of the scene farther away and re-
duce the impression of a volume flow. Ideally we want approximately
uniform spaced dashes in image space, independent of viewpoint and
flow velocity.

12.5.1 Mipmap Method

Most commonly the mipmap-method [Williams1983] is used to reduce
texture aliasing. Thereby the texture is filtered to consecutively lower
resolutions. A single texture is represented by a series of texture
maps with decreasing size and texture-frequency (Figure 45a). Since
this method does the filtering in a pre-processing step, the additional
expenses at runtime are relatively low making it the method used by
most real-time graphics hardware.

To apply mipmaps on dashtubes we have to alter the standard algo-
rithm of producing the reduced texture maps. Normally each sub-map
of a mipmap contains a filtered version of the level above, thereby
halving resolution and maximum frequency of the texture (Figure
45a) This clashes with our rejection of semi-transparent objects in
section 12.4: the contrast of lower resolution maps is reduced due to

101

filtering, which also produces semi-transparent areas. The flow veloc-
ity is preserved, but the dashes get shorter in areas with reduced ve-
locity or a more distant viewpoint.

So we have to produce sub-maps which do not exhibit this undesired
properties. Figure 45b shows an example how such maps could look
like: They posses the fractal property of having the same amount of
detail on every level.

Using such a mipmap produces the following effects: If the viewpoint
moves farther away, the texture (the dashes) shrink continuously in
length until a new mipmap level is reached, where the switch to a
coarser resolution is performed and the dashes again have a distin-
guishable length. Sections of dashtubes where the low flow velocity
would produce very short dashes are also mapped to coarser resolu-
tions and therefore exhibit longer dashes (Figure 46).

An 1important aspect of this approach is that only the contents of the
texture are switched, not the mapping of texture to object. This leads
to the intended effect when animating the texture: the velocity of the
texture along the tube directly corresponds to the flow velocity inde-
pendently of the length of the dashes.

e

Figure 45: Mipmap textures:

a) conventional filtering scheme

b) mipmap for adaptive texture mapping

102

1 el
i

W &5 27)))))mS

! , ’ }))))),»m.‘...

a)

Figure 46: dashtubes with (a) and without (b) mipmap-texturing

The main problem when using mipmaps for adaptive texture-mapping
arises from the small number of available mipmap levels: Since every
two-dimensional sub-map has exactly the double resolution of the
next lower level, the memory consumption exponentially rises with
the number of levels. Additionally the switch between one level and
the next leads to discontinuities in the texture appearance. Since the
textures move along the tubes these discontinuities are especially an-
noying when they appear along a single tube.

Most mipmap implementations - including the one used in OpenGL -
reduce the artifacts due to level switching by interpolating between
two adjacent sub-maps. We can not apply this method in our case
since this strongly reduces contrast because the interpolation is per-
formed between two essentially different maps, not between maps
only differing in the high-frequency components. Furthermore the
interpolation produces semi-transparent areas causing the already in
section 12.4 discussed problems when rendering into the z-buffer.

These problems occur since the transition between one level and the
next 1s relatively coarse. If we could reduce the difference between
level resolutions and increase the number of levels we would be able
to exactly specify how switches between longer (less) and shorter
(more) dashes are performed. The vast memory consumption of
mipmaps with a high number of levels denies us the trivial solution of
this problem, so we have to approach it differently.

103

In section 12.5.2 we show a different approach to adaptive texture-
mapping, which overcomes some of the problems mentioned above.

flow direction
A -

>

velocity

A

a) \

low |-

velocity
high |

Figure 48: Texture usage of texture-coordinate method

104

a)))))))))))m»)))))))))))
b J 3) IIWIM

Figure 49: dashtubes with (a) and without (b) adaptive texturing

12.5.2 Texture-Coordinate Method

If the flow velocity along a dashtube is falling as in Figure 47a, the
resulting texturing leads to short dashes in the low-velocity region of
the dashtube (Figure 47b, region C). This behavior violates our de-
mands from section 12.4, where we require the dashes to be distin-
guishable independently of flow velocity. Since these short dashes can
lead to undesirable aliasing artifacts, we would prefer longer dashes
in region C, which should still reflect flow velocity. If we want longer
dashes moving with the same speed as the shorter ones, we have to
somehow reduce the number of dashes travelling from region A to re-
gion C. A possible solution, which reduces annoying artifacts shows
region B in Figure 47c: every three dashes leaving region A get joined
to a single dash while moving through region B. The low-velocity part
(region C) of the dashtube contains one long dash in Figure 47c¢ for
every three short dashes in Figure 47b. When animated, this shows
three dashes leaving the high-velocity region A of the dashtube, which
reduce their gaps until they merge into one longer dash in the low-
velocity region C.

To implement this behavior using conventional (OpenGL) texture-
mapping hardware we have to alter the way we map a texture to the
geometry of the dashtube. In ordinary texture-mapping applications
two spatial texture coordinates are mapped onto the 2D surface of an
object. Since the rotationally-symmetric dashtubes represent essen-
tially 1D objects - the underlying streamlines - we only need one tex-

105

ture coordinate for the spatial mapping. We use the remaining tex-
ture coordinate to smoothly vary the dashes appearance.

Figure 48 shows a texture map, which maps velocity and time along
the dashtube onto opacity. For constant velocity horizontal rows of the
texture are mapped along the tube. Constant low velocity maps the
lowest row of the texture onto a short segment of the dashtube
(Figure 48c), whereas constant high velocity maps the uppermost row
of the map onto a long segment of the tube (Figure 48a). Changing
velocity along a segment samples the map along a slanted line (Figure
48b), thereby producing the effects depicted in Figure 47c¢, region B.

The merging dashes in the transitions exhibit slightly irritating arti-
facts when the gaps shrink to one pixel width. To reduce this effect,
we want to map the transitions only to short segments of the dashtu-
bes. Between this transition segments we allow the dashes to
lengthen or shorten a bit, without altering their number. This gives
the motion of the dashes a more uniform appearance.

The texture map in Figure 48 is designed to restrict the transition
segments (Figure 47c, section B) to small velocity ranges. In the areas
where the texture contains parallel, vertical stripes the sampled tex-
ture is independent of the velocity. Only when the sampling passes
into one of the branching areas of the map dashes are joined or split.

12.6 Streamline Placement

When using streamlines for flow-visualization, the quality of the re-
sult depends heavily on the placement of the streamlines. Even when
visualizing two dimensional flow fields a uniform distribution is de-
sirable, but when extending the flow visualization to three dimen-
sions the added complication of occlusions make an even placement
essential. The start- and endpoints of streamlines introduce distract-
ing artifacts into the visualization so we want to keep their number
small. Therefore we want to populate our flow volume with evenly
distributed streamlines of maximum length.

To accomplish this we extend the algorithm of Jobard and Lefer
[Jobard1997] to three dimensions: They place streamlines using only
local criteria. A new streamline can only be placed if the distance to

106

already existing streamlines does not fall below a certain minimum.
Since the speed of the algorithm depends mainly on this distance test,
certain techniques are applied to accelerate the test. Each streamline
1s approximated by a set of evenly spaced sample points. The distance
between two streamlines is defined as the minimal distance between
any of their sample points. This works reasonably well when the
sample points are always closer spaced than the minimum distance
between lines. A regular grid is used to reduce the set of points to be
tested to the ones in the immediate neighborhood of a new point. The
distribution of seedpoints depends on the desired density of the re-
sulting images. For densely placed streamlines the seedpoints are dis-
tributed randomly, while for sparsely placed streamlines the seed-
points are introduced near the sample points of existing streamlines.

The adaptation of this algorithm to our needs was quite straightfor-
ward. We extended the grid to three dimensions, making it necessary
to check now a maximum of 27 cells per distance test. Another tech-
nique presented in [Jobard1997], the agglomerative seedpoint place-
ment for sparse distributions mainly produce visually appealing re-
sults in 2D. In 3D, where streamlines can pass in front of each other
and their visual distance depends mainly on the viewpoint it produces
no distinctive advantage opposed to random startpoint placement.

For this reason we chose to distribute the seedpoints on a jittered
grid, a process which works faster than agglomerative seedpoint
placement and produces acceptable results. Since streamlines which
are short with respect to the dash length can produce irritating
“blinking” artifacts, we reject them as soon as they are introduced,
therefore allowing other streamlines to grow.

12.7 Focussing and Context

One of the main problems when visualizing 3D flow fields is finding
the correct information density. Too much information per volume
occludes features further away and too little information may hide
important details. When using streamlines for 3D-flow visualization,
the amount of information in a given volume is directly related to the
number of streamlines through it. To a lesser degree it also depends
on the number of sample points along the streamline. As described in

107

section 12.6 we place our streamlines approximately equidistant to
each other. Therefore density of the streamlines in the resulting im-
ages depends mainly on this user selected distance. Other factors con-
tributing to the general appearance are width of the streamline and -
in case of dashtubes - the length ratio of opaque to transparent sec-
tions.

When investigating a 3D flow we first try to get an overview of the
flow field. This includes investigation of global features, the identifi-
cation of areas of special interest, like vortices, separatrices, and cy-
cles. Then, when an interesting feature has been identified, we want
to single out this feature and investigate it. We want to view it in
great detail, without distractions or occlusions from other features.

In many practical cases, these two different goals are difficult to
achieve simultaneously. Therefore we tested techniques where we
first use the context of a coarse representation to identify interesting
regions. Then we use one of the mechanisms described in sections
12.7.1 and 12.7.2 to focus our attention on these regions and investi-
gate them with finer detail.

Magic lenses, as presented in [Bier1997] are transparent user inter-
face elements for conventional 2D windowing desktop environments.
They are represented by special windows, which do not display their
own independent content but rather change the representation of the
underlying information. They can be used for filtering or otherwise
modifying underlying image data but also for more abstract opera-
tions like showing additional information like comments. In
[Viegal1l996] magic lenses are used in virtual environments. This work
also deals with volumetric lenses, an extension of magic lenses in
three dimensions.

We use these interface elements to view a higher resolution repre-
sentation of the flow field. This representation contains more
streamlines per volume and the streamlines are thinner and gener-
ated with closer spaced vertices than the representation used for
coarse navigation. We found that both focussing techniques - lenses
and boxes - have specific advantages.

108

context

< o magic lens
viewpoint /] j

Figure 51: Focussing with a magic lens

109

12.7.1 Magic Lenses

A magic lens is a planar polygon with arbitrary boundaries (e.g., cir-
cle, square) which can be positioned with a 6DOF input device, nor-
mally a 3D mouse or tracked pen (Figure 51). When looking through
the lens, the user focuses on the high-resolution representation.

The main difference to 2D magic lenses is that our lens additionally
acts as a clipping plane, allowing only the parts of the high resolution
scene behind the lens to be seen. Without this clipping plane, the lens
would also display features of the detailed representation between
lens and viewpoint, resulting in the same occlusion problems as if the
entire detailed flow visualization were to be investigated. Together
with the current viewpoint a magic lens effectively defines a viewing
frustum with its near clipping plane lying in the plane of the lens and
its cross-section defined by the shape of the lens (Figure 50).

Working with the magic lens i1s easy and intuitive. The user posi-
tions it in front of interesting features and views them through it like
through a magnifying glass (Figure 51). The frame of the lens masks
the border between focus and context. While presenting an effective
and visually appealing investigation mechanism, magic lenses have
one distinctive disadvantage compared to magic boxes (section 12.7.2):
the focussed volume depends strongly not only on the position of the
lens but also on the viewpoint. This does not matter when a single
user 1s looking for a local feature. The user typically sweeps the lens
through space, positioning it and himself until the area of interest is
located. When this has been accomplished, the investigation tech-
nique normally changes: Now, that the detail has been located, it has
to be examined from different angles, a procedure for which magic
lenses are not well suited. The lens has to be dragged around the fea-
ture together with the changing viewpoint. This is a cumbersome pro-
cess, which may lead to accidental loss of the focus area and the con-
tained feature.

12.7.2 Magic Boxes

Magic Boxes - volumetric magic lenses - overcome the above men-
tioned disadvantages of viewpoint dependency. Instead of only im-

110

plicitly defining the focussed volume depending on the current view-
point (Figure 50), they explicitly define a volume of interest (Figure
52). In the interior of a magic box the detailed representation of the
flow is displayed.

The user positions the box with a 6DOF input device until it con-
tains the local feature (Figure 53). Then this feature may be viewed
from all directions. This i1s especially important when there are sev-
eral users viewing the same focus like in Studierstube. When using
magic lenses every user has to position his own lens according to his
position, or different users have to trade places when looking through
a single lens.

The border between focus and context is more noticeable when using
boxes instead of lenses, since it consists of the whole surface of the
box and cannot be masked by a frame like the image-aligned border of
the lens. On the other hand the confined volume of the box allows fo-
cussing in all three dimension, whereas magic lenses do not inher-
ently define a far plane of the focus. Additionally the box occludes fea-
tures of the context behind it, thereby reducing distraction.

context

<

viewpoint

Figure 52: Volume defined by magic box

111

Figure 54: Interaction using the PIP

12.8 Implementation

The visualization and investigation methods described above were
implemented in C++ using Open Inventor [Strauss1992]. This
OpenGL based graphics toolkit enabled us to efficiently realize our

112

methods providing high-level graphics concepts like a scene graph and
sophisticated desktop interaction elements, which we used in the
early phases of our tests. The main advantage when implementing
our methods was Open Inventors ability to supply these high-level
concepts while simultaneously enabling direct access to all OpenGL
functions. This was essential when manipulating rendering sequences
for magic lenses and magic boxes. Since our virtual environment
STUDIERSTUBE is also based on Open Inventor, the transfer from a
desktop evaluation-implementation to the application in our virtual
environment was straightforward. The following sections describe im-
plementation details of the techniques and their integration into our
virtual environment.

12.8.1Interaction in Studierstube

In our application we used the PIP to adjust parameters of the dy-
namical system which provided the flow field as well as properties of
the dashtubes and the magic box. The speed, length of dashes and
distance between dashes was adjustable with dials. Sliders on the PIP
adjust the overall size of the magic box and allow independent scaling
of one dimension of the box. This transforms the box to a ”slab”, al-
lowing the user to use it to cut slices of arbitrary width out of the flow
field. Buttons on the PIP were used to switch between magic lens and
magic box and to disable the coarse representation on demand.

113

Figure 55: Contraction artifacts due to torsion

12.8.2 Dashtubes

Dashtubes are realized as textured polygonal extrusions along the
direction of the flow. Ideally the cross-section of the extrusion should
be a circle to provide a symmetric appearance from all directions, but
we found that the polygonal approximation can be reduced down to 3
to 6 edges depending on the resolution of the display and the required
quality of the image. By using Gouraud shading the resulting discon-
tinuities of the approximation are only visible along the silhouette
edges. Coarse tesselations like these are prone to generating artifacts
when the geometry is twisted along the extrusion axis. The resulting
radial contractions lead to irritating variations in the width of the
dashtube (Figure 55). To avoid this, we generate the segments of the
extrusion not by following the Frenet-frame along the streamline. We
use a algorithm similar to [Bloomenthal1990], which reduces the tor-
sion by aligning the orientation of the polygonal cross-sections along
the segments.

The geometry of the dashtubes was implemented as Open Inventor
Shapekit, containing fields for the vertices of the extrusion axis, the
texture parameters and the geometric parameters of the cross-section.
The Shapekit produces OpenGL trianglestrips, which give a better
rendering performance than other OpenGL primitives. Rendering the
dashtubes with culled backfaces produces a “halfpipe” appearance at
both ends of the opaque segments as visible in Figure 49. Since this is
only evident in extreme close-up, we decided that the rendering
speedup justifies this artifact.

12.8.3 Magic Lenses

Magic lenses act as window from context to focus. Our implementa-
tion uses SEAMs [Schaufler1998], a mechanism to connect two virtual
worlds by "windows" of arbitrary geometry. Our magic lens has the
appearance of a magnifying glass, using a circular SEAM inside a
ring geometry providing the frame (Figure 51). According to the no-
menclature of [Schaufler1998], the context outside the lens would be

114

the "primary world” and the focus seen through the lens the ”secon-
dary world”. The geometry of both worlds is given as a directed acyclic
graph (scene graph). The scene graph of the context is traversed and
rendered. When a SEAM is encountered, the associated polygon - in
our case the ”"lens” - is passed to the rendering hardware for scan con-
version.

To restrict the rendering of the focus to the area covered by the
SEAM we use the OpenGL stencil buffer, an additional layer for
masking areas of the screen during rendering.

For all pixels that the z-test for the SEAM polygon finds to be visible:

e The frame buffer is set to the background color of the secondary
world (clear screen),

e the Z-buffer is set to infinity (clear Z-buffer),
e the mask (stencil buffer) is set to 1.

Note that these image modifications are only carried out for the visi-
ble portion of the SEAM surface. After this preparation step, render-
ing the focus i1s performed inside the stencil mask created in the pre-
vious step. This prevents that the focus is drawn outside the SEAM
area. A clipping plane coincident with the SEAM polygon prevents the
focus from protruding from the SEAM. Finally - before rendering of
the context proceeds - the SEAM polygon is rendered again, but only
the computed depth values are written into the z-buffer. Thereby the
SEAM i1s "sealed”. The resulting z-values are all smaller than any z-
value of the focus. This asserts that no geometric primitive of the con-
text located behind the SEAM will overwrite a pixel generated by
rendering the focus.

This gives the desired impression of a "window" behind which only
the focus is displayed (Figure 51).

12.8.4 Magic Boxes

We found that displaying only the contents of the magic box without
visual representation of its boundaries makes it difficult to locate and
position the box and tends to confuse the user. Therefore we added a
cube as geometric representation of the focussing volume. The front

115

faces of the cube are culled, leading to an “open front” appearance re-
gardless of the viewpoint.

Magic boxes are rendered using the same SEAM algorithm as de-
scribed above, but use a cube instead of a plane to define the "win-
dows” between focus and context. Six clipping planes coincident with
the faces of the cube clip the secondary world (the detailed represen-
tation). The main difference between magic boxes and the 3D win-
dows described in section 8.3.2 lies in their application, not their
structure: while the 3D windows contain a scene anchored to the win-
dow and independent from its position, the magic box represents a
moveable volume inside a scene anchored outside the box. Thereby
moving a window moves ist contents, while moving a box shows a new
section of space inside the scene. Since the scene inside the box nor-
mally corresponds in some way to the scene outside — in our applica-
tion it is simply a high-detail version of the same flow-field — the user
can navigate through the inner scene by using hints taken from the
outer scene. For example a vortex barely visible in the outer scene —
the coarser version of the flow-field — can be investigated in detail
when the magic box is moved over it.

Our implementation renders the complete scene (focus and context)
only once, while [Viegal996] needs six rendering passes, one for each
halfspace derived from a cube face. This leads to a significant im-
provement in the frame rate. Our method does not display any parts
of the context that lie behind the box, which for our application would
anyway only be distractive.

12.8.5 Results

Animated dashtubes produce an intuitive visualization of a 3D flow-
field. The main problem when applying our focussing techniques lies
in finding the correct density for focus and context. When testing
lenses and boxes with different densities of dashtubes in the focus we
found that magic boxes work better than lenses with densely placed
dashtubes. Since lenses do not clip distant parts of the detailed scene
they are only applicable to scenes of higher density when they are
rendered with strong depth cues (haze, fog).

116

Most users applied magic lenses without any problems, but needed
some experimentation to grasp the concept of volumetric magic boxes.

The method of slicing the flow field with ”"slabs” - magic boxes of
small height - as mentioned in section 12.8.1 was implemented after
users started to experiment with the distances of near and far clip-
ping plane of the view volume to achieve this "slicing" effect in a view
dependent manner.

When using magic boxes, most users applied the following tech-
nique: position coarse representation conveniently; position box until
interesting features visible; switch off coarse representation; magnify
box with included details for investigation

Since our application allowed independent positioning of focussing
element and flow field, some users preferred positioning the flow field
and keeping the box or lens stationary. During the design phase of the
dashtubes we used shutter glasses to produce stereoscopy. While this
works very well for the examination of the flow field, interaction with
magic lenses and magic boxes using the 2D desktop mouse is cumber-
some and non-intuitive compared to the interaction in the virtual en-
vironment.

The newly introduced adaptive texture mapping method shows that
texture hardware can be efficiently used to produce dashtubes with
uniform spatial resolution. The approach ensures that velocity varia-
tions are still encoded in the animation. Dashtubes are automatically
positioned in phase space to produce an even representation of the
underlying 3D flow.

Interactive tools like magic lenses and magic boxes proved to be
valuable in the investigation of local features. They enable the user to
interactively select finely detailed features and reduce distraction by
context. In our investigations 3D phase space contains spatially com-
plex structures, which are difficult to interpret. The added cues of a
virtual environment (e.g., stereoscopic viewing, interactive and intui-
tive viewpoint change) are quite helpful when inspecting these struc-
tures.

117

118

13 Results

This chapter consists of applications and results of the work described
in the preceding chapters.

The first section of this chapter describes the application of our basic
concept of performing scientific visualization in augmented reality. It
focuses on the visualization of dynamical systems. An evaluation of
our new interaction methods and visualization icons concludes this
section.

In the course of the development of our collaborative virtual envi-
ronment we soon realized that Studierstube presented more than a
tool for scientific visualization. Applications ranging from simple
demos to Computer Aided Design and cloth simulation have already
been implemented in Studierstube. These applications as well as a
general evaluation of the Workspace concept and collaborations with
other research facilities are presented in the second section of this
chapter.

13.1 Scientific Visualization in Studierstube

13.1.1 Visualization Applications

To study the performance of Studierstube as a collaborative visualiza-
tion tool, we chose dynamical systems as an application field.

AVS networks composed from DynSys3D modules were customized
to exploit AR capabilities, and usability was informally evaluated in
multiple sessions with a varying set of participants (researchers and
students in mathematics, visualization, and augmented reality).

In the following, we give some examples for the applications we have
investigated. All these examples immersed the user in the phase-
space of the dynamical system and allowed direct manipulation of po-
sition, orientation and scaling of the coordinate system.

119

RTorus

RTorus 1s a ‘synthetic’ system that demonstrates important common
properties of dynamical systems (Figure 56). Abraham and Shaw use
this model as an example to explain several fundamental flow proper-
ties [Abra92]. This dynamical system models a coupled oscillation
within three-space. Depending on the parameters of the model either
an attracting cycle within the x-y-plane or an attracting torus around
the z-axis appears.

Figure 56: RTorus on the PIP (two-handed interaction)

Rossler

As a rather well-known dynamical system we also investigated the
Rossler attractor in Studierstube (Figure 57). Rossler is also a three-
dimensional dynamical system that exhibits a chaotic attractor if pa-
rameters are set properly. Taking this familiar dynamical system for
analysis in Studierstube allowed us to easily compare visualization in
AR to established techniques.

120

[agnetic tracker

View from HMD1 _ & & Visualization:

Figure 57: Roessler Attractor in Studierstube

Ilustration of different viewpoints

Mixed-mode Oscillations

A model we investigated together with colleagues from our economet-
rics department is the 3D autocatalator [Milik1996, Petrov1992]. It is
a simple 3D dynamical system which exhibits mixed-mode oscilla-
tions. These are phenomena often encountered in real world systems,
for example in chemical systems. Depending on the parameters of this
system either periodic or quasiperiodic (chaotic) solutions can be
found. Direct immersion in the 3D phase space provided a useful tool
for the investigation of its behavior. Structure and relations of visu-
alization icons that are produced by the visualization system can be
better investigated through 3D interaction in augmented reality.

'<§ 'ﬁﬁ

121

~ Roessler Attractor

-

¢)

Figure 58: injecting a new streamsurface into MMO:
a) button down, old streamsurface still visible
b) drag inserts new seedline (red “rubberband”)

¢) button up: new geometry (streamsurface) appears

We used streamsurfaces started by direct manipulation (Figure 58) as
visualization icon and supplied the mathematician with direct access
to the system parameters via dials on the PIP. The visualization ex-
pert used his PIP to adjust the integrator stepsize, accuracy and
resolution of the streamsurface to optimize the resulting geometry.

Dynastic Cycle

This model deals with the visualization of the "Dynastic Cycle" , a
three-dimensional dynamical system, that was modeled as an expla-
nation for the rise and fall of dynasties in ancient China, given as al-
ternating periods of anarchy and despotism [Feichtinger1996]. The
three system variables X, Y , and Z express the amount of farmers,
bandits, and soldiers, respectively. The model defines their interac-
tions similarly to well-known food-chains (prey, predator, and super-
predator). The evolution induced by the Dynastic Cycle is governed by
slow-fast dynamics. Two of the system variables (X, Y) are fast vari-
ables that change rapidly in comparison to the last one (Z). The
knowledge about this slow-fast characteristics simplifies the analysis
and must be considered during visualization. Animating the length of
the streamline in the virtual environment proved to be an efficient
way of visualizing this behavior and was accomplished by simply in-
serting an animated float parameter - a standard feature of AVS - to
the dataflow network. Since this system exhibits vastly different be-
haviors, we used sliders on the PIP to adjust the most important pa-

122

rameters. By using these sliders and the insertion of animated
streamlines we were able to obtain the visualizations in figure 6.

b)

Figure 59: Changing system parameters using the PIP (dynastic cy-

cle: a) chaotic, b) periodic)

In addition to all interaction methods used in the mixed-mode oscilla-
tions example we allowed introduction of streamlines by all users.
Streamline parameters were again accessible via the PIP of the visu-
alization expert.

13.2Studierstube as a generic user interface

During our work Studierstube quickly grew from an environment
primarily planned for scientific visualization into something of an all-
purpose environment. In the following section we present applications
besides scientific visualizations which have been developed using the
Studierstube API (Application Programmer Interface).

13.2.1A sample Workspace session

This section gives a short overview of essential features of our
Studierstube Workspace implementation. We want to show how the
Workspace concept has been applied in our VE and how standard
tasks can be performed. Note that these examples only represent a
small aspect of possible situations and policies, and are presented
here as demonstration of features discussed before and as proof of
concept.

123

The user enters the Workspace by putting on the head- mounted
display (HMD) and picking up pen and PIP. Normally the PIP is held
along an edge using the non-dominant hand, similar to a painters
palette. The pen is held like a real pen and allows interaction on the
PIP in a familiar pen-and-clipboard manner as well as 3D interaction
with 6DOF. For some tasks users prefer to hold the pen like a wand
or an umbrella, which 1s made possible by the symetric arrangement
of buttons along the pens axis.

The PIP is the main mechanism for abstract interaction in the
Workspace, e.g. input of values and selection of abstract properties as
opposed to direct interaction like 3D dragging and pointing. It is not
only used as application input device displaying the input elements of
running applications but also as primary control device for the Work-
space. Directly accessible via short-cut corners (red and green tri-
angles in figures 5 & 6) are two special sheets which always available,
the system sheet and the application sheet.

The application sheet - selected via the green corner - functions as a
simple shell and enables the user to browse the filesystem and start
Studierstube applications or switch focus between running applica-
tions. This module has been implemented along the lines of the fa-
miliar “file open” dialog from desktop applications. Running applica-
tions are shown as icons and allow explicit focus changes (Figure 5).
Implicit focus change occurs when clicking into a non-focused window.

Figure 60: The application sheet (left) starts new applications and

switches between running applications. The system sheet
(right) can be used to control system and window state.

124

The system sheet (Figure 7, right) gives access to 3D window configu-
ration methods. A 3D window can be switched to a maximized, 3D, 2D
or minimized representation (described in section 8.6.2). Further op-
tions like display of title bar or opaque background are accessible too.
A window can be resized and positioned by dragging its frame or its
corners equivalent to 2D windows.

Focus changes are realized by a pen-click into the desired window,
which automatically switches to the associated input context (sheet)
on the users PIP.

13.2.2Workspace Applications

The following applications demonstrate the variety of tasks that can
be performed within the framework of our Workspace implementa-
tion. Large parts of the relevant interface appearance and behaviour
have been implemented using the predefined interaction classes, in
some cases even only by scripting inside the scene description files.

Calculator

The simplest application is this simulation of a desktop calculator
(figure). It has been written as a test program for 2D interaction ele-
ments and demonstrates nicely how the PIP is used for 2D interaction
with the “button” interaction elements. This application is frequently
used to instruct new Studierstube users on the usage of the PIP. All
visible geometry and most of the interaction behaviour has been de-
fined in an Open Inventor scene description file using simple scripting
in a text editor.

125

Figure 61:The calculator utility on the Personal Interaction Panel
makes intensive use of 3D button widgets. The flat surface
of the wooden panel gives good tactile feedback and pro-

vides natural support for 2D interaction in 3D

X-ray viewer

Almost as simple is this integration of the SEAM [Schaufler1998] in-
teraction element in a medical simulation. The SEAM acts as a magic
lens (see section 12.7.1), giving the user the ability to look under the
skin of a patient. Positioning of the lens is done by dragging its frame

over the patient, allowing a real-time cutaway view of skin and skele-
ton at the same time.

126

Figure 62: X-ray viewer - the pen becomes a lens-shaped tool to ex-

amine medical data

Since all the positioning is done by a “dragger” interaction element,
the application consists only of an initialization of body and skeleton
representation and the SEAM with its frame coupled to the dragger.

3D flow visualization

Here we implemented our geometry and texture based flow visualiza-
tion technique [Fuhrmannl998b] (see also chapter 12) in Studier-
stube. Parametrization of the simulation and the visualization was
done via the PIP. Additionally SEAMs were used as “magic lenses”
and “magic boxes” to navigate inside a sparse representation of the
3D flow and select areas where the flow should be depicted with high
detail.

Again all real-time interaction have been defined using the standard
interaction elements and only the application specific parts - simula-
tion, visualization and animation of the results - had to be imple-
mented.

Figure 63: Flow visualization using magic lens for focussing

127

Landscaping

In our landscaping application [Schmalstieg1999] we have integrated
a variety of interface elements and methods. It 1s a CAD-like ap-
plication specifically designed for the development of landscaping so-
lutions in suburban environments. Simple interactions like object
placement (houses, trees) are integrated as well as specialized meta-
phors like a cable TV tool that provides the user with X-ray vision
(Figure 9). The user can look under the surface of the landscape rep-
resenting an island (using wireframe rendering) and uses the pen to
lay wire and connect houses to a cable TV network.

Interesting here is the direct application of the PIP as 3D interaction
device: Sweeping the PIP like a fishnet through the scene (Figure 10)
selects all objects which were “caught” in the motion. Furthermore the
PIP can be used as a camera, taking virtual snapshots of different
states of the landscape and positioning them like notes somewhere in
the Workspace. This snapshot tool allows the user to manage a collec-
tion of scenes that are viewed from different perspectives and in dif-
ferent stages of development.

Figure 64: Using the PIP as “magic lens” to show hidden properties
of the landscape

128

Figure 65: Using the PIP as "fishnet” to select objects
(selected spheres with red frame)

Figure 66: Taking and displaying 3D "snapshots" using the PIP

3D painting application

The painting application (Figure 67) demonstrates how multi-user
application function inside Studierstube Workspace. Upon start-up, it
generates a single 3D window and PIP sheets for every user inside

129

the Workspace. The sheets contain sliders for colour selection and
brush size as well as buttons to select the brush type - spray or pen -
and to clean the blackboard.

Every user may select a colour and brush according to his needs,
which 1s displayed as “life size” icon on his PIP. Painting is done by
dragging a pen through the window. Depending on the selected brush
type, a stream of 3D “dots” - emulating a spray can - is generated.
Equipped with this simple interface, users are free to generate what-
ever three- dimensional pointilistic art they may have in mind.

Figure 67: 3D collaborative "painting" (Note second application win-
dow

with medical visualization in front)

The possibilities of multi-user collaborations appeared to most users
when they inadvertently entered each others paint volume and re-
sulted in impressive, if abstract works as well as in “paint fights”. In
this application the advantages of AR could clearly be observed: since
users could see each other as well as their creations, collisions of
painters or paintings could easily be avoided (or deliberately pro-
voked!) and collaboration on single paintings was enhanced by ges-
tures and discussions.

130

13.3 Scientific Collaborations

Studierstube has been part of the following collaborations with other
research institutions:

13.3.1 University of Graz: Hybrid Magnetic-Optical Tracking

University of Graz
Axel Pinz, Thomas Auer
http://www.crcg.edu/projects/virtual table.html

The commercial magnetic trackers we use in Studierstube have only
Iimited range and exhibit significant distortions and noise at dis-
tances greater 1.5 meters. As an remedy a second workgroup at the
university of Graz has constructed an augmented reality helmet that
integrates the magnetic sensor, a stereo camera pair and a see-
through display used for augmenting the room, similar to [Hoff1996]

The helmet in action is depicted in Figure 79. Using the helmet, a
hybrid system combining both magnetic and optical tracking has been
developed: The output from the magnetic tracker is used as an initial
estimate for the optical system. After the result from the optical sys-
tem has been obtained it is verified with the magnetic system by com-
puting the offset between the magnetic and the optical system. If the
offset 1s too large, the result from the optical system is not accepted
and we have to rely on the magnetic system alone, otherwise, the data
generated by the optical system are used. Further, if the optical result
1s accepted, we update the offset between the two systems, because
the offset depends on the current location of the helmet, but has only
small changes for small movements of the user. [State1996a].

131

camera

magnetic tracker

semi-transparent display

Figure 79: Helmet-Mounted display with attached cameras

13.3.2 CRCG Providence: Studierstube VT and Sketch
interface

Fraunhofer CRCG Providence, RI,
L.Miguel Encarnacao, Sean Chandler
http://www.crcg.edu/projects/virtual table.html

The adaptation of the Studierstube concept to a completely different
virtual environment has been performed by Dieter Schmalstieg in the
course of his work at the Fraunhofer CRCG [Schmalstieg1999]. Here
the display device is not a semi-transparent HMD but a virtual work-
bench [Kruger1994] (Figure 80). The implementation of the PIP has
been adapted for back-projection by using a transparent pad which
allows augmentation by looking through it onto the display surface (

Figure 81).

132

display surface - :
of the -—

virtual table\ - '

Figure 81: The transparent PIP in Studierstube/VT.

The SKETCH gesture interface has been adapted by the Fraunhofer
CRCG to recognize gestures performed on the PIP (Figure 82).

133

Figure 82: using gestures on the transparent PIP

Gesture-based interfaces offer an alternative to traditional keyboard,
menu, and direct manipulation interfaces. The ability to specify ob-
jects, an operation, and additional parameters with a single intuitive
gesture appeals to both novice and experienced users. Gesture-based
interfaces for platforms such as the BARCO table are desirable, as
they permit far more natural interaction than traditional mouse and
keyboard interfaces. Our system includes gesture recognition tech-
niques developed for SKETCH, a rapid virtual prototyping environ-
ment, developed at Brown University [Zeleznik1996]. In the early
stages of a design, often what is required is a rapid conceptual model
of the desired product.

SKETCH is designed to bridge the gap between hand sketches and
computer-based modeling programs, combining some of the features
of pencil-and-paper sketching and some of the features of CAD sys-
tems to provide a lightweight, gesture-based interface to “approxi-
mate" 3D polyhedral modeling. SKETCH uses a gestural mode of in-
put in which all operations are available directly in the 3D scene
through a three-button mouse or three-button stylus.

134

13.3.3 Universitiat Tiibingen: Niahstube

Universitat Tubingen,

Department Graphisch-Interaktive Systeme
Wilhelm Schickard Institut fur Informatik
Bernd Eberhardt

The Ndahstube (“sewing room”) is an ongoing project using Studier-
stube to interactively place and connect pieces of cloth over a tailor’s
dummy. Complex 3D-placement operations like this are only difficult
to achieve in desktop environments but are easily performed in an
environment where 6 degrees-of-freedom input devices and 3D head-
tracked viewpoints are implemented (Figure 83).

'J::

Figure 83: Placing simulated cloth over a virtual dressmakers

dummy

Generating realistic images of cloth with different fabrics such as
wool, cotton or silk is still a problem in garment design. The correct
fall of a towel or a skirt can only be observed when the material is
produced, the garment sewn and the result worn by a person. To re-
duce the design cycle we want to simulate this whole process with
computer graphics.

135

Figure 84: Draping simulated cloth over a sphere and a table

The simulation developed by Bernd Eberhardt uses particle systems
to simulate the fall of the cloth and obtain realistic draping behaviors.
This approach is more general than others and produces images much
faster than other implementations (Figure 84).

13.3.4 Fraunhofer IGD Darmstadt: ARCADE

Fraunhofer IGD A2 Darmstadt,

Department for Industrial Applications

Wilhelm Schickard Institut fir Informatik

André Stork, stork@igd.fhg.de
http://www.igd.thg.de/www/igd-a2/Projekte/Arcade/arcade e.html

ARCADE (Advanced Realism CAD Environment) - developed at
Fraunhofer IGD - is a 3D modeling system, that places natural inter-
action techniques (for instance 3D input for object creation) at the
user's disposal. During the whole construction process the objects are
displayed realistically using insights from the science of perception.
Moreover ARCADE provides visualization techniques which enable
the user to recognize the relative position of the objects in the design
space.

Traditional 3D-CAD-Systems are burdened by a discrepancy be-
tween the virtual three-dimensional design space and the two-
dimensional input and output devices. Often 3D interactions have to
be built from a sequence of two-dimensional actions. The presentation
of the 3D objects on the 2D display and the applied visualization

136

techniques render only a few depth and shape hints. These discrepan-
cies hamper the user's orientation, placement and navi-gation, so that
the advantages of 3D cannot be used entirely.

ARCADE offers the following new approaches, features and capabili-

ties:

Integration of 3D input and output devices
intuitive, direct manipulative 3D interaction techniques

high-quality presentation of design objects during construction
(Material, Texture, Lighting)

support of a distributed cooperative design process
interactively configurable graphical user interface

History Graph with pattern creation and powerful undo, redo and
copy features

intelligent walls as visualization of the dynamic, virtual design
space

transparent shadows
3D grid with snapping und alignment
interactive clipping-plane

interactive walk-through

Since the graphical input and output of ARCADE is already based on
Open Inventor, the integration into Studierstube was quite straight-
forward. Special interface techniques are still managed by ARCADE
directly, whereas the standard Studierstube input elements enrich the
user interface of ARCADE and transfer most of the 2D desktop inter-
face into the virtual environment.

137

14 Evaluation

This thesis has presented design guidelines and implementation
strategies for a collaborative user interface for scientific visualization
in augmented reality - the Studierstube Workspace. Below we evalu-
ate the results presented in chapter 13 in an informal user study con-
ducted during our work on the visualization of dynamical systems.

We show how our shared virtual environment solves the problems
stated in chapter 3 and which of the realized concepts we imple-
mented proved to be most valuable.

14.1 Studierstube Workspace

Concept and implementation of our design proved to be viable under
the requirements which we formulated in our problem statement in
chapter 3:

— Augmentation: The integration of the Personal Interaction Panel
and the tracked props and avatars we used for occlusion in chapter
10 were easily integrated into the environment. Precise calibration
as described in chapter 9 enabled the registration of virtual and
real geometry necessary for unhindered interaction.
The special interaction techniques as described in section 0 worked
as well on PIP as the 2D interaction elements (section 8.3.1).

— Collaboration: The direct visual contact between users and the

concept of a shared augmented environment resolved most of the
physical and logical collissions common to immersive or
distributed virtual environments.
The concept of Multi User Aware Applications (section 8.5) allowed
a sopphisticated treatment of general and application specific
collaboration techniques. The 3D Event System (section 8.6.1)
actively supports all mechanisms necessary to implement
collaboration on different levels of sophistication.

— Multi-application: Dynamically loading and wunloading of
Applications (section 8.6.5), the existence of a well-define
Application Programmer interface and synchronized output into
different 3D-windows (section 8.3.2) allows the concurrent use of

- 138 -

widely differing applications or multiple instances of the same
application (section 13.2.2).

— Sophisticated Visualization Techniques: As described in chapter
11 the integration of interaction and focussing techniques like
magic lenses and magic boxes as well as the implementation of a
newly developed visualization icon for flow visualization — the
dashtube — has been successfully applied in Studierstube. The
client-server principle explained in section 11.2 which integrated
Studierstube as an interaction frontend into a commercial
dataflow network visualization system has already been used in
different applications.

Multi-cpntext

CRYSTAL
............................ ,

CRYSTAL in the CAVE/
on Responsive V\orkbench

Studiestube @

o >
’ Multi-task

The Responsive
Workbench

“AWindow on
Shared Virtual
Environments*

NPSNET

Multi-user

Figure 85: Taxonomy of virtual environments (adapted from:
[Tsa01997])

In Figure 85 we contrast the scalability of several VR systems to
Workspace in terms of multi-user, multi-tasking and multi-data con-
text operation. The most important contribution of Workspace is that
it 1s scaleable in all three categories.

Studierstube 1s to our knowledge the only virtual environment today
which 1s able to support multiple concurrent applications (multi-task)
communicating with multiple users using multiple individual I/O con-
texts. This multiplicity of interaction paths gives a user a maximum of

- 139 -

flexibilty to work alone or collaborate with other users on different
tasks inside a shared environment.

We also introduced the notion of a multi-user aware application (or
MUA), which is able to deal with multiple concurrent users at once
without the need for monopolization of all system resources. The
workspace system is designed to supply a maximum of information
regarding users, contexts and environment to the MUAs if desired,
but also supports applications designed only to handle one user at a
time. This concept proved to be extremely helpful in some of our col-
laborative projects (chapter 13.3) where legacy code developed for a
more conventional form of single-user interaction had to be included.

Studierstube Workspace has proved to stand up against the de-
mands of a wide variety of applications (chapter 13). Many Work-
space-specific tasks like focus changes or application loading have
been implemented in a way which enables users to transfer skills ac-
quired in desktop environments into augmented reality. For example
the concept of a “3D window” — an enclosed section containing interac-
tion space for a single application — has been readily accepted by all
users familiar with 2D GUIs.

The application programmer interface has enabled programmers to
quickly integrate their code into the Workspace and supplement it
with both 6DOF interaction techniques and conventional 2D graphi-
cal user interface elements on the PIP. Since the decisions on a con-
sistent policy regarding multi- user applications can not be done at
this early stage, the implementation of MUAs still depends heavily on
explicit intervention on the application programmers side. The re-
sulting variations in applications policy regarding user interaction are
going to aid us in resolving this aspect for future versions of the
Workspace. On the other hand the missing global policy may lead to
an unneccesary proliferation of interaction conventions for identical
tasks, not unlike a similar phenomenon occuring under X-windows,
where only popular toolkits like MOTIF introduce some consistency.

- 140 -

14.2 Collaborative Scientific Visualization

By connecting the AR system Studierstube and the visualization sys-
tem DynSys3D we have initiated a synergistic effect: Researchers who
investigate dynamical systems profit from the intuitive interaction
techniques available for 3D phase space in Studierstube, and also
from the collaborative setting. From an AR researcher’s perspective,
the behavior and demands of “real” users (designers of dynamical sys-
tems) supported the development of Studierstube as a practical tool,
and also permitted us to verify that useful work can be done in such a
setup. We found that immersion into the virtual space provided by
Studierstube is enhanced by collaboration as it leads to increased ac-
ceptance of the presented virtual objects.

During our work of investigating the models created with DynSys3D
and Studierstube, we have made some encouraging observations in
the behavior of the involved users. Users were generally pleased with
the option of seeing abstract mathematical concepts such as phase
space representations, attractors etc. as concrete, stereoscopic visuali-
zations. They reported an increased understanding of the structures
compared to a screen based rendering as provided by standard AVS.
In particular they liked to walk around a visualization, look at it from
above and below and even stand in its middle. We also observed that
social behavior such as pointing to indicate an interesting feature to a
peer were frequently used to complement verbal discussion and users
gestured as if the visualizations were real objects.

Our users stressed that they were interested in both global features
of the dynamical system (such as its overall shape) and local features
such as attractors and therefore needed to shift their view with re-
spect to the presented visualization. Consequently, they constantly
used all available options for changing the perceived size of the repre-
sentation - a scale slider on the PIP, stepping back, and finally hold-
ing a smaller representation at arm’s length.

During the development of a dynamical system, a particular role be-
havior emerged relatively independent of the application and user
group. In the early stages of the dynamical system design re-
adjustments of the AVS/DynSys3D network are often necessary.
While some of the users remained immersed, the AVS expert fre-
quently sat down at the workstation to modify the AVS network.

- 141 -

Moving back and forth between immersed view and the screen-based
workplace was not perceived problematic because of the see-through
capability of the HMD. In many cases the AVS workstation was even
operated standing with the HMD on.

As the work progressed, all users tended to stay immersed and sim-
ple modifications were made from inside the VE using interface ele-
ments on the PIP. Users reported that they were pleased with the
rapid feedback for visualization mapping (e. g. the creation of a new
streamline takes 1-5 seconds) and the possibility to continue interac-
tive exploration while waiting for such feedback.

We also observed casual educational settings with one teacher and
multiple students. Frequently the “students” were researcher col-
leagues that happened to walk by and expressed interest in the on-
going visualization. These settings have a tendency to involve more
than two people and are a very strong argument for a collaborative
setting such as ours. The most severe limitations in these cases are
usually hardware-bound (rendering capacity, number of HMDs and
PIPs, floor space etc.)

While the low resolution of the HMDs was not found to be a signifi-
cant problem, users disliked the small viewing angle of the HMD,
registration errors and lag. They also criticized the absence of a posi-
tioning method equally precise to numerical specification of parame-
ter values in AVS dialog boxes. Nevertheless, the comments we re-
ceived were generally encouraging and sometimes even enthusiastic.

14.3 Unresolved problems

In this section we number special cases or problems which have been
encountered during our work and hitherto not been satisfactory
solved. We plan to concern our further research with these topics.

14.3.1 User Migration

An 1mportant aspect for a natural collaboration in the Workspace is
user migration into and out of the environment. It should be possible
for a user to completely leave the environment and for new users to

- 142 -

join it. Some applications (especially MUAs) may need to recognize
these changes. Not only has the user context to be established or re-
moved, the time when this happens may be crucial. The initial PIP
state of a user which joins an application may be considerably differ-
ent from the one at the start of this application. The necessary mes-
sage structure is going to be integrated in future releases of the mes-
sage manager (section 7.6).

14.3.2 Access Rights and Visibility Layers

User-dependent access rights for visibility and interaction make
sense 1n applications where an inherently asymmetrical relationship
exist, as discussed in the case study “educational demonstration”.

At the moment mutual exclusion mechanisms are only included as
means of lowest-level conflict resolvement. There exists no consistent,
global system mechanism to mark a window or PIP sheet as private
or to display data only for a selected subset of users.

Their implementation via different layers [Szalavari1998b] is al-
ready in the final implementation stage and is going to be included in
our next release.

14.3.3 Scalability

Most of the described results have been obtained using a single-
computer version of Studierstube. All graphic output has been ren-
dered on a single system: a SGI Indigo2 Maximum Impact with Multi-
Channel Option. To make our system really scalable — supporting an
arbitrary number of users — we need a mechanism which allows us to
distribute the Studierstube functionality over a cluster of computers.

Adding another user would then be possible on a modular basis. It
would only involve connecting another workstation/HMD/tracker unit
to the cluster.

We have already shown how this can be done on the lowest common
level by distributing the Open Inventor database synchronized over a
couple of computers [Hesinal999]. Figure 86 shows that only slight
changes to the concept in Figure 16 had to be made to accomplish

- 143 -

this. Essentially the Open Inventor internal notification mechanism
is used to notify the network layer from changes in the scenegraph
and to distribute these to other nodes of the cluster.

JAVA AVS
application op sockets
layer : pp: pp: pp:
Manager Mah-
ongg interface | | interface
3D window
system
resource
manager | 3D event handling snapping
device 1/0 Iaygc;rs

kernel

layer distributed Inventor

reliable multicast

HOUCOM, PAL Open Inventor
UDP, TCP
network graphics
hardware hardware

Figure 86: Distributed Studierstube architecture schematic

This solution of course distributes all changes to the scenegraph and
may lead to considerable network loads. An efficient distribution of
Studierstube would have to include a mechanism to distribute not
only graphic data but also parts of the applications like JAVA applets
to reduce the network load and the calculation load on the computer
acting as master.

- 144 -

15 Conclusion

The subject of this thesis is a shared virtual environment for scientific
visualization. We presented Studierstube, a multi-user environment
employing augmented reality — the composition of the real surround-
ings with computer generated images — to allow the tight cooperation
of users in a shared environment of completely virtual objects and
real objects enhanced by virtual augmentations.

Our goal was a collaborative work environment for scientific visual
visualization and other applications heavily utilizing complex three-
dimensional graphics and interaction techniques. The existing im-
plementation of the Studierstube concept has already proven our con-
cept to be applicable in many different areas including visualization
of dynamical systems, medical visualization, flow visualization, com-
puter aided design and in the development and testing of novel user
interface techniques.

While these results are encouraging, still much remains to be done.
The problems discussed in section 14.3 only constitute a small selec-
tion of the topics for future research which occured to us during our
work. Essentially they are of a purely technical nature and are with-
out doubt going to be solved. But other problems remain, some of
them of a technical nature too — tracking, prediction, frame rate — but
most of them stemming from the same root:

Virtual reality — though already about 25 years old — is still in its in-
fancy.

From the perspective of conventional graphical user interfaces vir-
tual reality is somewhere between the XEROX Dynabook and the first
Macintosh: Obviously a good concept, but still lacking the stable tech-
nical background and the solid foundation of inexpensive hardware
necessary to put it to widespread use.

Another good reason for continuing our work.

“To infinity — and beyond!”
Buzz Lightyear

145

16 References

[Abraham1992]

[Agrawalal997]

[Angus1995]

[AVS1992]

[Azuma1994]

[Azuma1997]

[Badler1993]

[Bajura1992]

[Bajura1995]

[Berger1997]

R. Abraham & C. Shaw: Dynamics - The Geometry of Behavior. Addison-
Wesley, 1992.

M. Agrawala, A. C. Beers, B. Frohlich, I. McDowall P. Hanrahan, and M.
Bolas. The Two-User Responsive Workbench: Support for Collaboration
Through Individual Views of a Shared Space. Proceedings SIGGRAPH
'97, pages 327-332, 1997.

I. Angus and H. Sowizral. Embedding the 2D Interaction Metaphor in a
Real 3D Virtual Environment. Proceedings SPIE, volume 2409, pages
282-293, 1995.

AVS Developers Guide - Release 4. Advanced Visualisation Systems Inc,
1992.

Azuma, R. and Gary Bishop, G. Improving Static and Dynamic
Registration in an Optical See-Through HMD. Proceedings of
SIGGRAPH '94, pp. 197-204, ACM Press, July 1994.

Ronald Azuma. A Survey of Augmented Reality. Presence, 6(4):355-385,
1997

Norman I. Badler, Michael J. Hollick and John Granieri. Real-time
control of a virtual human using minimal sensors. Presence 2 (1), 1993,
pp. 82-86.

M. Bajura, H. Fuchs, and R. Ohbuchi. Merging Virtual Objects with the
Real World: Seeing Ultrasound Imaginery within the Patient.
Proceedings of SIGGRAPH'92, (2):203-210, 1992.

Bajura, M., and Neumann, U. Dynamic Registration Correction in
Augmented-Reality Systems. VRAIS'95, 1995.

Berger, M. Resolving Occlusion In Augmented Reality: A Contour Based
Approach Without 3D Reconstruction. Proceedings of Conference on

Computer Vision and Pattern Recognition, IEEE, 1997, Poster Session 1.

146

[Bier1997]

[Billinghurst1997]

[Bloomenthal1990]

[Breen1996]

[Brooks1990]

[Bryson1991]

[Bryson1993a]

[Bryson1993b]

[Cabral1993]

[Carey1997]

[Carlsson1993]

E. Bier, M. Stone, and K. Pier. Enhanced illustration using magic lens
filters. IEEE Computer Graphics and Applications, 17(6), pages 62-70,
November/December 1997.

M. Billinghurst, S. Weghorst, and T. Furness III. Shared Space: An
Augmented Reality Approach for Computer Supported Collaborative
Work. Virtual Reality Research Development and Applications, 3(1):25-
36, 1997.

J. Bloomenthal. Calculation of Reference Frames Along a Space Curve.
Graphic Gems, pages 567-571. Academic Press, Cambridge, MA, 1990.

David E. Breen, Ross T. Whitaker, Eric Rose and Mihran Tuceryan.
Interactive Occlusion and Automatic Object Placement for Augmented
Reality. Computer Graphics Forum (Proceedings of
EUROGRAPHICS'96), 15(3):C11-C22, 1996.

F. Brooks Jr. et. al.: Project GROPE - Haptic Displays for Scientific
Visualisation. Proceedings of SIGGRAPH 90, pp 177-185, 1990.

S. Bryson and C. Levitt: The Virtual Wind Tunnel. Proceedings of IEEE
Visualization 91, 17-25, 1991.

S. Bryson: The Distributed Virtual Windtunnel. SIGGRAPH 93 Course
Notes 43, 3.1-3.10, 1993.

Bryson, S. Measurement and calibration of static distortion of position
data from 3D trackers. Virtual Reality for Visualisation (IEEE
Visualisation), pages 179-189, 1993.

B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings SIGGRAPH ’93, pages 263-272, 1993.

Rikk Carey, Gavin Bell: The Annotated Vrml 2.0 Reference Manual.
Addison-Wesley, 1997.

C. Carlsson, O. Hagsand: DIVE- A platform for multi- user virtual
environments. Computers & Graphics, Vol. 17, No. 6, pp. 663-669, 1993.

147

[Conner1992]

[Crawfis1993]

[Cruz-Neiral992]

[Cruz-Neiral993a]

[Cruz-Neira1993b]

[Roy1994]

[Dias1997]

[Dykstral993]

[Faugeras1993]

[Faure1998]

D. B. Conner, S.S. Snibbe, K. P. Herndon, D. C. Robbins, R. C. Zeleznik,
and A. van Dam. Three-Dimensional Widgets. Proc.SIGGRAPH
Symposium on Interactive 3D Graphics, 25(2):183-188, 1992.

R. Crawfis and N. Max. Texture splats for 3D scalar and vector field
visualization. In IEEE Visualization ‘93 Proceedings, pages 261-266.
IEEE Computer Society, October 1993.

C. Cruz-Neira et al. The CAVE: Audio Visual Experience Automatic
Virtual Environment. Communications of the ACM, 35(6):65,1992.

C. Cruz-Neira, D. Sandin, and T. DeFanti. Surround-Screen Projection-
Based Virtual Reality: The Design and Implementation of the CAVE.
Proceedings of SIGGRAPH'93, pages 135-142, 1993.

Cruz-Neira, C. et al. Scientists in Wonderland: A Report on
Visualization Applications in the CAVE Virtual Reality Environment.
IEEE 1993 Symposium on Research Frontiers in Virtual Reality.
Visualization ‘93. San Jose, CA, October 1993. pp. 59-66.

Roy, T., Cruz-Neira, C., and DeFanti, T.A. Cosmic Worm in the CAVE:
Steering a High Performance Computing Application from a Virtual
Environment. Special issue on Networks and Virtual Environments of

Presence: Teleoperators and Virtual Environments, 1994.

dJ. Dias, R. Galli, A. Almeida, C. Belo, J. Rebordao: mWorld: A Multiuser
3D Virtual Environment. IEEE Computer Graphics and Applications,
Vol. 17, No. 2, pp. 55-65, March-April 1997.

P. Dykstra: X11 in Virtual Environments: Combining Computer
Interaction Methodologies. Proceedings of IEEE Symposium on
Research Frontiers in Virtual Reality, pp. 118-119, 1993.

Faugeras, O.. Three-dimensional computer vision: a geometric

viewpoint. ISBN 0-262-06158-9, MIT Press, 1993.

Francois Faure. Interactive solid animation wusing linearized
displacement constraints. Proceedings of the Eurographics Workshop on

Animation and Simulation, 1998.

148

[Feichtinger1996]

[Feiner1990]

[Feiner1992]

[Feiner1993a]

[Feiner1993b]

[Fuhrmann1997]

[Fuhrmann1998a]

[Fuhrmann1998b]

[Fuhrmann1999]

[Gerald1993]

G. Feichtinger, G. Fischel, E. Groller, A. Prskawetz: Despotism and
Anarchy in Ancient China: Visualizing the Dynastic Cycle. Jahrbuch fur
Wirtschaftswissenschaften 47/1, publisher Vandenhoeck & Ruprecht,
Goettingen, Germany: 1-13, 1996.

S. Feiner and C. Beshers: Worlds Within Worlds: Metaphors for
Exploring N-Dimensional Virtual Worlds, Proceedings of ACM UIST '90,
pp. 76-83, 1990.

Feiner, S., Maclntyre, B., and Seligmann, D. Annotating the Real World
with Knowledge-Based Graphics on a See-Through Head-Mounted
Display. Proceedings of Graphics Interface’92, 78-85, 1992.

S. Feiner, B. MacIntyre, M. Haupt, and Solomon. Windows on the World:
2D Windows for 3D Augmented Reality. Proceedings of UIST'93, pages
145- 155, 1993.

S. Feiner, B. MacIntyre, D. Seligmann: Knowledge-Based Augmented
Reality. Communications of the ACM, Vol. 36, No. 7, pp. 53-62, 1993.

A. Fuhrmann, H. Loffelmann, D. Schmalstieg: Collaborative Augmented
Reality: Exploring Dynamical Systems. Proc. of IEEE Visualization
1997, pp. 459- 462, November 1997.

Anton Fuhrmann, Helwig Loffelmann, Dieter Schmalstieg, and Michael
Gervautz. Collaborative Visualization in Augmented Reality. IEEE
Computer Graphics and Applications, 18(4):54-59, July/August 1998.

A. Fuhrmann and E. Groller: Real-Time Techniques for 3D Flow
Visualization. Proc. of IEEE Visualization 1998, pp. 305-312, November
1998.

Fuhrmann, A., Hesina, G., Faure, F. and Gervautz, M: Occlusion in
Collaborative Augmented Environments. Proceedings 5th Eurographics
Workshop on Virtual Environments, ISBN 3-211-83347-1, pages 179-
190, Springer-Verlag, Wien, 1999.

M. Gerald-Yamasaki: Cooperative visualization of computational fluid

dynamics. Proceedings of Eurographics'93, pp. 497-508, 1993.

149

[Gettis1990]

[Gibbs1998]

[Hesina1999]

[Hoff1996]

[Interrante1997]

[Janin1993]

[Jobard1997]

[Kriiger1994]

[Kriiger1995]

J. Gettis, P. Carlton, S. McGregor: The X Window System, version 11.
Software Practice and Experience, 20(S2), October 1990.

S. Gibbs, C. Arapis, C. Breiteneder: TELEPORT - Towards immersive
copresence. ACM Multimedia Systems Journal, 1998.

G. Hesina, D. Schmalstieg, A. Fuhrmann, W. Purgathofer: Distributed
Open Inventor: A Practical Approach to Distributed 3D Graphics To

appear in: Proceedings of ACM Virtual Reality Software & Technology
'99 (VRST'99), London, December 20-22, 1999.

W. A. Hoff, T. Lyon, and K. Nguyen, Computer Vision-Based
Registration Techniques for Augmented Reality, Proc. of Intelligent
Robots and Computer Vision XV, Vol. 2904, in Intelligent Systems &
Advanced Manufacturing, SPIE, Boston, Massachusetts, Nov. 19-21, pp.
538-548, 1996.

V. Interrante and Ch. Grosch. Strategies for effectively visualizing 3D
flow with volume LIC. In Proceedings of Visualization 97, pages 421—
424, 1997.

Janin, A., Mizell, D. and Caudell, T. Calibration of head-mounted
displays for augmented reality applications. Proceedings of the Virtual
Reality Annual International Symposium (VRAIS '93), pages 246-255,
September 1993.

B. Jobard and W. Lefer. Creating evenly spaced streamlines of arbitrary
density. In Wilfrid Lefer and Michel Grave, editors, Visualization in
Scientific Computing, pages 43—55. Springer-Wien-NewYork, 1997.

W. Krueger and B. Froehlich Visualization Blackboard: The Responsive
Workbench (virtual work environment) IEEE Computer Graphics and
Applications, 14(3), pp. 12-15, May 1994.

Kriiger W., C. Bohn, B. Frohlich, H. Schuth, W. Strauss, and G. Wesche.
The Responsive Workbench: A Virtual Work Environment. IEEE
Computer, 28(7):42-48, 1995.

150

[Kuhl1995]

[Kutulakos1998]

[Lehner1997]

[Loffelmann1997a]

[Loffelmann1997b]

[Loffelmann1997c¢]

[Loffelmann1997d]

[Macedonial994]

[Marcal992]

J. Kuhl, D. Evans, Y. Papelis, R. Romano, and G. Watson. The Iowa
Driving Simulator: An Immersive Research Environment. IEEE
Computer, 28(7): pp. 35-42, 1995.

Kutulakos, K. and Vallino, J. Calibration-Free Augmented Reality.
IEEE Transactions on Visualization and CG, 4(1), pp. 1-20, January
1998.

V. Lehner, T. DeFanti: Distributed VR: Supporting Remote
Collaboration in Vehicle Design. IEEE Computer Graphics and
Applications, Vol. 17, No. 2, pp. 13-17, March-April 1997.

H. Loffelmann, E. Groller: DynSys3D: A workbench for developing
advanced visualization techniques in the field of three-dimensional
dynamical systems. WSCG 97, Plzen, Czech Republic, 301-310, 1997.

H. Loffelmann, L. Mroz, E. Groller: Hierarchical Streamarrows for the
Visualization of Dynamical Systems. To appear in: Proc. of the 8t

Eurographics Workshop on Vis. in Sci. Computing, April 1997

H. Loffelmann, E. Groller: Visualizing Poincaré Maps together with the
underlying flow. ftp:// ftp.cg.tuwien.ac.at/pub/TR/97/TR-186-2-97-
06Paper.ps.gz

H. Loffelmann, L. Mroz, E. Groller, W. Purgathofer. Stream Arrows:
Enhancing the Use of Stream Surfaces for the Visualization of
Dynamical Systems. Visual Computer, Springer, Vol. 13(8), pages. 359-
369, 1997.

M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz.
NPSNET: A Network Software Architecture for Large-Scale Virtual
Environment. Presence, 3(4):265-287, 1994.

D. Marca, G. Bock: Groupware: Software for computer-supported

cooperative work. IEEE Computer Society Press, 1992.

[Max94] N. Max, R. Crawfis, and Ch. Grant. Visualizing 3D velocity fields near contour

surfaces. In IEEE Visualization ‘94 Proceedings, pages 248-255. IEEE
Computer Society, October 1994.

151

[McReynolds1998]

[Milik1996]

[Obeysekare1996]

[Oishi1995]

[Pang1997]

[Pausch1992]

[Pausch1993]

[Petrov1992]

[Post1993]

[Press1988]

Tom McReynolds, David Blythe, Brad Grantham, and Scott Nelson.
Advanced Graphics Programming Techniques Using OpenGL.
SIGGRAPH 98 Course notes

Milik: Dynamics of Mixed-mode Oscillations. PhD thesis, Vienna U. of
Technology, Austria, 1996.

U. Obeysekare et al.: Virtual Workbench - A Non-ImmersiveVirtual
Environment for Visualizing and Interacting with 3D Objects for
Scientific Visualization. Proceedings of Visualization 96, pp. 345-350,
1996.

Oishi T. and S. Tachi, S. Methods to Calibrate Projection
Transformation Parameters for See-Through Head-Mounted Displays.
Presence, 5(1), pp. 122-135, 1995.

A. Pang, C. Wittenbrink: Collaborative Visualization with CSpray. IEEE
Computer Graphics & Applications, 32-41, March-April 1997.

Pausch, R., Crea, T., and Conway, M. A Literature Survey for Virtual
Environments: Military Flight Simulator Visual Systems and Simulator
Sickness. Presence: Teleoperators and Virtual Environments 1, 3
(Summer 1992), 344-363.

R. Pausch, T. Burnette, M. Conway, R. DeLine, R. Gossweiler: Alice: A
Rapid Prototyping System For Virtual Reality. UIST'93 (1993)

V. Petrov, S. Scott, K. Showalter: Mixed-mode oscillations in chemical
systems. Journal of Chemical Physics, Vol. 97, No. 9, pp. 6191-6198,
1992.

F. H. Post and T. van Walsum. Fluid flow visualization. In H. Hagen, H.
Miller, and G. M. Nielson, editors, Focus on Scientific Visualization,

pages 1-40. Springer, 1993.

Press, W., Flannery, B., Teukolsky, S., and Vetterling, W.. Numerical
Recipes in C. Cambridge University Press, 1988.

152

[Raskar1998]

[Robertson1989]

[Schaufler1998]

[Schmalstieg1998]

[Schmalstieg1999]

[Schroeder1996]

[Shaw1993]

[Smith1983]

[Sowizral1998]

Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin and
Henry Fuchs. The Office of the Future: A Unified Approach to Image-
Based Modeling and Spatially Immersive Displays. SIGGRAPH 98
Conference Proceedings, Annual Conference Series, pp. 179-188,
Addison Wesley, July 1998.

G. Robertson, S. Card, and J. Mackinlay. The Cognitive Coprocessor
Architecture for Interactive User Interfaces. Procedings of ACM CHI'89,
pages 10-18, 1989.

G. Schaufler and D. Schmalstieg. Sewing Worlds Together With SEAMS.
Technical Report TR-186-2- 98-11, Institute of Computer Graphics 186-
2, Technical University of Vienna, Vienna, Austria, August 1998.

D. Schmalstieg, A. Fuhrmann, Z. Szalavari, M. Gervautz: Studierstube -
An Environment for Collaboration in Augmented Reality Extended
abstract appeared in proceedings of Collaborative Virtual Environments
'96, Nottingham, UK, Sep. 19-20, 1996. Full paper in: Virtual Reality -
Systems, Development and Applications, Vol. 3, No. 1, pp. 37-49, 1998.

D. Schmalstieg, M.Encarnacgao, Zs. Szalavari: Using Transparent Props
For Interaction With The Virtual Table. To appear in: Proceedings of
SIGGRAPH Symposium on Interactive 3D Graphics '99, Atlanta, GI,
April 26-28, 1999.

W. Schroeder, K. Martin, B. Lorensen: The visualization toolkit: an
object-oriented approach to 3D graphics. Prentice Hall, Inc., ISBN 0-13-
199837-4, 1996.

A. Shaw, M. Green, J. Liang, and Y. Sun: Decoupled simulation in
virtual reality with the MR toolkit. ACM Transactions on Information
Systems, Vol. 11, No. 3, pp. 287-317, 1993.

D. Smith, C. Irby, R. Kimbrall, W. Verplank, E. Harslem: Designing the
Star user interface. BYTE, pp. 254-258, April 1983.

Henry A. Sowizral, Kevin Rushforth, Michael Deering: The Java 3D
Specification. Addison-Wesley, 1998.

153

[Stalling1995]

[State1996a]

[State1996b]

[Strauss1992]

[Szalavaril997]

[Szalavari1998a]

[Szalavari1998b]

[Taylor1993]

[Tsa11986]

[Tsa01997]

D. Stalling and H.Ch. Hege. Fast and resolution independent line
integral convolution. In Robert Cook, editor, Computer Graphics
(SIGGRAPH 1995 Proceedings), pages 249-256, August 1995.

Andrei State, Gentaro Hirota, David T. Chen, William F. Garrett, and
Mark A. Livingston. Superior Augmented-Reality Registration by
Integrating Landmark Tracking and Magnetic Tracking. Proceedings of
SIGGRAPH 96, Annual Conference Series 1996, ACM SIGGRAPH, pp.
429-438.

Andrei State, Mark A. Livingston, Gentaro Hirota, William F. Garrett,
Mary C. Whitton, Henry Fuchs, and Etta D. Pisano (MD). Technologies
for Augmented-Reality Systems: realizing Ultrasound-Guided Needle
Biopsies. Proceedings of SIGGRAPH 96, Annual Conference Series 1996,
ACM SIGGRAPH, pp. 439-446.

P. Strauss and R. Carey. An Object Oriented 3D Graphics Toolkit.
Proceedings of SIGGRAPH'92, (2):341-347, 1992.

7. Szalavari., M. Gervautz: The Personal Interaction Panel - A Two-
handed Interface for Augmented Reality. Proc. EUROGRAPHICS 97,
Budapest, Hungary, pp. 335-346, 1997.

Szalavari, Z., Schmalstieg, D., Fuhrmann, A., Gervautz, M. Studierstube
- An Environment for Collaboration in Augmented Reality, Virtual

Reality: Research, Development & Applications, 1998

Z. Szalavari., E. Eckstein and M. Gervautz: Collaborative Gaming in
Augmented Reality. Proc. of VRST'98, Taipei, Taiwan, pp.195-204,
November 2-5, 1998.

R. Taylor et. al.: The Nanomanipulator: A Virtual Reality Interface for a
Scanning Tunneling Microscope. Proceedings of SIGGRAPH 93, pp. 127-
134, 1993.

Tsai, R.. An efficient and accurate camera calibration technique for 3D
machine vision. Proceedings CVPR '86, pages 364-374, IEEE, June 1986.

J. Tsao and Ch. J. Lumsden. CRYSTAL: Building Multicontext Virtual
Environments. Presence, 6(1):57-72, 1997.

154

[Tuceryan1995]

[Turk1996]

[Viega1996]

[Waldrop 1995]

[Ward1992]

[Waters1997]

[Wegenkittl1997a]

[Wegenkittl1997b]

[Whitaker1995]

Tuceryan, M., Greer, D., Whitaker, R., Breen, D., Crampton, C., Rose, E.,
and Ahlers, K. Calibration Requirements and Procedures for
Augmented Reality, IEEE Trans. on Visualization and Computer
Graphics, September 1995.

G. Turk and D. Banks. Image-guided streamline placement. In
Proceedings SIGGRAPH 1996, pages 453—-459, 1996.

J. Viega, M.J. Conway, G. Williams, and R. Pausch. 3D magic lenses. In
ACM UIST’96 Proceedings, pages 51-58. ACM, 1996.

M. Waldrop, Marianne S., Pratt, Shirley M., Pratt, David R., McGhee,
Robert B., Falby, John S. and Zyda, Michael J. Real-time Upper Body
Articulation of Humans in a Networked Interactive Virtual
Environment. Proceedings of the First ACM Workshop on Simulation
and Interaction in Virtual Environments, University of Iowa, 13 - 15
July 1995, pp. 210-214.

Mark Ward, Ronald Azuma, Robert Bennett, Stefan Gottschalk, Henry
Fuchs. A Demonstrated Optical Tracker with Scalable Work Area for
Head-Mounted Display Systems. Proceedings of 1992 Symposium on
Interactive 3D Graphics (Cambridge, Mass., March 29 - April 1 1992),
43-52

R. Waters, D. Anderson, J. Barrus, D. Brogan, M. Casey, S. McKeown, T.
Nitta, I. Sterns, and W. Yerazunis. Diamond Park and Spline: Social
Virtual Reality with 3D Animation, Spoken Interaction and Runtime
Extendability. Presence, 6(4):461-481, 1997.

R. Wegenkittl and E. Groller. Fast oriented line integral convolution for
vector field visualization via the internet. In IEEE Visualization 97
Proceedings, pages 309-316. IEEE Computer Society, October 1997.

R. Wegenkittl, E. Groller, W. Purgathofer, Animating Flowfields:
Rendering of Oriented Line Integral Convolution, Computer Animation
'97, pages 15-21, IEEE Computer Society, June 1997.

Whitaker, R., Crampton, C., Breen, D., Tuceryan, M., and Rose, E.
Object Calibration for Augmented Reality. Proc. EUROGRAPHICS'95,
pp. 15-27, 1995.

155

[Wijk1993]

[Williams1983]

[Wlokal1995]

[Wo001997]

[Wo0d1997]

[Zeleznik1996]

dJ. J. van Wijk. Flow visualization with surface particles. IEEE Computer
Graphics & Applications, 13(4):18-24, July 1993.

L. Williams. Pyramidal parametrics, Computer Graphics (SIGGRAPH
1983 Proceedings), 17(3), pages 1-11, July 1983.

Matthias M. Wloka and Brian G. Anderson. Resolving Occlusion in
Augmented Reality. Proceedings of Symposium on Interactive 3D
Graphics, ACM SIGGRAPH, 1995, pp. 5-12.

Mason Woo (Contributor), dJackie Neider, Tom Davis, OpenGL
Architecture Review board, "OpenGL Programming Guide : The Official
Guide to Learning OpenGL, Version 1.1", 2nd edition (January 1997),
Addison-Wesley Pub Co; ISBN:201461382

J. Wood, H. Wright and K. Brodlie: Collaborative Visualization: Proc. of
IEEE Visualization, 253-259, 1997.

Zeleznik, R.C., Herndon, K., Hughes, J.: Sketch: An Interface for
Sketching 3D Scenes, Proceedings of SIGGRAPH'96, 163-170.

156

