
Real-Time Techniques for 3D Flow Visualization

Anton Fuhrmann and Eduard Gr¨oller

Institute of Computer Graphics, Vienna University of Technology�

Abstract

Visualization of three dimensional flow has to overcome a lot of
problems to be effective. Among them are occlusion of distant
details, lack of directional and depth hints and cluttering. In this
paper we present methods which address these problems for real-
time graphic representations applicable in virtual environments. We
use animated, opacity-mapped streamlines as visualization icon for
3D flow visualization. We present a texture mapping technique to
keep the level of texture detail along a streamline nearly constant
even when the velocity of the flow varies considerably. An algo-
rithm is described which distributes the dashtubes evenly in space.
We apply magic lenses and magic boxes as interaction techniques
for investigating densly filled areas without overwhelming the ob-
server with visual detail. Implementation details of these methods
and their integration in our virtual environment conclude the paper.

CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation - Viewing Algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques - Interaction Tech-
niques.

1 Introduction and Motivation

Many visualization techniques for two dimensional flows have al-
ready been investigated in detail [10]. Visualization of 3D flow
phenomena, however, tend to produce complex images with often
heavily overlapping geometry. Occlusion, ambiguities in depth and
orientation of flow strain the viewers abilities to interpret the visu-
alized data.

The main point of this paper is to show how realtime graphics in
a virtual environment can be used to overcome some of this prob-
lems. Stereo cues, interactive and intuitive changes of the viewpoint
and the feeling of immersion allow users to get a better impression
of the structure of the 3D flow in an virtual environment than on a
desktop system.

We present selected visualization and interaction techniques
which in combination enable the user to rapidly explore complex
3D vector fields.

Fast texture-based visualization techniques which utilize the
graphics hardware to get realtime performance are applied to
streamlines. A new parametrization scheme allows a direct map-
ping of a wide range of flow velocity to texture velocity without
loss of detail. These techniques together with interactive 3D fo-
cussing enable the user to quickly identify and explore areas of
interest. The focussed volume is selected with magic lenses and
magic boxes which also use mainly hardware accelerated features.
Animation is realized in the texture-coordinate domain with moving
opacity maps. This reduces occlusion and cluttering by simulating
particle traces. An automatic streamline placement algorithm is ex-
tended into the third dimension to generate an even distribution of
streamlines in the virtual environment.

�Institute of Computer Graphics, Vienna University of Technol-
ogy, Karlsplatz 13/186/2, A-1040 Vienna, Austria email:ffuhrmann,
groellerg@cg.tuwien.ac.at

2 Related Work

Several techniques for the visualization of 2D and 3D flows inspired
this work. Some examples of texture based techniques for the visu-
alization of 2D flows are [4], [19], [13].

FROLIC [21] is a variation of LIC (Line Integral Convolution)
[4]. LIC uses sparse textures and an asymmetric convolution kernel
to encode the orientation of the flow in still images. Costly convolu-
tion operations as done in LIC are replaced in FROLIC by approx-
imating a streamlet through a set of disks with varying intensity.
The visualization icons we call dashtubes - basically streamlines
with animated opacity (section 3) - apply similar techniques to 3D
flows.

Interrante et. al. [7] use LIC for 3D flow volumes. Halos around
streamlets offer additional depth and ordering cues. The high cost
of volume rendering, however, precludes an interactive exploration.

Texture splats as discussed in [5] encode direction and orienta-
tion of 3D flows. Fast splatting operations are realized with hard-
ware supported texture mapping. Animated texture splatsillustrate
the flow dynamics. While these techniques produce otstanding re-
sults, they are not easily applicable for realtime applications.

Max et. al. [9] presented various techniques for visualizing 3D
flows close to contour surfaces. Motion-blurred particles are gen-
erated in the vicinity of the surfaces. Particles are started automat-
ically on a lattice. Generation and deletion of particles is density
based. Line bundles are realized as texture splats with antialiased
lines as texture. Hairs are 3D particle traces originating at the sur-
face. Additional information is encoded in the color, length and
transparency of these hairs.

Streamline placement is an important task to achieve an
approximately uniform coverage of phase space. An image-guided
streamline placement has been presented in [18]. Another approach
[8] for creating evenly-spaced streamlines uses a regular grid with
lists of passing streamlines to determine whether there is space for
the placement of another streamline. With queues of streamline
vertices possible seedpoints for new streamlines are administered.
Tapering of streamline widths produce hand-drawing effects.
Directional glyphsillustrate flow orientation. A 3D variation of the
streamline placement in [8] was used in our approach (see section
3).

3 Dashtubes: Streamlines with Animated
Opacity

Streamlines are an intuitive way of visualizing flow. Their applica-
bility in space however is limited, since they do not provide the vi-
sual cues needed. Normally, lines are rendered with the same width
for all distances so they lack perspective distortion, a significant cue
for judging distance.

Additional techniques like halos [7] are necessary to resolve the
ambiguities of overlapping lines. When visualizing flow, stream-
lines need to be enhanced to convey the direction of the flow. This
can be done by directional color variations or by placing icons along
the streamline as shown in [8]. Texture based techniques like LIC
can be modified to include directional variations as we have shown



Figure 1: Dashtubes: opacity mapped streamlines

in [21]. A more direct approach however is the visualization of
flow by animation. In the 2D case we use FROLIC combined with
lookup-table animation to do this in realtime. Bryson [3] has suc-
cesfully used streaklines - 2D particles moving along the vector
field - in the virtual windtunnel to animate flow in space. This tech-
nique depends on continually updating the position of all particles
with every animation step, leading to a considerable consumption
of processing power. Like FROLIC we would like to use the graph-
ics hardware - which anyway has to update the image continuously
when rendering for a virtual environment - to do the animation,
leaving the CPU time for simulation and interaction.

Dashtubes meet the mentioned requirements. To avoid the oc-
clusion of distant parts of the visualization by closer features and
to generate the desired effect of particles moving along the dash-
tube we render it partially invisible. This is done by using an opac-
ity texture which includes transparency information for the render-
ing hardware. Since transparency does not work well in combina-
tion with z-buffered visibility resolution, we only map completely
opaque or complete transparent values to the geometry. Thereby
we avoid artifacts produced by the order in which we render dif-
ferent parts of the scene. We supply the dashtubes with texture co-
ordinates as time parametrization of the integration along the flow.
When combined with an appropriate opacity texture, this leads to
the desired dashed appearance, with opaque dashes intermitted by
empty sections (figure 1). Since animating the texture image itself
is a relatively time-expensive operation on most graphics hardware,
we just transform the texture coordinates along the direction of the
tube. In GL this can be done by modifying the texture-transform
matrix, which has the additional advantage that it works even when
more than one texture map is used. Animation is an essential part of
the method, since otherwise structural information visible in (figure
2) would be lost in the opacity mapped representation in (figure 1).

4 Adaptive Texture-Mapping

When the flow covers a wide range of velocities, the texture reso-
lution along the dashtube suffers. In sections of the tube where the
velocity is high, long streaks of transparency convey no information
and in sections where the velocity is extremely low, subpixel dashes
lead to aliasing. In (figure 3) we show to dashtubes. Tube (a) uses
adaptive texture mapping, tube (b) is non-adaptive textured. Since
the flow velocity rises from left to right, the dashes of (b) quickly
become unrecognizable and produce aliasing effects. In the mid-
dle of tube (a) our parametrization unites three short dashes to one
long one, thereby reducing texture frequency while preserving the
representation of flow velocity as texture speed. The transition is

Figure 2: streamlines without opacity texture

a

b

Figure 3: dashtubes with (a) and without (b) adaptive texturing

smoothly animated and produces a minimum of artifacts.
Below we describe two different approaches how this behavior

can be implemented.

4.1 Mipmap Method

Aliasing artifacts can easily be reduced by using mipmaps [22],
which are implemented in GL texture hardware. By specifying
maps which convey an equal amount of visual detail on every level
(figure 4) we can assure that the texture is visible independently of
the parametrization. With this method it is not necessary to inte-
grate all details in every level. High-resolution parts of the mipmap
used when the parametrization is stretched do not have to contain
the low-frequency components of lower-resolution maps, which are
necessary to generate detail in densely parametrized sections of the
tube. Such a map (figure 5) can be used to automatically switch tex-
tures when their projection to the screen would result in unpractical
magnifications.

To reduce discontinuities when switching from one level of the
mipmap to the next, GL implements continuous blending of levels.
Such continous blending of opaque and transparent sections leads to
semi-transparent parts on the tube, resulting in exactly the same z-
buffer artifacts as stated in section 3. For opacity-mapped dashtubes
we therefore have to use another technique or use the discrete (non-
blending) mode of level switching, which produces considerable
artifacts.

4.2 Texture-Coordinate Method

Switching between mipmap levels is done automatically in GL,
based on the resolution of the texture map when projected to screen.
With the method mentioned above we use this to automatically
blend to a lower resolution texture when a sparse parametrization
of the dashtube would lead to extremely elongated dashes. For our
opacity-mapped tubes we need a method which implements a con-



Figure 4: conventional use of mipmaps

Figure 5: mipmaps for adaptive texturing

tinuous transition of dashwidth depending on parametrization den-
sity.

When using mipmaps, the different levels effectively add another
dimension to the texture space, which can be used for this tran-
sition. This dimension is very coarse quantisized (10 levels for a
1024x1024 texture), therefore we need another approach to imple-
ment a smooth transition.

Since we are using an essentially onedimensional texture,
mapped symmetrically around the tube, we can use the second,
unused texture coordinate (v) to provide the transition dimension
needed. By mapping level switches on this coordinate as shown in
(figure 6a), we are able to apply onedimensional sections (figure
6b) of a 2D texture map (figure 7a) on the streamtube. The respec-
tive sections are shown in (6c), mapped onto a tube with nonlinear
parametrization. Without adaptive mapping the tube looks like (6d).
The velocity of the flow rises from left to right (6e). The mapping
of u-texture coordinates to the tube is such that it yields a contin-
uous transition from three short dashes to one long dash. When
animating this texture the three short dashes slowly merge to one
longer dash. By using a function like in (figure (6a), we restrict this
behavior to short sections (figure (6: between points A and B) be-
tween longer tubes, where the dashwidth is constant. Additionally
we can apply a hysteresis, switching between different dash-levels
only when a reasonable change in velocity over a longer distance on
the line is detected. This assures a sparse occurence of this transi-
tions, which otherwise could lead to distracting behavior when the
parameter density fluctuates heavily. Is the flow field well-behaved,
a texture like (figure figure 7b) can be used to directly map velocity
to adaptive dashes. The horizontal striped section map to section of
the dashtube where the stripes do not split or unite.

5 Streamline Placement

When using streamlines for flow-visualization, the quality of the re-
sult depends heavily on the placement of the lines. Even when visu-
alizing two dimensional flow fields an even distribution is desirable,
but when extending the flow visualization to three dimensions the
added complication of occlusions make it essential. Therefore our
flow volume has to be depicted with sparsely but evenly distributed
streamlines.

To accomplish this we use an algorithm based on an extension of
[8] method to three dimensions.

x

dx

dt

x

v

x

u

a

b

c

e

d

A B

Figure 6: switching texture resolution using the u-coordinate

u

v

u

a b

v

Figure 7: textures used for level switching

Jobard places the streamlines based on purely local criteria: the
distance to the next streamline may not fall below a specified min-
imum. Since the speed of the algorithm depends mainly on this
distance test, certain techniques are applied to accelerate the test.
Firstly the distance between streamlines is defined as minimal dis-
tance between any of their sample points. This works reasonably
well when the sample points are always closer spaced than the min-
imum distance between lines. Secondly all sample points are stored
in a regular grid to reduce the set of points to be tested to the ones
in the immediate neighbourhood of the new point. The distribu-
tion of seedpoints depends on the desired density of theillustration.
For dense fields the seedpoints are distributed randomly, while for
sparse fields they are introduced near the sample points of existing
streamlines.

The adaption of this algorithm to our needs was quite straight-
forward. We extended the grid to three dimensions, making it nec-
essary to check now a maximum of 27 neighbouring cells per test.
The properties of the agglomerative seedpoint placement for sparse
distributions mainly produce visually appealing results in 2D. In
3D, where streamlines can pass in front of each other and their vi-
sual distance depends mainly on the viewpoint it produces no dis-
tinctive advantage.

For that reason we chose to distribute the seedpoints on ajittered
grid, a process which works faster than agglomerative seedpoint
placement and produces acceptable results.

Since streamlines short in respect to the texture length can pro-
duce irritating ”blinking” artifacts, we reject them as soon as they
are introduced, therefore allowing other streamlines to grow longer.
This leads to an even greater average length than mere removal of
short lines in an postprocessing step would produce.



6 Focussing and Context

One of the main problems when visualizing 3D flow fields is find-
ing the right information density. Too much information per vol-
ume occludes features further away and too little information may
hide important details. When using streamlines for 3D flow visu-
alization, how much information a given volume contains depends
directly on the number of streamlines through it. To a lesser degree
it depends on the number of sample points along the streamline.
An increase in points per line over the nyquist limit of the flow field
does not contribute to the information content of the visualization.
Since we place our streamlines as described in section 5 approx-
imately equidistant to each other, the density of the visualization
depends mainly on this user selected distance. Other factors con-
tributing to the general appearance are width of the streamline and
- in case of dashtubes - the length ratio of opaque to transparent
sections.

When investigating 3D flow we first try to get an overview of
the flow field. This includes investigation of global features, the
identification of areas of special interest, like vortices, separatrices,
cycles. Then, when an interesting local feature has been identified,
we want to single this feature out and investigate it. We want to
view it in great detail, without distractions or occlusions from other
features.

In most practical cases, these two different goals exclude each
other. So we tested focussing techniques where we use a coarser
representation to identify interesting regions. Then we use one of
the mechanisms described below to focus our attention on these
regions and investigate them in higher detail.

7 Magic Lenses and Magic Boxes

Magic lenses, introduced by [2] are transparent user interface el-
emnts for conventional 2D windowing desktop environments. They
are represented by special windows which do not display their own
independent content but rather change the representation of under-
lying information. They can be used for filtering or otherwise mod-
ifying underlying image data but also for more abstract operations
like showing additional information like comments. [20] applied
this concept in virtual environments and also introduced their ex-
tension into three dimension as volumetric lenses, or ”magic boxes”
as we call them.

We use these interface elements to view a higher-resolution rep-
resentation of our visualization. This representation contains more
streamlines per volume and the streamlines are thinner and gen-
erated with closer spaced vertices than the representation used for
coarse navigation. We found that both focussing techniques have
specific advantages.

7.1 Magic Lenses

A magic lens is presented as a flat objects with arbitrary boundaries
(e.g, circle, square) which can be positioned with a 6DOF input
device, normally a 3D mouse or tracked pen (figure 9). When look-
ing through the lens, the user sees the high resolution representa-
tion. The main difference two pure 2D magic lenses is that our lens
acts additionally acts as a clipping plane, allowing only the parts of
the high resolution scene behind the lens to be seen. Without this
clipping plane, the lens would also display features of the detailled
representation between lens and viewpoint, resulting in the same
occlusion problems as if the whole visualization were to be investi-
gated. Together with the current viewpoint a magic lens effectively
defines a viewing frustrum with its near clipping plane lying in the
plane of the lens and its cross-section defined by the shape of the
lens (figure 8).

Figure 8: Volume defined by magic lens

Figure 9: Focussing with magic lenses

Work with the magic lens is easy and intuitive. The user posi-
tions it in front of interesting features and views them through it
like through a magnifying glass (figure 9). The scene behind the
lens has always the same orientation and scale as the surrounding
coarse representation. Discontinuities between resolutions result-
ing from the additional streamlines inside the lens are masked by
the lensframe. These discontinuities only concern the representa-
tion of the 3D flow, not the flow itself. A position in space the same
coordinates in the 3D flow in- and outside the lens. While pre-
senting an effective and visual appealing investigation mechanism,
magic lenses have one distinctive disadvantage compared to their
3D counterparts: the focussed volume depends strongly not only
on the position of the lens but also on the viewpoint. This does not
matter when a single user is looking for a local feature. The user
typically sweeps the lens through space, positioning it and himself
until the area of interest is located. When this has been accom-
plished, the investigation technique normally changes. When the
detail has been located, it has to be examined from different angles,
a procedure for which magic lenses are not well suited. They have
to be dragged around the feature when the viewpoint changes.

7.2 Magic Boxes

Magic Boxes overcome the above mentioned disadvantages of
viewpoint dependencies. Instead of only implicitly defining the fo-
cussed volume depending on the current viewpoint (figure 8), they
explicitly define a volume inside theirboundaries to contain the de-
tailled representation of the 3D flow figure 10). The user positions
the box with a 6DOF input device until it contains the local feature
(figure 11). Then it may be viewed from all directions.

This is especially important when there are several users viewing
the same visualization at the same time like in our multi-user virtual
environment STUDIERSTUBE [17]. When using magic lenses ev-



Figure 10: Volume defined by magic box

Figure 11: Focussing with magic boxes

ery user has to position his own lensaccording to his position, or
different users have to trade places when looking through a single
lens.

Discontinuities between resolutions are more noticeable when
using boxes instead of lenses, since the whole surface of the box
acts as border between low- and high-resolution representations and
cannot be masked by a frame like the image-aligned border of the
lens.

8 Implementation

The visualization and investigation methods described above were
implemented C++ using Open Inventor [14]. This OpenGL based
graphics toolkit enabled us to efficiently realize our methods pro-
viding high-level graphics concepts like a scenegraph and sophis-
ticated desktop interaction elements which we used in the early
phases of our tests. The main advantage when implementing our
methods was Inventors ability to suppy this high-level concepts
while simultaneously enabling direct access to all OpenGL func-
tions. This was essential when manipulating rendering sequences
for magic lens and magic box. Since our virtual environment
STUDIERSTUBE is also based on Inventor, the transfer from desk-
top evaluation implementation to the application in our VE was
straightforward. The following sections describe implementation
details of the our techniques and their integration in our virtual en-
vironment.

8.1 Interaction in the Virtual Environment

STUDIERSTUBE [17] is a multi-user augmented environment
which we use for scientific visualization [6]. It implements basic
interaction methods like positioning objects by dragging them with
a 6 DOF pen (figures 9 and 11) as well as conventional 2D interac-

Figure 12: Interaction using the PIP

Figure 13: Contraction artifacts due to torsion

tion elements like sliders, dials and buttons for parametrization of
the visualization methods. These purely virtual interface elements
are positioned on the PIP [16], a handheld tablet. Users hold this
board in their non-dominant hand while make adjustments to the in-
terface elements with the same pen they use for 6 DOF interaction
(figure 12). In our application we used the PIP to adjust parameters
of the visualized dynamical system (section 8.5) as well as proper-
ties of the dashtubes and the magic box. The speed, length of dashes
and distance between dashes was adjustable with dials. Sliders on
the PIP adjust the overall size of the magic box and allow inde-
pendent scaling of one dimension of the box. This transforms the
box to a ”slab”, allowing the user to use it to cut slices of arbitray
width out of the flow field. Buttons on the PIP were used to switch
between lens and box and to disable the coarse representation on
demand.

8.2 Dashtubes

Dashtubes are realized as textured polygonal extrusions along the
direction of the flow. Ideally the cross-section of the extrusion
should be a circle to provide a symmetric appearance from all di-
rections, but we found that the polygonal approximation can be re-
duced down to 3-6 edges dependending on the resolution of the dis-
play and the reqired quality of the image. By using Goraud shading
the resulting discontinuities of the approximation are only visible
along the silhouette edges. Coarse tesselations like these are prone
to generating artifacts when the geometry is twisted along the ex-
trusion axis. The resulting radial contractions lead to irritating vari-
ations in the width of the dashtube (figure 13). To avoid this, we
generate the segments of the extrusion not by following the frenet-
frame but by an modified algorithm, which tries to minimize the
torsion by projecting the orientation of the cross-sections along the
segments.

Early tests showed that the animated texture produces annoying
visual artifacts at the ends of the dashtube. The opaque segments



entering and leaving the surface of the extrusion exhibited an irri-
tating ”blinking” behavior, comparable to the pulsation we had to
overcome in FROLIC. We treated this by reducing the radius of the
first and last cross-section of the dashtubes to null, thereby making
the extrusion ”pointed” at the ends (figure 2). This yields smooth
transitions at both ends, comparable to a ”fade-in” effect.

The geometry of the dashtubes where implemented as Inventor
Shapekits, containing fields for the vertices of the extrusion axis and
the texture-parameters and the geometric parameters of the cross-
section. The Shapekit produces GL trianglestrip which give a bet-
ter rendering performance than other GL primitives. Rendering the
dashtubes with culled backfaces produces a the ”halfpipe” appear-
ance on the ends of the opaque segments visible in (figure 3). Since
this is only evident in extreme closeup, we decided that the render-
ing speedup justifies this artifact.

8.3 Magic Lenses

Magic lenses act as window from the coarse scene to the detailed
scene. Our implementation uses SEAMs [12] as rendering primi-
tives. Our ”magnifying glass” uses a circular SEAM inside a ring
geometry as frame (figure??). According to the nomenclature of
[12], the coarse scene outside the lens would be the ”primary world”
and the detailed scene seen through the lens the ”secondary world”.

Rendering a SEAM uses only a single pass, the image of the sec-
ondary world is created on the fly when the SEAM is rendered in
the primary world. To restrict the rendering of the secondary world
to the area covered by the SEAM we use the GL stencil buffer, an
additional layer used for masking areas of the screen during ren-
dering. The geometry of both worlds is given as a directed acyclic
graph (scene graph). The scene graph of the primary world is tra-
versed and rendered. When a SEAM is encounted, the associated
polygon - in our case the ”lens” - is passed to the rendering hard-
ware for scan conversion.

For all pixels that the Z-test for the SEAM polygon finds to be
visible:

� The frame buffer is set to the background color of the sec-
ondary world (clear screen),

� the Z-buffer is set to infinity (clear Z-buffer),

� the mask (stencil buffer) is set to 1.

Note that these image modifications are only carried out for the
visible portion of the SEAM surface. After this preparation step,
rendering of the secondary world is performed inside the stencil
mask created in the previous step (so that the secondary world is not
drawn outside the SEAM area), and with a clipping plane coinci-
dent with the SEAM polygon (so that the secondary world does not
protrude from the SEAM). Finally - before rendering of the primary
world proceeds - the SEAM polygon is rendered again, but only
the computed depth values are written into the Z-buffer. Thereby
the SEAM is ”sealed”. The resulting Z-values are all smaller than
any Z-value of the secondary world. This asserts that no geomet-
ric primitive of the primary world located behind the SEAM will
overwrite a visible pixel from the secondary world rendering.

8.4 Magic Boxes

We found that displaying only the contents of the magic box with-
out visual representation of its boundaries makes it difficult to lo-
cate and position the box and tends to confuse the user. Therefore
we added as geometric representation of the focussing volume a
cube. The front faces of the cube are culled, leading to an ”open
front” appearance regardless of the viewpoint.

Magic boxes are rendered using the same SEAM algorithm as
described above, but use a cube instead of a plane to define the
”windows” between the two worlds. Six clipping planes coincident
with the faces of the cube clip the secondary world.

Our implementation renders the complete scene (primary and
secondary) only once, while [20] needs six rendering passes, one
for each half-space defined by a clipping plane. This leads to a sig-
nificant improvement in the framerate. The disadvantage of our
method is the inability of displaying any parts of the secondary
world (the detailed representation) that lie behind the box, which
for our application would anyway only be distractive.

8.5 Application: Visualization of a Dynamical Sys-
tem

A dynamical system is a system whose temporal evolution from
some initial state is dictated by a set of rules. Dynamical systems
are found in many areas of research and application. Examples are
fluid flow analysis, economic processes (e.g., stock market models),
physics, medicine, and population growth models [1]. Dynamical
systems are either given as an analytical specification or as sampled
data.

Continuous systems (also called flows or vector fields) are given
by a set of differential equations_x = �(x). Vector�(x) describes
the direction, orientation and velocity of the flow at positionx.

The behavior of dynamical systems can be investigated inphase
space, where each state variable (i.e., each coordinate component
of x) corresponds to a coordinate axis. A point in phase space com-
pletely describes the state of the system at one point in time. The
temporal evolution from an inital state is calledtrajectory. Starting
from an initial statex0 the solution (i.e., trajectory) of a continu-
ous dynamical system is given as curvex(t) in phase space (see
Equation (1)).

x(t) = x0 +

Z
t

0

�(x(u))du (1)

Equation (1) is an integral equation which can be solved analyti-
cally only in very simple cases. Typically numerical integration is
used to determine the trajectory of such a dynamical system [11]. In
case of a time-invariant dynamical system a trajectory corresponds
to a streamline (curve where the tangent at every point coincides
with the flow direction of the underlying flow field).

The dynamical system we investigated in our evaluation is the
well known forced Duffing oscillator [15] (see equation ...). It de-
scribes the damped motion of a mass attached to a nonlinear spring.
The driving force is periodic. Due to the nonlinearity it can have
quite an intricate behaviour. We generated the streamlines using a
Runge-Kutta integrator with adaptive stepsize.

9 Evaluation and Results

Animated dashtubes produce a visual appealing and intuitive visu-
alization of a 3D flow field. The main problem when applying them
lies in finding the correct density for coarse and detailled represen-
tation.

Most users applied magic lenses without any problems, but
needed some experimentation to grasp the concept of volumetric
magic boxes.

When testing lenses and boxes with different detailed represen-
tations we found that magic boxes work better than lenses with very
dense scenes. Since lenses do not clip distant parts of the detailed
scene they are only applicable to scenes of higher density when they
are rendered with strong depth cues (haze, fog).

The method of slicing the flow field with ”slabs” as mentioned in
section 8.1 was implemented after users started to experiment with



the distances of near and far clipping plane of the view volume to
achieve this slicing view-dependent.

When using magic boxes, most users applied the following tech-
nique:

� position coarse representation

� position box until interesting features visible

� switch of coarse representation

� magnify box with included details for investigation

Since our application allowed independent positioning of fo-
cussing element and flow field, some users preferred positioning
the flow field and keeping the box or lens stationary.

During the design phase of the dashtubes we used shutter glasses
to produce stereoscopy. While this works very well for the exam-
ination of the flow field, interaction with the magic lens and box
using the 2D desktop mouse is cumbersome and non-intuitive com-
pared to interaction in the virtual environment.

10 Conclusion

In this paper we discussed several techniques which facilitate 3D
flow visualization within a virtual environment. The newly intro-
duced adaptive texture-mapping shows that texture hardware can
be efficiently used to produce dashtubes with uniform spatial reso-
lution. The approach ensures that velocity variations are still en-
coded in the animation. Dashtubes are positioned uniformly in
phase space.

Interactive tools like magic lenses and magic boxes the proved
to be valuable in the investigation of local features.

In our investigations 3D phase space contains spatially complex
structures which are difficult to interpret. The added cues of a vir-
tual environment (e.g., stereoscopic viewing, interactive and intu-
itive viewpoint change)are extremely helpful when inspecting these
structures.

Acknowledgement

Special thanks to Hermann Wurnig, who did more than his share to
implement the interaction methods, and to Dieter Schmalstieg and
Helwig Löffelmann for their help and suggestions.

References

[1] D. K. Arrowsmith and C. A. Place.An Introduction to Dy-
namical Systems. Cambridge University Press, 1990.

[2] E. Bier, M. Stone, and K. Pier. Enhanced illustration using
magic lens filters. IEEE Computer Graphics and Applica-
tions, 17(6):62–70, November/December 1997.

[3] Steve Bryson and Creon Levitt. The virtual windtunnel:
An environment for the exploration of three-dimensional un-
steady flows. InVisualization ’91, pages 17–24, 1991.

[4] B. Cabral and L. C. Leedom. Imaging vector fields using line
integral convolution. InProceedings SIGGRAPH ’93, pages
263–272, 1993.

[5] R. Crawfis and N. Max. Texture splats for 3d scalar and vector
field visualization. InIEEE Visualization ’93 Proceedings,
pages 261–266. IEEE Computer Society, October 1993.

[6] A. Fuhrmann, H. Löffelmann, and D. Schmalstieg. Collabo-
rative augmented reality: Exploringdynamical systems. In
IEEE Visualization ’97 Proceedings, pages 459–462. IEEE
Computer Society, October 1997.

[7] V. Interrante and Ch. Grosch. Strategies for effectively visu-
alizing 3D flow with volume LIC. InProceedings of Visual-
ization ’97, pages 421–424, 1997.

[8] B. Jobard and W. Lefer. Creating evenly-spaced streamlines
of arbitrary density. In Wilfrid Lefer and Michel Grave,
editors,Visualization in Scientific Computing, pages 43–55.
Springer-Wien-New-York, 1997.

[9] N. Max, R. Crawfis, and Ch. Grant. Visualizing 3D velocity
fields near contour surfaces. InIEEE Visualization ’94 Pro-
ceedings, pages 248–255. IEEE Computer Society, October
1994.

[10] F. H. Post and T. van Walsum. Fluid flow visualization. In
H. Hagen, H. Müller, and G. M. Nielson, editors,Focus on
Scientific Visualization, pages 1–40. Springer, 1993.

[11] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
terling. Numerical Recipes in C. Cambridge University Press,
1988.

[12] Gernot Schaufler and Dieter Schmalstieg. Sewing worlds to-
gether with seams. Technical Report TR-186-2-98-11, Insti-
tute of Computer Graphics 186-2, Technical University of Vi-
enna, Vienna, Austria, August 1998.

[13] D. Stalling and H.-Ch. Hege. Fast and resolution independent
line integral convolution. In Robert Cook, editor,Computer
Graphics (SIGGRAPH ’95 Proceedings),pages 249–256, Au-
gust 1995.

[14] P. Strauss and R. Carey. An object oriented 3d graphics
toolkit. In Proceedings SIGGRAPH ’92, pages 341–347,
1992.

[15] S. Strogatz.Nonlinear Dynamics and Chaos. Addison Wes-
ley, New York, 1994.

[16] Z. Szalavari and M. Gervautz. The personal interaction panel
— A two-handed interface for augmented reality.Computer
Graphics Forum, 16(3):C335–346, Sep 1997.

[17] Zsolt Szalav´ari, Dieter Schmalstieg, Anton Furhmann, and
Michael Gervautz. Studierstube - An Environment for Col-
laboration in Augmented Reality.Virtual Reality: Research,
Development & Applications, 1998.

[18] G. Turk and D. Banks. Image-guided streamline placement.
In Proceedings SIGGRAPH ’96, pages 453–459, 1996.

[19] J. J. van Wijk. Flow visualization with surface particles.IEEE
Computer Graphics & Applications, 13(4):18–24, July 1993.

[20] J. Viega, M.J. Conway, G. Williams, and R. Pausch. 3d magic
lenses. InACM UIST’96 Proceedings, pages 51–58. ACM,
1996.

[21] R. Wegenkittl and E. Gr¨oller. Fast oriented line integral con-
volution for vector field visualization via the internet. InIEEE
Visualization ’97 Proceedings, pages 309–316. IEEE Com-
puter Society, October 1997.

[22] L. Williams. Pyramidal parametrics.Computer Graphics,
pages 1–11.


