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Abstract

The paper shows how to derive an analytic formula for the following problem:
given a set of objects in a continuous level of detail representation, and given a
total number of polygons to display, determine the number of polygons to use
for each object so that the best overall appearance is achieved. This improves
on the situation of discrete levels of detail, where the problem has been shown
to be equivalent to a constrained knapsack-problem.
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1 Introduction

In order to display complex virtual environments with detailed geometric ob-
jects, Level Of Detail objects (LOD) can be used to reduce the overall complexity
of the scene. LOD objects have similar visual appearance to the original object,
but fewer vertices and are thus faster to render.

Previously, discrete sets of levels of detail [2] have been used to approximate
objects at various viewing distances. More recently, continuous level of detail
methods ([4, 3]) have been introduced that can generate approximations with
an arbitrary number of vertices.

At runtime, rendering a scene includes the task of selecting an appropriate
level of detail for each object. One approach determines a `polygon budget', i.e.,
the number of polygons per frame that can be rendered interactively. In the
case of discrete levels of detail, this means that for each object, an appropriate
level of detail has to be selected, so that the total number of polygons does not
exceed the polygon budget and the best possible overall appearance is achieved.
Funkhouser et al. [1] have shown this to be an optimization problem equivalent
to a constrained Knapsack problem

With the availability of continuous levels of detail, this process has to be
re-evaluated. We show that it is possible to �nd a closed form solution to the
problem which can be cheaply evaluated for each frame.

2 Problem Statement

As in [1], we associate a cost and a bene�t with each level of detail of an ob-
ject.Assuming that the bene�ts and costs of individual objects are independent,
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let fi(x) denote the bene�t associated with rendering an approximation consist-
ing of x triangles of the i-th object. The cost of rendering this approximation is
its number of triangles. The optimization problem then consists of maximising

f(x0; : : : ; xn) := f0(x0) + � � �+ fn(xn)

so that the polygon budget P is met:

x0 + � � �+ xn = P

which can also be expressed as g(x0; : : : ; xn) = 0, where

g(x0; : : : ; xn) := x0 + � � �+ xn � P

We will later see how to appropriately de�ne fi(x).

3 Lagrange Multipliers

The optimization problem can easily be solved using Lagrange Multipliers. To
do this, we have to build the extended bene�t-function F (x0; : : : ; xn; �), where
� is the Lagrange Multiplier (a Lagrange Multiplier is inserted for every con-
straint):

F (x0; : : : ; xn; �) := f(x0; : : : ; xn)� �g(x0; : : : ; xn)

The solution can now be found by building the partial derivatives Fx0 ; : : : ; Fxn ; F�,
setting them to 0 and solving the resulting (hopefully linear) system of equa-
tions. In our case, we have

@F (x0; : : : ; xn)

@xi
= f 0i(xi)� � = 0 (1)

and

@F (x0; : : : ; xn)

@�
= g(x0; : : : ; xn) = 0 (2)

If we assume f 0i(x) to be a continuous, monotonous function, we can �nd its
inverse f 0i(x)

�1 and use that to solve for xi:

xi = f 0i(�)
�1 (3)

Plugging this into (2) yields

f 0
0
(�)�1 + � � �+ f 0n(�)

�1 = P (4)

which we have to solve for � so we get x0; : : : ; xn. This is as far as we can get
without making any further assumptions about the bene�t functions fi(x).
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4 Choosing a Bene�t function

We have already stated that the derivative of the individual bene�t functions
f 0i(x) should be continuous and monotonous so that we can solve the system.
It's actually the derivative of the function that is used to determine the shape
of the bene�t curve: a very high bene�t should be assigned to the �rst few
triangles that are displayed for an object, since they contribute very much to its
visual appearance, and less bene�t to later triangles, as they have a relatively
low in
uence on appearance. So what we actually want is a bene�t function
with a decreasing derivative. Of course, the derivative has to be strictly positive
(since adding triangles will never decrease the bene�t). Choosing

f 0i(x) := wix
��
i with �;wi > 0

where wi denotes an arbitrary weight assigned to object i, �ts the purpose.
Solving for xi as in (3) gives

xi = (
�

wi

)�
1

�

which we can now plug into (4):

(
�

w0

)�
1

� + � � �+ (
�

wn

)�
1

� = P

and isolate and solve for ��
1

� :

��
1

� =
PPn

i=0 w
1

�

i

Thus, we obtain a formula for calculating individual triangle counts:

xj = P
w

1

�

jPn
i=0 w

1

�

i

(5)

It can be observed that, as long as the weights are positive, the resulting triangle
counts assigned to objects will always be positive.

5 Examples

We will now examine some speci�c choices for � and the weights wi.

5.1 Funkhouser

Setting � = 3, wi = 2Aic, where Ai denotes the projected area of the object,
yields Funkhouser's bene�t function:

fi(x) =

Z
2Aic

1

x3i
dx = �Ai

c

x2i

Choosing an integration constant of Ai even gives exactly the formula used by
Funkhouser,

fi(x) = Ai(1�
c

x2i
)
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The optimal triangle count for each object can now be evaluated according to
(5):

xj = P
3

p
AjPn

i=0
3
p
Ai

5.2 Schmalstieg

Setting � = 1 and wi = Ai gives the bene�t function

fi(x) =

Z
Ai

1

xi
dx = Ai lnxi

and yields the very simple formula for the triangle count

xj = P
AjPn

i=0 Ai

5.3 Faure/Wimmer/Wonka

We have observed that it might be a good idea letting wi depend not only
on the projected area Ai, but also on the number of available polygons, pi,
following the rationale that an object that is modeled with many triangles is
approximated worse by a given number of triangles than an object with fewer
triangles. Choosing

wi = �Aip
�
i where � = �� 1

gives the desired bene�t function

fi(x) =

Z
�Aip

�
i

1

x
��1
i

dx = �Ai(
pi

xi
)�

The resulting formula for the triangle counts for speci�c values of � can easily
be derived from formula (5).

6 Caveats

The formula works very well if the number of total triangles for each object
to be drawn at least equals the polygon budget P . If that is not the case, an
iterative solution has to be used: whenever xi > pi (where xi is the number of
triangles chosen for the object and pi is the total number of triangles in that
object), xi is set to pi, a new polygon budget is calculated as Pnew = P � pi
and the calculation is repeated for the remaining objects.
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