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Abstract

The visualization of analytically de�ned dynamical systems is important for a thor-

ough understanding of the underlying system behavior. An introduction to ana-

lytically de�ned dynamical systems is given. Various visualization techniques for

dynamical systems are discussed. Several current research directions concerning the

visualization of dynamical systems are treated in more detail. These are: texture

based techniques, visualization of high-dimensional dynamical systems, advanced

streamsurface representations, local analysis - Poincar�e sections, visualizing econo-

metric models.

Keywords: dynamical system, visualization, texture, multidimensional data, par-

allel coordinates, streamsurface, econometric models, Poincar�e section

1 Analytically De�ned Dynamical Systems

A dynamical system is a system whose temporal evolution from some initial
state is dictated by a set of rules. Dynamical systems are found in many areas

of research and application. Examples are 
uid 
ow analysis, economic pro-
cesses (e.g., stock market models), physics, medicine, and population growth
models [2]. Dynamical systems are either given as an analytical speci�cation
or as sampled data. In the following we will concentrate on analytically de�ned

dynamical systems.

Dynamical systems are either continuous or discrete. Continuous systems (also

called 
ows or vector �elds) are given by a set of di�erential equations _x =
�(x). Vector �(x) describes the direction, orientation and velocity of the 
ow

at position x. Discrete dynamical systems (often called maps) are speci�ed by
a set of di�erence equations xn+1 = �(xn).

The behavior of dynamical systems can be investigated in phase space, where

each state variable (i.e., each coordinate component of x) corresponds to a
coordinate axis. A point in phase space completely describes the state of the
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system at one point in time. The temporal evolution from an inital state is

called trajectory in case of a continuous system and orbit in case of a dis-

crete system. Starting from an initial state x0 the solution (i.e., trajectory)

of a continuous dynamical system is given as curve x(t) in phase space (see

Equation (1)).

x(t) = x0 +
Z

t

0

�(x(u)) du (1)

Equation (1) is an integral equation which can be solved analytically only in

very simple cases. Typically numerical integration is used to determine the

trajectory of such a dynamical system [13].

Certain topological structures within phase space are of special interest. Loca-

tions �x with _�x = �(�x) = 0 are called �xed points, critical points or equilibrium

points of the dynamical system. When all trajectories close to an equilibrium

point �x converge to that point, �x is called an attractor. If all trajectories close
to �x diverge �x is called a repellor. A trajectory x(t) with x(t) = x(t + T )8t
is called a periodic trajectory, a cycle or an oscillation. Cycles again can be
attracting or repelling. Attracting points or cycles are called limit sets of a
dynamical system. In addition to limit points and limit cycles other limit
sets occur in systems with dimension greater than two. For example in a

three-dimensional system a torus can occur as a limit set. Limit sets of high-
dimensional systems may have complex and sometimes even chaotic behavior.

A region within phase space where all trajectories converge to a limit set A
is called the inset of A. When reversing the 
ow orientation in a dynamical
system (e.g., integration is done backwards in time) the property of attraction
and repulsion changes. The inset of a limit set A under reverse integration

is called the outset of A. The insets of di�erent limit sets are separated by
separatrices. Separatrices segregate regions of phase space with vastly di�erent
dynamic behavior. The topology of a dynamical system can be described by
the position and behavior of its limit sets. Analytically the behavior close to
a limit set can often be determined by linearizing the dynamical system and

analyzing the resulting Jacobian matrix.

The visualization of dynamical systems provides insight into the often intricate

behavior of such systems. Many techniques result from the �eld of experimen-
tal 
uid 
ow research (e.g., particle injection or dye advection). There are

techniques to visualize entire classes of dynamical systems (e.g., bifurcation
diagrams [1]). Systems within a class have di�erent system parameters. Tak-

ing a speci�c set of parameters allows to investigate a single system. The
entire phase space may be visualized (e.g., hedge-hog method [11] , spot noise

[14] , LIC [3], topological representation [6]). The visual analysis may also
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be directed only to a (small) subset of phase space. Techniques are either

direct visualizations of the 
ow (e.g., LIC) or they show derived quantities,

like topological structures. Topological representations show for example limit

sets, separatrices, saddle-connections, and homo-clinic orbits. These objects

are often quite di�cult to calculate but su�ce to illustrate the qualitative

behavior of the 
ow.

The hedge-hog method displays the tangential directions of the 
ow at se-

lected positions (e.g., regular grid) of phase space. The length of the vectors

encodes 
ow velocity. Such plots give information about the vector �eld but do

not show important structures, e.g., vortices of the underlying dynamical sys-

tem. Although quite feasible for 2D dynamical systems the images for higher

dimensions tend to become crowded. Occlusion is a problem in such images

which are therefore di�cult to analyse.

Often scientists want to investigate a dynamical system at some speci�c point

in phase space. They are interested in local aspects as, for example, velocity,

acceleration, and divergence. A vortex or a point near an obstacle may be such
a point of special interest. Local properties are often determined by analyz-
ing the Jacobian matrix at some point of the 
ow. Visualization techniques
were developed that help to investigate these local 
ow properties. Glyphs are

a prominent example for this type of visualization. A glyph is a geometric
object whose properties (e.g., length, shape, color) encodes underlying 
ow
properties like acceleration, shear, curvature, torsion, convergance and diver-
gence. Such a glyph can be an enhanced three-dimensional arrow which is
positioned interactively or automatically, e.g., along consecutive points of a
trajectory [4].

Streamlines, streaklines and pathlines [11] illustrate the temporal evolution
of an initial position in phase space. A streamline visualizes a trajectory of
a dynamical system. It also describes the path of a single particle in a time-
independent 
ow. A pathline describes the path of a single particle in a time-

dependent 
ow. A streakline visualizes the path of a sequence of particles
which are introduced into a time-dependent 
ow at a �xed spatial position
but regularly distributed over time. Timelines on the other hand result by
introducing particles at a �xed moment in time but regularly distributed in

phase space. Starting with more general objects like lines and circles produces

streamribbons, streamsurfaces, and streamtube.

A bifurcation diagram is the most common method for visualizing an entire
class of dynamical systems. Such a diagram is constructed by extending the

plot of the dynamical system's long-term behavior by additional coordinate

axes. These axes corresponding to various system parameters. Variations along
the axes represent modi�cations to the model and thus several systems can

be illustrated within one image. At certain parameter values the behavior
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(a) (b) (c)

Fig. 1. white noise texture (a) { 2D vector �eld (b) { LIC: white noise texture

�ltered according to the vector �eld (c)

may change qualitatively (bifurcation scenario) therefore these plots are called

bifurcation diagrams [1].

In the following several recent approaches to visualize dynamical systems are

described in more detail. These techniques include: texture based 
ow visual-
ization, visualizing high-dimensional dynamical systems, advanced streamsur-

face representation, local analysis - visualizing Poincar�e sections, and visual-
izing econometric models.

2 Texture Based Techniques

Texture based techniques for the visualization of 
ow �elds have been inves-
tigated in detail in recent years. Typically a high frequency texture (Figure
1(a)) is �ltered according to an underlying vector �eld (1(b)) to produce a
global overview of the entire 
ow (1(c)).

Line Integral Convolution (LIC) as illustrated in Figure 1 smoothes a white
noise input texture along (curved) streamline segments [3]. LIC uses one-
dimensional �lter kernels which are determined by integrating the underlying

vector �eld. The intensity I(x0) at an arbitrary position x0 of the output image

is calculated by

I(x0) =
Z

s0+sl

s0�sl

k(s� s0)T (�(s)) ds; (2)

where T is the input texture, �(s) is the parameterized streamline through

x0 (x0 = �(s0)) and k() describes the convolution kernel. sl speci�es the

length of the streamline segment in the �lter operation. The texture values
along the streamline segment �(s), (s0 � sl � s � s0 + sl), are weighted with
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the corresponding kernel values k(s � s0). They are accumulated to give the

intensity I(x0) at position x0. Various kernel functions k() can be used in

the �lter operation. For single images a constant �lter kernel gives a good

impression of the 
ow direction. Taking periodic low-pass �lter kernels and

phase shifting these kernels in successive images allows to animate the 
ow

�eld. The animation shows 
owing ripples which also encode the orientation

of the 
ow.

LIC images encode 
ow direction and velocity magnitude, but they do not

show the orientation of the 
ow in still images. Flow orientation can be il-

lustrated through animation. But there are cases where only still images are

available or necessary, e.g., reproduction of vector �elds in books or journals.

Furthermore LIC images are characterized by high spatial frequencies normal

to the 
ow. This gives a good impression of the overall vector �eld, but is

susceptible to aliasing artefacts in case an image has to be manipulated, e.g.,

it is resized or printed. Oriented Line Integral convolution (OLIC) [15] was

designed to show the orientation of a 
ow even in still images and it is not as

much prone to aliasing e�ects as LIC. There are two major di�erences between

LIC and OLIC. LIC images typically use dense noise textures wheras OLIC
utilizes only sparse textures. A sparse texture can be thought of as a set of
ink droplets which are thinly distributed on a sheet of paper. The vector �eld
smears these ink droplets but the ink droplets are so far apart from each other
that blurred traces of droplets usually do not overlap. The second di�erence

between LIC and OLIC is that OLIC uses asymmetric convolution kernels. A
ramp-like kernel as in Figure 2 produces traces of droplets with intensity vary-
ing along the streamline. As a sparse texture is taken traces do not overlap
very much and the orientation of the 
ow is visible in still images.

convolution kernel

N
convolution

ink droplets

streamlines

resulting trace

Fig. 2. OLIC: LIC with sparse texture and ramp-like kernel-function

In Figure 3 the di�erence between LIC and OLIC is clearly visible. Figure 3(a)
shows the LIC image of a circular 
ow. In this image it is not recognizable

if the 
ow is in clockwise or counterclockwise orientation. Figure 3(b) shows
the OLIC image of a circular clockwise 
ow and Figure 3(c) shows the OLIC

image of a circular counterclockwise 
ow. The additional information in the
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OLIC image is gained at the expense of spatial resolution.

(a) (b) (c)

Fig. 3. LIC image of circular 
ow (a), OLIC image with clockwise 
ow (b), OLIC

image with counterclockwise 
ow (c)

The initial positions of the droplets in the sparse texture must be selected

carefully to avoid the formation of undesirable macroscopic patterns in the

OLIC image. For e�ciency reasons individual droplet traces can be approxi-

mated by a set of small disks with varying intensity [15]. This approach avoids
the costly convolution operation and allows an easy calculation of animation
sequences.

3 Visualizing High-Dimensional Dynamical Systems

In recent years scienti�c visualization has been driven by the need to visualize

high-dimensional data sets within high-dimensional spaces. Most of these visu-
alization methods are designed to visualize point sets. Typically these methods
show statistical features like correlations, clustering or outliers.

Several visualization methods for high-dimensional data can be distinguished.
Attribute mapping uses one or two-dimensional lattices to de�ne some simple
geometric primitives, e.g., contours or planes. The attributes of these geometric
primitives can be used to visualize the remaining variables. The most often

used attribute is the color of the geometric primitive (color coding).

Geometric coding maps high-dimensional data to distinct geometric objects,
e.g., glyphs or icons. A glyph is a graphical entity whose shape or appearance

is modi�ed by mapping data values to some of its graphical attributes. An
interactively positioned glyph adapts its appearance according to the under-

lying data. Variables can be mapped to the length, shape, angle, color and

transparency of the glyph. Examples of this kind of visualization are given in
[4,12].

Another method to visualize high-dimensional data sets is the reduction of
dimension. This can be done by either focusing, where only part of the whole
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data set is shown, or by linking, where some focused parts are linked together

to represent the whole data set. Focusing techniques may involve selecting sub-

sets, reduction of dimension by projection, or some more general manipulation

of the information layout on the screen (e.g., nonlinear zooming). Examples

for subset selection techniques are panning, zooming, and slicing.

Parallel coordinates [7] represent dimensions on parallel axes. Each axis rep-

resents one coordinate component. All axes are arranged orthogonal to a hori-

zontal line uniformly spaced on the display. An n-dimensional point of the data

set is displayed as a polyline that intersects the parallel coordinate axes at the

corresponding coordinate values of the data point. By interactively brushing

through the data set statistical characteristics like outliers and clusters can be

recognized easily.

Displaying an n-dimensional trajectory is an important task to allow a di-

rect global visualization of the behavior of a dynamical system. Extruded

parallel coordinates [17] are based on parallel coordinates. They represent an

n-dimensional trajectory as surface in 3D. With parallel coordinates a tra-

jectory is sampled at discrete points in time fx(t0); x(t1); x(t2); : : : g and its
coordinates are inserted as polylines in a parallel coordinate system (see left
side of Figure 4). Instead of using the same coordinate system for each sample
we now move the parallel coordinate system along the third spatial axis. The
polylines of the samples can be viewed as cross sections of a moving plane

with a complex surface which de�nes the trajectory. The right side of Figure
4 shows this surface and the moving parallel coordinate system at the end of
the surface.

�!

x1 x2 x3 x4 x1 x2 x3 x4

xt0

xt1
xt2

xt3
xt4

xt0

xt1

xt2

xt3

xt4

Fig. 4. A discrete sampled trajectory in parallel coordinates (left) and a

three-dimensional extruded surface de�ning the same trajectory (right)

In Figure 5 extruded parallel coordinates illustrate a trajectory of a chaotic
attractor (�ve-dimensional system). To show the chaotic behavior of the at-

tractor, the starting point of the third dimension is slightly jittered (point A)

and three di�erent trajectories (shown with di�erent colors) are superimposed.

The tiny di�erences of the starting coordinates produce considerable di�er-

ences after a few integration steps (points B).

Linking with Wings [17] is a new method of linking data (Figure 6). Two arbi-
trary dimensions of the high-dimensional system are selected and displayed as

a two-dimensional trajectory within a base plane. This means that the high-
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Fig. 5. Extruded parallel coordinates illustrate three trajectories of a

�ve-dimensional system

dimensional trajectory is projected into a two-dimensional subspace. The third

dimension (along the z-axis) can now be used to display additional variables

over the base trajectory. If the resulting three-dimensional trajectory is con-

nected with the base trajectory this connection can be thought of as a wing
on the base trajectory. This wing can be tilted at each point within a plane

normal to the base trajectory. When di�erent tilting angles are used several
additional dimensions can be linked to the base trajectory on separate wings.

x1

x2
x3 x4

Base
Trajectory

Fig. 6. Two-dimensional base trajectory with two wings (for the third and fourth

dimension) linked to it

Theoretically any number of wings can be added to display high-dimensional

trajectories. As the number of wings increases occlusion might become a severe
problem. To avoid this the wings can be rendered transparently with opaque
tubes at the top. The wings can also be textured with a grid texture allowing

an exact measurement of the wing dimensions. To overcome the problem of
occlusion texture can be used to modulate the transparency of the wings.

In Figure 7(a) wings are applied to a base trajectory of the four-dimensional
Wonderland model [16], which describes the interactions of population, econ-

omy, environment, and pollution. Population and economy de�ne the base

trajectory. Environment and pollution are shown as wings. In this case the
green trajectory (pollution) declines in a monotonic fashion, whereas the blue
trajectory (describing the environment) collapses at point A and regenerates

at point B.

Figure 7(b) shows a hedge-hog visualization of a four-dimensional data set.
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(a) (b)

Fig. 7. Linking with wings of an econometric model (a) { and hedge-hog visualization

of a four-dimensional data set (b)

On a regular four-dimensional grid 
ow directions are calculated. The visu-

alization shows a cyclic behavior in the �rst and second dimension, whereas
the third dimension is attracted and the fourth is repelled by the origin. The
cyclic behavior in the ground plane is additionally visualized with OLIC.

Three-dimensional parallel coordinates [17] are again based on the parallel
coordinate method. The basic idea of parallel coordinates is to depict each
coordinate component on a one-dimensional space. All these one-dimensional

spaces are put together within a two-dimensional space and linked with one-
dimensional polylines. All information is packed in the two-dimensional space.
Since the visualization of three-dimensional structures poses no problem we
can increase each dimension of the parallel coordinate method. The basic in-
formation now resides in separate two-dimensional spaces (planes) where two
dimensional projections of trajectories are shown. These planes are combined

within three-space and linked by surfaces which connect the separate projec-
tions of trajectories (see left part of Figure 8).

The positioning of the planes is more 
exible in comparison to the parallel

lines of the parallel coordinate method. The planes can be moved and rotated
within three-space to avoid occlusion in di�erent regions of the structure. The

right side of Figure 8 shows two coinciding planes, where the connecting surface

extends into the third dimension to give a better overview of the linking.

x1

x2

x3

x4

x1=x3

x2=x4

Fig. 8. Three-dimensional parallel coordinates
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(a) (b)

Fig. 9. A six-dimensional stacked predator-prey model with simple linkage (a) {

Complex linkage with highlighted time interval for the trajectory of a chaotic at-

tractor (b)

In Figure 9(a) a six-dimensional predator-prey system is stacked with the

extended parallel coordinate method. Due to the simple shape of the separated
trajectories the linking surfaces can be seen easily. Figure 9(b) on the other
hand shows a trajectory of a complex dynamical system. Here the structure
of the linkage can not be perceived easily. Therefore a small temporal interval

has been highlighted on the linking surface. This interval can be animated or
interactively moved forward and backward to reveal more clearly the structure
of the linkage.

4 Advanced Streamsurface Representations

Streamsurfaces are generated by following a line of initial positions through
the phase space of a dynamical system. They help to understand topological
structures. With highly occluding streamsurfaces an opaque representation

of the surfaces is not appropriate. It is also not a good idea to represent a
streamsurface being homogeneously transparent. Portions of the image may
be covered by many layers of semi-transparent parts of the streamsurface.

This makes it quite di�cult to recognize the spatial arrangement of the ob-
jects. There are methods which modulate the transparency locally within a

surface [8]. Stream arrows [10] also belong in this area of research. Stream
arrows segment a streamsurface with arrow shapes. Semi-transparent parts

of the streamsurface allow the viewer to see through and perceive parts of
the model that otherwise would have been occluded. The opaque part of the

streamsurface on the other hand still conveys a clear impression of the shape

of the streamsurface. See Figure 10 for typical examples. The arrows used in

the segmentation are distorted according to the local 
ow and also indicate

the 
ow direction. Long stream arrows, for example, visualize a streamsurface

10



(a) (b)

Fig. 10. Two examples of streamsurfaces with stream arrows

region of high velocity. Comparing the width of an arrow's head to the width

of it's tail indicates regions of convergent or divergent behavior. Stream arrows

can be animated by moving them along streamlines. Only a short animation

sequence has to be calculated which is then cycled.

Stream arrows are generated by one of two approaches. On the one hand they
can be realized as an alpha-texture that is composed of a set of regularily
arranged arrows. Either the stream arrows or the remaining surface portions
can be rendered transparently. With this approach the geometric database of
the streamsurface which is a set of triangles is not modi�ed.

On the other hand stream arrows can be represented directly by geometrically
separating the original streamsurface into a set of arrow-shaped patches and

the remaining surface which contain holes. This approach allows to operate
on both parts independantly from each other. In the segmentation process the
streamsurface is tiled with a base stream-arrows tile (texture) which contains
a single arrow. The shape of the arrow, its size, and the tesselating scheme are
given as parameters of the base tile.

Figure 10(a) illustrates the stream-arrows texture applied to a highly curled.
streamsurface. The streamsurface is generated by following a line of initial
conditions (colinear to the c-axis) through phase space. As the streamsurface

evolves over time it forms a shell-like roll. Color coding was used to distinguish
states later in time from earlier ones, i.e., as time goes on the corresponding

streamsurface regions are colored blue, green, yellow, and red, respectively.

Due to local varying velocities and large divergence, arrows located in the
red part of the streamsurface are bigger than those in the green region. Fig-

ure 10(b) displays a torus shaped streamsurface with stream arrows.

Spot noise is a stochastic texture synthesis technique to visualize scalar �elds

and vector �elds [14]. A spot noise texture is constructed by accumulating

randomly weighted and positioned spots. An anisotropic spot, e.g., cross or

hash, accentuates horizontal and vertical directions in the resulting spot noise
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Fig. 11. spot (enlarged) and the resulting spot noise texture

(a) (b)

Fig. 12. Streamsurface with anisotropic spot noise texture (a) {Stream arrows

shifted out of the stream surface and anisotropic spot noise (b)

texture(see Figure 11). Anisotropic spot-noise textures can be e�ciently used
to emphasize streamlines and timelines simultaneously within a streamsurface.

The anisotropic spot noise of Figure 11 is mapped onto the streamsurface so
that the horizontal direction of the texture is aligned with the streamlines and
the vertical direction of the texture is aligned with the timelines. Figure 12(a)
shows a textured streamsurface. The upper part of the streamsurface is ren-
dered semi-transparently. In Figure 12(b) the separated stream arrows are

slightly shifted in the direction perpendicular to the remaining streamsurface
portions.

5 Local Analysis - Visualizing Poincar�e Sections

Poincar�e sections are an important tool for the investigation of dynamical
systems that exhibit periodic or quasi-periodic behavior [9]. A 2D Poincar�e
section through a periodic 3D 
ow is a planar cross-section transverse to the


ow. The periodic trajectory (also called base cycle) intersects the Poincar�e

section at its center. The corresponding Poincar�e map P is a map which cor-
relates consecutive intersections of a trajectory with the Poincar�e section (see
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Fig. 13. An illustration of the Poincar�e map de�nition

(a) (b)

Fig. 14. Poincar�e map visualized with directed strokes (a) { and with spot noise,

streamlines and streamsurface added (b)

Figure 13. The Poincar�e map is a discrete dynamical system of one dimension
less than the underlying continuous 
ow. Many 
ow properties of the dynam-
ical system carry over to the Poincar�e map which is easier to analyze. These

properties are, e.g., periodicity, quasi-periodicity, and stability behavior.

Figure 14(a) illustrates a non-linear saddle cycle. Corresponding points x and
P (x) are connected by directed strokes. The Poincar�e section itself is rendered
as semi-transparent disk. The small spheres represent sequences of successive

applications of P, i.e., fP j(xi) j j � 0g for several initial positions xi. In Fig-
ure 14(b) spot noise shows the dynamics within the Poincar�e section. The

spot noise texture consists of elliptic spots. The focal points of the ellipses are

positioned at x and P (x) respectively. Additionally streamlines and a stream-
surface are displayed. The simultaneous visualization of a Poincar�e map and

the underlying 
ow helps to better understand the 
ow characteristics.

The visualization of repeated applications of P, i.e., P n, n > 1 is done by
placing a texture onto the Poincar�e section (see Figure 15(a). Each appli-

cation of P transforms the texture and after several steps an image like in

Figure 15(b) emerges. Directed strokes additionally illustrate the dynamics
within the Poincar�e section. An e�cient texture transformation is achieved
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(a) (b)

Fig. 15. A texture on the Poincar�e section (a) is distorted after repeated applications

of Poincar�e map P (b)

with image warping techniques. Map P is evaluated only for a small set of

lines in the Poincar�e section. The remaining and larger part of the Poincar�e

section is transformed with respect to the previously modi�ed lines. A costly

evaluation of map P is not done in this case.

6 Visualizing Econometric Models

Econometricians often model economic processes as sets of di�erential equa-
tions. Visualization proves to be a valuable tool to analyze the often intricate
behavior of such models. Two examples are discussed in the following: the

Dynastic Cycle and the Wonderland model.

The Dynastic Cycle [5] is a three-dimensional dynamical system, that models

the rise and fall of dynasties in ancient China. The behavior is characterized
by alternating periods of anarchy and despotism. The three system variables
X, Y , and Z express the number of farmers, bandits, and soldiers, respectively.
The model de�nes their interactions similarly to well-known food-chains (prey,
predator, and super-predator). The evolution induced by the Dynastic Cycle

is governed by so-called slow-fast dynamics. Two of the system variables (X,

Y ) are fast variables that change rapidly in comparison to the slow one (Z).
The knowledge about this slow-fast characteristics simpli�es the analysis and
must be considered during visualization.

Figure 16(a) shows a typical phase-space representation of the Dynastic Cycle.
Particular states of special interest were labeled to support the interpretation

of the model. A small number of soldiers indicates anarchy (states 2 and 3),

whereas a large number of soldiers is representative for despotism (states 4
and 1). The temporal evolution is visualised by sweeping a circular cross-

section along a streamline. Color encodes the velocity of the system. Blue
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(a) (b)

Fig. 16. A typical trajectory of the Dynastic Cycle (a) A chaotic trajectory of the

Dynastic Cycle (b)

color indicates slow motion, whereas yellow or red colors represent fast tran-

sitions. Three-dimensional arrow-glyphs are positioned at certain locations of

the streamline to visualize the direction of the 
ow. By varying system pa-

rameters the long-term behavior induced by the model changes. Figure 16(b)
shows such an altered system, which exhibits chaotic behavior. Again blue
color indicates regions of slow developments, whereas yellow and red denote
areas of rapid changes.

The Wonderland model [16] describes the interactions between population
growth, economic activities, environment, and pollution. It is a four-dimensional

system with three slow system variables and one fast variable. Similarly to the
Dynastic Cycle the slow-fast characteristics of the induced dynamics can be
exploited to analyze the model. Mainly three scenarios, i.e. the \dream sce-
nario" (clean environment forever), the \horror scenario" (total environmental
crash), and the \escape scenario" (cycles of environmental degeneration and

regeneration), can be distinguished. Certain surfaces in phase space (called
critical manifolds) determine the long-term behavior and are therefore of spe-
cial interest in the visualization process.

Figures 17(a) shows a typical phase-space representation of the Wonderland
model. Only the three most interesting system variables are depicted. A tra-

jectory is given as a tube with a spiraling texture mapped onto it. The distance

between adjacent coils of this texture encodes local velocity. The critical man-

ifolds (Z0, Z1, Zc) are displayed as semi-transparent surfaces. Transparency is

modulated on Zc, the most interesting manifold, to give a better impression of
the spatial situation. Color encodes attracting or repelling behavior of points

on the manifolds. Manifold Zc changes over time and determines which of the
scenarios (dream, horror, escape) occurs. In Figures 17(b) particles are placed

on the manifold Zc to illustrate the 
ow close to the manifold. Particles are
initially distributed evenly over the manifold and follow the 
ow dynamics

close to manifold Zc.
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(a) (b)

Fig. 17. Wonderland model with critical manifolds (\escape scenario") (a) { particle

system visualizes 
ow close to a critical manifold (b)

7 Conclusion

Graphical analysis is a valuable tool in the investigation of analytically de�ned
dynamical systems. An overview of various visualization techniques shows that
di�erent investigation goals lead to greatly varying graphical representations.
Several current research directions, i.e., texture based techniques, visualizing

high-dimensional dynamical systems, advanced streamsurface representations,
visualizing Poincar�e sections and visualizing econometric models, emphasize
the diversity of graphical tools available for the analysis of analytically de�ned
dynamical systems. Further information on the described techniques is avail-
able at http://www.cg.tuwien.ac.at/research/vis/dynsys/. Color versions

of the images are available at http://www.elsevier.com/locate/future.
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