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Abstract. The visualization of analytically de�ned dynamical systems is impor-

tant for a thorough understanding of the underlying system behavior. An overview

of theoretical concepts concerning analytically de�ned dynamical systems is given.
Various visualization techniques for dynamical systems are discussed. Three current

research directions concerning the visualization of dynamical systems are treated in

more detail. These are: texture based techniques, visualization of high-dimensional
dynamical systems, and advanced streamsurface representations.
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1 Introduction to Analytically De�ned Dynamical

Systems

A dynamical system is a system whose temporal evolution from some initial

state is dictated by a set of rules. Dynamical systems are found in many

�elds of research. Some examples are 
uid 
ow analysis, economic processes

like stock market models, physics, medicine, and population growth models

[AP90]. Visualizing the behavior of dynamical systems is crucial for a deeper

understanding of the underlying dynamics. Dynamical systems are either

given as an analytical speci�cation or as sampled data. In the following we

will concentrate on analytically de�ned dynamical systems.

Figure 1 shows a general de�nition of a dynamical system. The state of

the system at a speci�c point in time is given by the vector x = (x1x2 � � � )
T

of state variables. Depending on the current state x and input u the future

evolution of the system as well as output y is determined. The behavior

of dynamical systems can be investigated in phase space, where each state

variable corresponds to a coordinate axis. A point in phase space completely

describes the state of the system at one point in time.

Autonomous systems are characterized by the fact that input and output

are omitted from the de�nition. Dynamical systems are either continuous or

discrete. Continuous systems (also denoted 
ows or vector �elds) are given by

a set of di�erential equations _x = �(x). Vector �(x) describes the direction,

orientation and velocity of the 
ow at position x. Discrete dynamical systems

(often called maps) are speci�ed by a set of di�erence equations xn+1 =

�(xn). The temporal evolution from an inital state is called trajectory in case

of a continuous system and orbit in case of a discrete system.
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output yinput u state x

Fig. 1. Speci�cation of a dynamical system

Function �() may also contain constants, so called system parameters. A

simple example of a one-dimensional discrete dynamical system is the logistic

equation xn+1 = f(xn) = axn(1�xn), where a is the only system parameter.

Varying parameter a may produce dynamical systems with greatly di�ering

long-term behavior.

An important criterion for the analysis of a dynamical system is whether

it is time-dependent or not. For time-dependent dynamical systems function

�() depends on time whereas for time-independent systems function �() does

not change over time. Another important characteristic of a dynamical system

is whether it is linear or not. Linear dynamical systems are rather simple to

analyse as opposed to non-linear systems, which typically do have intricate

dynamical behavior [Tso92]. Often linearization is used to investigate these

complex non-linear dynamical systems at speci�c locations in phase space.

Hyperbolic dynamical systems are structurally stable, i.e., small pertur-

bations of the system parameters do not change the qualitative behavior of

the system. Hyperbolic dynamical systems can be often analysed e�ciently

by linearization. Non-hyperbolic dynamical systems on the other hand are

di�cult to investigate, occur rarely, and are often the transitional phase be-

tween two hyperbolic systems with qualitative di�ering behavior (bifurcation

scenarios).

Starting from an initial state x0 the solution (i.e., trajectory) of a continu-

ous dynamical system is given as curve x(t) in phase space (see Equation (1)).

x(t) = x0 +

Z t

0

�(x(u)) du (1)

Equation (1) is an integral equation which can be solved analytically only

in very simple cases. Typically numerical integration is used to determine

the trajectory of such a dynamical system. Thereby the continuous system

is approximated by a discrete dynamical system. The simplest approach is

Euler integration as speci�ed in Equation (2) with h being the integration

stepsize.

xn+1 = xn + h � �(xn) (2)

This method has �rst-order accuracy. A more accurate integration method is

for example the fourth-order Runge-Kutta method (3)
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The approximation can be further improved by adaptively adjusting the in-

tegration stepsize h [PFTV88].

In the following terms and concepts often used in the analysis of dynamical

systems are shortly discussed.

We start with the nabla operator r, which is often used to de�ne other

important terms for the analysis of dynamical systems. The nabla operator

builds up a vector of the partial derivatives of its operand and is de�ned as

shown in (4) [BS80]

r =

�
@

@x1

@

@x2
� � �

�T
; rf(x) = grad f(x); r�(x) = J =

@�

@x
(4)

If r's operand f(x) is a scalar function, then rf(x) is the gradient vector

grad f(x) of f(x). If r's operand �(x) is a vector function, then r�(x) is
the Jacobian matrix J = @�

@x
of �(x). Taking the R�ossler system R(x) as an

example, we obtain its Jacobian matrix by calculating rR(x) as shown in

(5) [PJS92]

R(x) =

0
@ �(x2 + x3)

x1 + ax2

b+ (x1 � c)x3

1
A ; R

0

sJacobianrR(x) =

0
@ 0 �1 �1

1 a 0

x3 0 x1 � c

1
A (5)

An often used scalar term is the divergence of a 
ow div �(x). It can be

written as r � �(x) or as the trace Tr of �'s Jacobian r�(x) (6) [BS80].

div �(x) = r � �(x) = Tr(r�(x)) =
X
i

(
@�

@x
)
i;i

(6)

The divergence basically describes the local amount of outgoing and incoming


ow at a speci�c location in phase space of the dynamical system. If it is zero

the amount of incoming 
ow equals the amount of outgoing 
ow.
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Another important term for the local analysis of dynamical systems is the

rotation vector of a 
ow rot �(x) [PW94]. This attribute of a 
ow is often

named vorticity instead of rotation and is denoted by ! [Han93]. As a third

term sometimes curl is used instead of rotation. The vorticity/rotation/curl

of a 
ow is de�ned as given in Equation (7).

! = rot �(x) = curl �(x) = r� �(x) (7)

The vector rot �(x) describes the rotation axis and its length the rotation

velocity at position x. Some references de�ne the vorticity slightly di�erent

as ! = 1=2 � rot �(x). A scalar term related to the vorticity is the stream

vorticity 
 (8) [SVL91,Han93].


 =
� � !

j�j � j!j
=

� � (r� �)

j�j � jr � �j
;Hd = 
 � j�j � j!j = � � ! (8)

Just slightly di�erent from the de�nition of stream vorticity is the speci�ca-

tion of helicity or helicity density Hd (8) [dLvW93,PvW93]. A helicity density

of zero means no stream vorticity. Helicity density increases proportional to

the length of ! and �.

Another term in connection with the rotation of a 
ow is its circulation

�C [Laj94]. The circulation of a 
ow determines if it is possible to use a

potential function instead of the vector function � for analysis purposes. If

the circulation �C of a 
ow is zero for any closed curve C, then a potential

function p exists such that grad p(x) = �(x). In such a case it is often easier

to analyse p instead of �. Additionally the fact 8C : �C = 0 implies that

there is no rotation at all in the vector �eld. By using Stoke's equations, �C
can be expressed as shown in Equation (9)

�C =

I
C

�(x)ds =

Z
A

rot �(x) dA (9)

with A being the surface of an arbitrary volume which contains the closed

curve C.

Certain topological structures within phase space are of special interest.

Locations �x with _�x = �(�x) = 0 are called �xed points, critical points or

equilibrium points of the dynamical system. When all trajectories close to

an equilibrium point �x converge to that point, �x is called an attractor. If all

trajectories close to �x diverge �x is called a repellor. A trajectory x(t) with

x(t) = x(t + T )8t is called a periodic trajectory, a cycle or an oscillation.

Cycles again can be attracting or repelling. Attracting points or cycles are

called limit sets of a dynamical system. In addition to limit points and limit

cycles other limit sets occur in systems with dimension greater than two.

For example in a three-dimensional system a torus can occur as a limit set.
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Limit sets of high-dimensional systems may have complex and sometimes

even chaotic behavior (e.g., chaotic and strange attractors).

A region within phase space where all trajectories converge to a limit set

A is called the inset of A. When reversing the 
ow orientation in a dynamical

system (e.g., integration is done backwards in time) the property of attraction

and repulsion changes. The inset of a limit set A under reverse integration

is called the outset of A. The insets of di�erent limit sets are separated by

separatrices [AS92]. Separatrices segregate regions of phase space with vastly

di�erent dynamic behavior.

The topology of a dynamical system can be described by the position and

behavior of its limit sets. Analytically the behavior close to a limit set can

often be determined by linearizing the dynamical system. Given a dynamical

system _x = v(x) the vector function v(x) can be linearized by a Taylor

expansion as follows (10)

_(x+�) = v(x +�) =

1X
k=0

1

k!
(� � r)k � vjx � v(x) +rvjx (10)

Linearization takes into account only the zero-order and �rst-order terms

in the Taylor expansion. At a �xed point �x the zero-order term vanishes,

i.e., v(�x) = 0. The �rst-order term corresponds to the Jacobian matrix J .

Therefore the evolution of a small perturbation � close to a �xed point �x is

guided by the di�erential equation (11)

_� = J j�x �� (11)

The dynamics close to a hyperbolic �xed point �x is determined by the eigen-

vectors ei and eigenvalues �i = ai+ bi � i of the Jacobian J . They are de�ned

as det(J � �i � I) = 0 and J � ei = �i � ei. The number of eigenvalues and

eigenvectors is equal to the dimension of phase space. If ai is less than zero

convergence and if ai is greater than zero divergence along the eigenvector ei
occurs. If a bi is not equal to zero additionally a rotational movement around

the �xed point is given. A �xed point is called hyperbolic (i.e., structurally

stable and easy to analyse) if no ai is equal to zero. A �xed point �x where

all eigenvalues are real and negative (positive), is called attracting (repelling)

node. In the two-dimensional case a �xed point with one positive and one

negative real eigenvalue determines a saddle node.

In case of a discrete dynamical system xn+1 = v(xn) the situation is

somewhat similar. Close to a �xed point xn+1 = v(xn) = xn convergence

(divergence) along eigenvector ei is given if j�ij < 1 (j�ij > 1). Again for

bi not equal to zero rotational movement occurs. Fixed points of discrete

dynamical systems are hyperbolic, if j�ij 6= 1 holds for all eigenvalues.

The Jacobian J can also be decomposed into it's symmetric and asymmet-

ric components. Another possibility of analyzing the Jacobian is to transform
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J into the local Frenet frame at some point of a trajectory. This allows an

easy investigation of the 
ow behaviour parallel and perpendicular to the


ow [dLvW93].

2 Visualization of Dynamical Systems

The visualization of dynamical systems provides insight into the often intri-

cate behavior of such systems [LGWP96]. Many techniques result from the

�eld of experimental 
uid 
ow research (e.g., particle injection or dye advec-

tion). Figure 2 shows a classi�cation of visualization techniques with increas-

ing focus from top to bottom. There are techniques to visualize entire classes

of dynamical systems (e.g., bifurcation diagrams [AS92]). Systems within a

class have di�erent system parameters. Taking a speci�c set of parameters al-

lows to investigate a single system. The entire phase space may be visualized

(e.g., hedge-hog method [PvW93] , spot noise [vW91] , LIC [CL93], topo-

logical representation [HH91]). With another focusing operation the visual

analysis may be directed to a (small) subset of phase space. Techniques are

either direct visualizations of the 
ow (e.g., LIC) or they show derived quanti-

ties, like topological structures. Topological representations show for example

limit sets, separatrices, saddle-connections, homo-clinic orbits. These objects

are often quite di�cult to calculate but su�ce to illustrate the qualitative

behavior of the 
ow [HLL97].

fixed parameters

local investigation

Visualizing classes of dynamical systems
(e.g, bifurcation diagrams)

Visualizing one specific dynamical system
(e.g., hedge hog, spot noise, LIC, OLIC)

Visualizing a specific region of interest
(e.g., fixed point visualization, glyphs)

Fig. 2. Visualizing Dynamical Systems (focus increases from top to bottom)

The hedge-hog method displays the tangential directions of the 
ow at

selected positions (e.g., regular grid) of phase space. The length of the vectors

encodes 
ow velocity. Such plots give information about the vector �eld but

do not show important structures, e.g., vortices of the underlying dynamical
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system. Although quite feasible for 2D dynamical systems the images for

higher dimensions tend to become crowded. Occlusion is a problem in such

images which are therefore di�cult to analyse.

Often scientists want to investigate a dynamical system at some speci�c

point in phase space. They are interested in local aspects as, for example, ve-

locity, acceleration, and divergence. A vortex or a point near an obstacle may

be such a point of special interest. Local properties are often determined by

analyzing the Jacobian J at some point of the 
ow. Visualization techniques

were developed that help to investigate these local 
ow properties. Glyphs

are a prominent example for this type of visualization. A glyph is a geomet-

ric object whose properties (e.g., length, shape, color) encodes underlying


ow properties like acceleration, shear, curvature, torsion, convergance and

divergence. In [dLvW93] the glyph is an enhanced three-dimensional arrow

which can be positioned interactively or automatically, e.g., along consecutive

points of a trajectory.

Streamlines, streaklines and pathlines [Han93] illustrate the temporal evo-

lution of an initial position in phase space. A streamline visualizes a trajec-

tory of a dynamical system. It also describes the path of a single particle in

a time-independent 
ow. A pathline describes the path of a single particle

in a time-dependent 
ow. A streakline visualizes the path of a sequence of

particles which are introduced into a time-dependent 
ow at a �xed spatial

position but regularly distributed over time. Timelines on the other hand

result by introducing particles at a �xed moment in time but regularly dis-

tributed in phase space. A streamline is generated by moving a point (initial

position) through the 
ow. Taking more general objects like lines, circles

or implicit surfaces produces streamribbons, streamsurfaces, streamtubes or

streamballs [BDH+94].

In [SVL91] an n-sided polygon is positioned perpendicular to the 
ow and

moved along a trajectory to encode local 
ow attributes, like rotation and

shear.

Mathematicians sometimes use Poincar�e sections to investigate chaotic

and/or strange attractors of dynamical systems [Tso92]. Starting with a con-

tinuous dynamical system a Poincar�e section de�nes a discrete dynamical

system of lower dimension which is easier to analyse and visualize [LKG97b].

A bifurcation diagram is the most common method for visualizing an en-

tire class of dynamical systems. Such a diagram is constructed by extending

the plot of the dynamical system's long-term behavior by additional coordi-

nate axes corresponding to various system parameters. Variations along these

axes represent modi�cations to the model and thus several systems can be

illustrated within one image. At certain parameter values the behavior may

change qualitatively (bifurcation scenario) therefore these plots are called

bifurcation diagrams [AS92].

In the following several recent approaches to visualize dynamical systems

are described in more detail. These techniques include: texture based 
ow
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visualization, visualizing high-dimensional dynamical systems, and stream

arrows.

3 Texture Based Techniques

Texture based techniques for the visualization of 
ow �elds have been investi-

gated in detail in recent years. Examples are, e.g., [vW91,CL93,MCG94,WG97].

Spot noise is a stochastic texture synthesis technique to visualize scalar

�elds and vector �elds [vW91,dLvW95,dLPV96]. A spot noise texture is con-

structed by accumulating randomlyweighted and positioned spots. Spot noise

is a versatile technique where characteristics of the spot are intuitively trans-

fered to characteristics of the spot noise texture. Varying the shape and

features of the spot locally enables a local control of the texture. A 
ow �eld

can be visualized by taking elongated ellipses as spots. The larger axes of

these spots are, for example, aligned with the locally varying 
ow direction.

The result is an anisotropic texture which depicts the entire 
ow �eld and

does not distract the viewer with larger geometric features.

Line Integral Convolution (LIC) smoothes a white noise input texture

along (curved) streamline segments [CL93,SH95]. LIC uses one-dimensional

�lter kernels which are determined by integrating the underlying vector �eld.

The intensity I(x0) at an arbitrary position x0 of the output image is calcu-

lated by

I(x0) =

Z s0+sl

s0�sl

k(s � s0)T (�(s)) ds; (12)

where T is the input texture, �(s) is the parameterized streamline through x0
(x0 = �(s0)) and k() describes the convolution kernel. sl speci�es the length

of the streamline segment used in the �lter operation. The texture values

along the streamline segment �(s), (s0 � sl � s � s0+ sl), are weighted with

the corresponding kernel values k(s� s0). They are accumulated to give the

intensity I(x0) at position x0. Various kernel functions k() can be used in

the �lter operation. For single images a constant �lter kernel gives a good

impression of the 
ow direction. Taking periodic low-pass �lter kernels and

phase shifting these kernels in successive images allows to animate the 
ow

�eld. The animation shows 
owing ripples which also encode the orientation

of the 
ow.

Extensions and performance optimizations of LIC are investigated in

[FC95,SH95,KB96,SJM96,IG97,SK97].

The Line Integral Convolution method presented so far does not encode

the orientation of a 
ow within a still image. In Section 3.1 Oriented Line

Integral Convolution (OLIC) [WGP97a] is described, which overcomes this

disadvantage. Section 3.2 discusses a new technique for Fast Rendering of
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OLIC images (FROLIC) [WG97]. OLIC, FROLIC, and some other visualiza-

tion techniques have been implemented within a Java applet. The applet can

be accessed at http://www.cg.tuwien.ac.at/research/vis/dynsys/frolic/.

3.1 Oriented Line Integral Convolution (OLIC)

LIC images encode 
ow direction and velocity magnitude, but they do not

show the orientation of the 
ow in still images. Flow orientation can be

illustrated through animation. But there are cases where only still images are

available or necessary, e.g., reproduction of vector �elds in books or journals.

Furthermore LIC images are characterized by high spatial frequencies

normal to the 
ow. This gives a good impression of the overall vector �eld, but

is susceptible to aliasing problems in case an image has to be manipulated like,

e.g., resized or printed. Oriented Line Integral convolution (OLIC) [WGP97a]

was designed to show the orientation of a 
ow even in still images and it is

not as much prone to aliasing e�ects as LIC. There are two major di�erences

between LIC and OLIC. LIC images typically use dense noise textures wheras

OLIC utilizes only sparse textures. A sparse texture can be thought of as a set

of ink droplets which are thinly distributed on a sheet of paper. The vector

�eld smears these ink droplets but the ink droplets are so far apart from

each other that blurred traces of droplets usually do not overlap. The second

di�erence between LIC and OLIC is that OLIC uses asymmetric convolution

kernels (�gure 3). A ramp-like kernel as in �gure 3 produces traces of droplets

with intensity varying along the streamline. As a sparse texture is taken

traces do not overlap very much and the orientation of the 
ow is visible in

still images.

convolution kernel

N
convolution

ink droplets

streamlines

resulting trace

Fig. 3. OLIC: LIC with sparse texture and ramp-like kernel-function
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In �gure 4 the di�erence between LIC and OLIC is clearly visible. Figure

4(a) shows the LIC image of a circular 
ow. In this image it is not recognizable

if the 
ow is in clockwise or counterclockwise orientation. Figure 4(b) shows

the OLIC image of a circular clockwise 
ow and �gure 4(c) shows the OLIC

image of a circular counterclockwise 
ow. The additional information in the

OLIC image is gained at the expense of spatial resolution.

(a) (b) (c)

Fig. 4. LIC image of circular 
ow (a), OLIC image with clockwise 
ow (b), OLIC
image with counterclockwise 
ow (c)

The initial positions of the droplets in the sparse texture must be selected

carefully to avoid the formation of undesirable patterns in the OLIC image.

This topic is dealt with in more detail in section 3.3. OLIC allows to encode


ow velocity by the length of the traces of individual droplets.

3.2 Fast Rendering of OLIC (FROLIC)

One characteristic feature of OLIC is the usage of sparse textures. Convolu-

tion of a sparse texture is not as di�cult as convolution with a dense texture.

This can be used for Fast Rendering of OLIC images (FROLIC) [WG97].

FROLIC calculates an approximate solution to the exact convolution re-

sult of OLIC thereby achieving a considerable speed-up. With a sparse tex-

ture the convolution at a speci�c point of the result image involves at most

one single droplet. Each droplet produces a trace with intensity increasing

from tail to head. Due to the circular shape of a droplet the intensity varies

slightly along the breadth of a trace as well (�gure 5(a)). As a trace is rather

small FROLIC approximates the shape of a trace by a set of small, possi-

bly overlapping disks (�gure 5(b)). The disks are positioned along a short

portion of a streamline. Each disk has constant intensity, but the intensity

varies between adjacent disks. If n disks are taken to approximate a trace

then intensity increases in n discrete steps from tail to head of the trace.

The intensity of adjacent disks is increasing to simulate the continuous ramp

kernel of the OLIC method. Although being an approximative variant of a
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(a) (b)

Fig. 5. Exact trace of a droplet with OLIC (a) and approximated trace of a droplet
with FROLIC (b)

LIC-type algorithm, FROLIC is also somewhat in the spirit of iconic vector

�eld representations. Such approaches are, e.g., spot noise [vW91], surface

particles [vW93a], and particle traces on 2D surfaces [MCG94].

The FROLIC calculation is done as follows: for each droplet a short

streamline portion is calculated by integrating the underlying 
ow �eld. The

length of a streamlet indicates local 
ow velocity. A pre�xed number of disks

is positioned in regular intervals along a streamlet. The processing order is

from tail to head of the trace, i.e., darker disks are drawn �rst and might be

partially occluded by brighter disks which are drawn later on.

The main advantage of FROLIC as compared to OLIC is that drawing

disks is much faster than doing a costly convolution calculation. Instead of cal-

culating the result image pixel per pixel as OLIC does, only the rather small

set of droplets has to be processed. In an image with resolution of 600x600

about 1000 droplets are su�cient. Furthermore drawing simple geometric

primitives like disks can be done with hardware support. During experiments

we found that the approximation error introduced by the FROLIC method is

well justi�ed by the e�ciency gain. Investigations show that FROLIC (with-

out hardware supported rendering) is approximately two orders of magni-

tude faster than OLIC. Figure 6 gives a comparison between an OLIC and

a FROLIC image. A thorough comparison between OLIC and FROLIC is

given in [WG97].

3.3 Droplet Texture Design

This section deals with the placement of droplets on a sparse input texture.

There are two criteria which should be optimized but which are opposed

to each other. One criterion calls for a dense �lling of the output image

with streamlets. This ensures that most of the vector �eld information is

represented in the output image. The second criterion is that overlapping

streamlets should be avoided as far as possible in order to clearly illustrate


ow orientation.
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(a) (b)

Fig. 6. Econometric model with OLIC (a) and FROLIC (b)

Finding an optimal droplet distribution in the input texture so that a

tight packing of streamlets results in the output image is quite intricate.

The optimal texture depends on the underlying vector �eld as well as on

the chosen minimal and maximal streamlet lengths. Furthermore changing

the position of a droplet has nontrivial consequences concerning the induced

streamlet. The streamlet may change its length or shape. This complicates

�lling algorithms which are based on distributing and moving droplets in the

input texture. Another consideration is that the arrangement of the stream-

lets should not produce macro structures which are easily perveived by the

human visual system and which disturb the interpretation of the 
ow data.

Such macro structures might result for example if streamlets are exactly

aligned along a speci�c streamline or the alignment of streamlets is such that

they form wavefront patterns.

There has already been work on optimal streamline placement [JL97],

[TB96]. Turk and Banks [TB96] use an energy function to guide the place-

ment of streamlines. The resulting images look somewhat like elegant hand-

designed streamline drawings but the optimization process itself is quite

costly.

Our task deals only with the placement of short streamlets and is there-

fore inherently simpler than the streamline placement in [TB96]. Simple ap-

proaches for droplet placement are random distribution and placement of

droplets on a regular or jittered grid. If the distance of adjacent grid points

is in the same order as the maximal streamlet length then overlapping may

occur but is usually not a severe problem. If overlapping of streamlets shall

be avoided entirely, a distance image is used which has the same resolution

as the �nal output image. For each pixel the distance image contains the
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distance to the closest streamlet drawn so far. A new streamlet candidate is

calculated and if it is too close to a previously drawn streamlet it is discarded.

Otherwise the streamlet is drawn into the output image as a set of disks and

the distance image is updated. For further details see [WG97]

3.4 Animation of OLIC and FROLIC

The animation of OLIC images can be achieved by simply phase shifting the

convolution kernel for each frame of an animation sequence. The phase shift

is adapted to the length of the trace of a droplet. Short traces have small

phase shifts and long traces have large phase shifts. Initially each droplet is

assigned a random phase shift (o�set) to avoid synchronization artefacts.

This approach can also be adapted to FROLIC.With FROLIC a streamlet

consists of a set of disks with varying intensity. These intensities are cycled

to convey to the viewer the impression of motion. The spatial position of

streamlets is not changed. In the following we will discuss two algorithms

how to realize animation of FROLIC images. The �rst algorithm is based on

the fact that a linearly increasing intensity function has to be cycled. Each

streamlet is again assigned a random initial phase shift to avoid synchro-

nization e�ects. For each streamlet the current position c indicates the disk

with highest intensity. Given frame i of the animation sequence the following

frame i + 1 is constructed by reducing the intensity of all pixels of frame i

by a �xed amount. This amount is equal to the intensity di�erence between

adjacent disks. Frame i + 1 is built from the intensity-reduced frame i by

drawing a single disk for each streamlet. These disks have highest intensity

and are positioned at location (c + 1)modn. n is the number of disks used

to represent a streamlet. Both operations (i.e., intensity reduction and disk

drawing) together cycle the intensity ramp one disk along the 
ow. Both

operations are easily and e�ciently realizable.

The human visual system is very sensitive to appearing or disappearing

bright spots. This can be a problem for cycling an intensity ramp along a

�xed streamlet, as a bright disk disappears at the head of a streamlet and

reappears at the tail of the streamlet. The impression of a pulsating e�ect

can be, however, avoided by using a �lter (e.g., Gaussian) which attenuates

the intensity at the beginning and the end of a streamlet.

Color-table animation is the second approach for e�ciently animating

FROLIC images. With a color table the intensity value of a pixel is speci�ed

indirectly. Each pixel is assigned a color-table index which points to a speci�c

entry in the color table. Available intensities or colors are stored in the color

table itself. Color-table animation only changes the entries of the color table

instead of changing the image.

The color table holds the intensity ramp, i.e., successive color-table entries

contain increasing intensity values. Animation is achieved by cycling the in-

tensity values in the color table itself. The random initial phase shift (o�set)
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is realized by starting each streamlet with a randomly selected color-table

index.

3.5 Virtual Ink Droplets

Virtual Ink Droplets [LKG97a] are based on the physical model of smear-

ing ink over a sheet of paper. Virtual Ink Droplets produce images similar

to OLIC and FROLIC. The simulation of physical parameters, e.g., pager

roughness, allows to encode additional 
ow parameters. A sparse input tex-

ture similar to the one used for OLIC is interpreted as an ink-concentration

�eld over a sheet of paper. Ink is advected according the underlying 
ow �eld.

Spatially varying absorption properties of the paper are taken into account

during the advection process. The roughness of the paper may, for example,

be used to emphasize interesting areas of the 
ow. Ink advection is calculated

incrementally. During one step part of the ink is absorbed while another part

is advected along the 
ow. Figure 7 shows an example of using Virtual Ink

Droplets. A squared paper was used as background image to highlight the

metaphor of smearing ink over paper. In this case paper roughness was mod-

ulated to depict the coordinate axes and labels. This can be interpreted as

writing text with a wax pencil on a squared-paper background. Similar tech-

niques, i.e., advection of concentration �elds, have also been studied in the

computational 
uid dynamics literature [vW93b].

Fig. 7. A dynamical system with three �xed points visualized with virtual ink

droplets
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4 Visualizing High-Dimensional Dynamical Systems

In recent years scienti�c visualization has been driven by the need to visualize

high-dimensional data sets within high-dimensional spaces. However most

visualization methods are designed to visualize point sets. Typically these

methods show statistical features like correlations, clustering or outliers. This

section on the other hand deals with the visualization of trajectories of high-

dimensional dynamical systems.

Several visualization methods for high-dimensional data can be distin-

guished. The visualization of high-dimensional data often uses a combination

of two or more of these methods, e.g., color coding is used on focused data

and assisted by interactive soni�cation. Interactive manipulation and explo-

ration introduces time as a fourth dimension into the space where the data

is explored.

Attribute mapping is one of the most commonmethods to visualize high-

dimensional data. This method uses one or two-dimensional lattices to de�ne

some simple geometric primitives, e.g., contours or planes. The attributes of

these geometric primitives can be used to visualize the remaining variables.

The most often used attribute is the color of the geometric primitive. Color

coding can be employed to display up to three variables. Each of these vari-

ables is mapped to one component of the underlying color model. The most

common color models are the RGB model and the HLS model. A major ad-

vantage of color coding is the fact that it is very often used (e.g., weather

forecast maps). Therefore many users are familiar with this kind of visual-

ization. Another advantage is the easy calculation and interpretation of color

coded images. A disadvantage is that colors do not have a unique order, so

color coded images have to show a color legend to allow an exact interpreta-

tion. Another disadvanatage is the perceptually non-uniformness of the RGB

model and HLS model.

Geometric coding is used for displaying high-dimensional data on a low-

dimensional lattice by displaying distinct geometric objects (e.g., glyphs or

icons) within the lattice and mapping the high-dimensional data to some ge-

ometric features or attributes of these objects. Cherno� Faces are an early

example of geometric coding [Che73]. A glyph is a generic term describing

a graphical entity whose shape or appearance is modi�ed by mapping data

values to some of its graphical attributes. An interactively positioned glyph

adapts its appearance according to the underlying data. Variables can be

mapped to the length, shape, angle, color and transparency of the glyph. Ex-

amples of this kind of visualization are given in [Ker90,dLvW93,PvWPS95].

An icon is a generalization of a single pixel to higher dimensions having mul-

tiple perceivable features and attributes. The fact that shape and color are

perceptually separable features is used for the display of color icons. They

merge separable features by using color, shape and texture perception to code

multiple variables. In [Lev91] an icon is presented that allows to encode six

di�erent parameters by color coding six di�erent lines within a square icon.
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Individual variables are not recognizable any more, but correlation patterns

appear.

Soni�cation is another method of making more than three dimensions

accessible to a researcher. A sound is produced according to the mapped

parameters [GS90]. Variables can be mapped to the loudness, the pitch and

even to the orchestration of the sound. One disadvantage of these methods is

that the various parameters that characterize a sound in
uence each other,

i.e., a sound at a constant volume but with changing tune is perceived as if the

volume changes too. Nevertheless soni�cation is a good tool for visualizing

high-dimensional data sets because it stimulates a di�erent sense organ and

thus may avoid overloading the visual system.

Another obvious way of visualizing high-dimensional data sets is the re-

duction of dimension. This can be done by either focusing, where only part

of the whole data set is shown, or by linking, where some focused parts are

linked together to represent the whole data set. Focusing techniques may in-

volve selecting subsets, reduction of dimension by projection, or some more

general manipulation of the layout of information on the screen. Examples

for subset selection techniques are panning, zooming, and slicing. Reduction

of dimension can be achieved by simply projecting high-dimensional spaces

along some axes into a low-dimensional space and/or color coding of multi-

parameter images. Techniques for more general layout manipulation include

a variety of techniques for adapting to a user's point of interest such a �sheye

views [Fur86] and rooms [HC86]. One consequence of focusing is that each

view will only convey partial information about the data. This can be com-

pensated by linking several focused visualizations. Linking can be done by

sequencing several visualizations over time (guided tour) or by showing them

in parallel simultaneously. The parallel visualization can be done in separate

windows as for example with the well known scattered data plots. It can

also be done within one single image by using parallel coordinates [ID90],

dimensional stacking [LWW90], or hierarchical axis [MTS91].

Parallel coordinates [ID90] represent dimensions on parallel axes. Each

axis represents one coordinate component. All axes are arranged orthogonal

to a horizontal line uniformly spaced on the display. An n-dimensional point

of the data set is displayed as a polyline that intersects the parallel coordinate

axes at the corresponding coordinate values of the data point. This method

allows the detection of special characteristics of the data by looking at the

patterns that are produced by the polylines. If, for example, all data points

are colinear in n-space, then all polylines will intersect each other at speci�c

points between the (vertical) parallel coordinate axes. Thus a line of n-space

can be visualized by a set of points between the parallel coordinate axes.

This gives a duality between points and lines which is an interesting feature of

parallel coordinates. By interactively brushing through the data set statistical

characteristics like outliers and clusters can be recognized easily.

Displaying an n-dimensional trajectory is an important task to allow a

direct global visualization of the behavior of a dynamical system. One possi-
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ble way for doing this uses the fact that an n-dimensional directional vector

can be described by n�1 angles. Since the direction changes smoothly along

a trajectory these angles can also be used to describe the behavior of a tra-

jectory thus reducing the dimension by one. This would allow us to display

four-dimensional trajectories in three-space. The investigation of topological

structures such as two-dimensional and three-dimensional manifolds in four-

space has already been done by Hanson [HC93]. In the followingmore general

methods for visualizing n-dimensional trajectories with n � 4 are discussed

[WLG97].

4.1 Extruded Parallel Coordinates

Extruded parallel coordinates are based on parallel coordinates. With parallel

coordinates a trajectory is sampled during its evolution at discrete points in

time fx(t0); x(t1); x(t2); : : :g and its coordinates are inserted as polylines in

a parallel coordinate system (see left side of Figure 8). Instead of using the

same coordinate system for each sample we now move the parallel coordinate

system along the third spatial axis. The polylines of the samples can be

viewed as cross sections of a moving plane with a complex surface which

de�nes the trajectory. The right side of Figure 8 shows this surface and the

moving parallel coordinate system at the end of the surface.

�!

x1 x2 x3 x4 x1 x2 x3 x4

xt0

xt1

xt2

xt3

xt4

xt0

xt1

xt2

xt3

xt4

Fig. 8. A discrete sampled trajectory in parallel coordinates (left) and a three-

dimensional extruded surface de�ning the same trajectory (right)

The geometry of the surface can be generated and modi�ed fast and

easily allowing an interactive exploration of trajectories in the dynamical

system. All exploration methods used with parallel coordinates can be used

as well since rotating the surface and parallel projecting it reveals exactly the

parallel coordinate representation. This can be used as a starting point for

the exploration of the trajectory. Clustering and correlation can be visually

detected [ID90]. Rotating the surface a little bit reveals the evolution of the

trajectory over time without any animation methods that would have to be

used for parallel coordinates.

Convergence or divergence can be observed by varying the starting coor-

dinates of the trajectory slightly. The changing shape of the surface shows for
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Fig. 9. Small jitter at the starting point (A) of a chaotic attractor yields large
e�ects at certain coordinate components (B) after some period of time

each dimension if its attracted or repelled by some topological structure. If

for one dimension a whole interval is used for the starting points of trajecto-

ries the surface expands to a volume which again can be used for a structural

analysis of the underlying dynamical system.

In Figure 9 extruded parallel coordinates illustrate a trajectory of a chaotic

attractor (�ve-dimensional system). To show the chaotic behavior of the at-

tractor, the starting point of the third dimension is slightly jittered (point A)

and three di�erent trajectories (shown with di�erent colors) are superim-

posed. The tiny di�erences of the starting coordinates produce large changes

after a few integration steps (points B). Interestingly these di�erences are

noticeable only in the �rst three dimensions so far (integration over a longer

time interval shows diverging behavior in the fourth and �fth dimension also).

4.2 Linking with Wings

Linking with Wings is a new method of linking data. Two arbitrary dimen-

sions of the high-dimensional system are selected and displayed as a two-

dimensional trajectory within a base plane (the high-dimensional trajectory

is projected into a two-dimensional subspace). The third dimension (along

the z-axis) can now be used to display a third variable over the base trajec-

tory. If the resulting three-dimensional trajectory is connected with the base

trajectory this connection can be thought of as a wing on the base trajectory.

This wing can be tilted at each point within a plane normal to the base tra-

jectory. When di�erent tilting angles are used several additional dimensions

can be linked to the base trajectory on separate wings (see Figure 10).

Theoretically any number of wings can be added to display high-dimensional

trajectories. As the number of wings increases occlusion might become a se-

vere problem. To avoid this the wings can be rendered transparently with

opaque tubes at the top. Again this method is easy to implement and fast

allowing its use within an interactive exploration tool. Such a system could
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x1

x2

x3 x4

Base
Trajectory

Fig. 10. Two-dimensional base trajectory with two wings (for the third and fourth
dimension) linked to it

for example allow to animate a 
ight along the base trajectory, where the

change in the variables linked to wings can be seen easily.

The wings can also be textured with a grid texture allowing an exact

measurement of the wing dimensions. To overcome the problem of occlusion

texture can be used to modulate the transparency of the wings. Negative

values of variables displayed on wings can be shown by expanding the wing

to the opposite side of the base trajectory or by using an additive o�set

for each wing so that the minimum of each variable is mapped to the base

trajectory. For this approach the zero line has to be encoded on the wing.

This can again be done by using a speci�c texture.

When a four-dimensional trajectory has to be displayed, the angles of

the wings can be chosen to be �
2
and ��

2
. In this case wings lie within the

base plane. The trajectory is shown in a two-dimensional image without any

projectional distortions .

Self intersection of the wings can be a problem. The size of the wings

should be chosen to be rather small with respect to the size of the base

trajectories. This is required to avoid massive occlusion. Furthermore the

angles of the wings must not be too big. This ensures that the occurrance

of self intersections of the wings within regions where the base trajectory

exhibits big curvature is not a severe problem.

In Figure 11(a) wings are applied to a base trajectory of a four-dimensional

econometric model [WGP97b], which describes the interactions of population,

economy, environmental health, and pollution. Rather big wings with larger

angles are used intentionally to show the artifacts due to intersecting wings

at the cusp of the base trajectory (point A). In spite of the self intersections

of the wings the overall behavior of the system is visible: the green trajectory

declines constantly along the whole trajectory, whereas the blue trajectory

(describing the environmental health) collapses at point A and regenerates

at point B (here the wings intersect again).

Figure 11(b) shows a hedge-hog visualization of a four-dimensional data

set. On a regular four-dimensional grid 
ow directions are depicted. The visu-

alization shows a cyclic behavior in the �rst and second dimension, whereas

the third dimension is attracted and the fourth is repelled by the origin. The

cyclic behavior in the ground plane is additionally visualized by using OLIC.
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(a) (b)

Fig. 11. Self intersecting wings due to high curvature of the base trajectory (a) {

Hedge-hog visualization of a four-dimensional data set (b)

4.3 Three-dimensional Parallel Coordinates

Three-dimensional parallel coordinates are again based on the parallel coor-

dinate method. The basic idea of parallel coordinates is to depict each co-

ordinate component on a one-dimensional space. All these one-dimensional

spaces are put together within a two-dimensional space and linked with one-

dimensional polylines. All information is packed in the two-dimensional space.

Since the visualization of three-dimensional structures poses no problem we

increased each dimension of the parallel coordinate method. The basic infor-

mation now resides in separate two-dimensional spaces (planes) where two

dimensional projections of trajectories are shown. These planes are combined

within three-space and linked by surfaces which connect the separated pro-

jections of trajectories (see left part of �gure 12).

The positioning of the planes is more 
exible in comparison to the parallel

lines of the parallel coordinate method. The planes can be moved and rotated

within three-space to avoid occlusion in di�erent regions of the structure. The

right side of Figure 12 shows two coinciding planes, where the connecting

surface extends into the third dimension to give a better overview of the

linking.

Placing the planes orthogonal to each other as shown on the left side

of Figure 13 is another possibility of showing the structure of the linkage of

the separated trajectories. All these arrangements can be stacked to allow the

representation of even more dimensions. An example is given in the right side

of Figure 13, where an eight-dimensional trajectory is shown. Since the planes

and linking surfaces are rendered transparently or are approximated with

lines, no massive occlusion occurs (notice that all four separate projections

of the trajectory can be seen easily).

If the structure of the trajectory is more complex, as for example in the

case of a trajectory of a chaotic attractor, the resulting visualization can be
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x1=x3

x2=x4

Fig. 12. Linking parallel planes instead of lines extends the idea of parallel co-

ordinates by one dimension (left); these parallel planes can coincide, with three-
dimensional linking surfaces (right)

rather crowded. Since the rendering of the presented structures is fast, inter-

active brushing methods can be used to overcome this problem. For instance

the linking surface can be rendered transparently, and only a small temporal

interval of the linkage is rendered opaquely. When the interval is moved cor-

responding parts of the trajectories can then be detected (see Figure 14(b)).

x1

x2

x3
x4

x1=x2

x3=x4
x5=x6

x7=x8

Fig. 13. Planes might be orthogonal (left) and stacking allows an arbitrary number

of dimensions to be displayed (right)

When within one dimension a whole interval is chosen as initial region, the

linking surfaces expand to linking volumes, whose changing thickness reveals

convergent and divergent regions of the trajectory. Again this interval can be

chosen interactively for each dimension allowing a quick exploration of the

behavior of the dynamical system.

In Figure 14(a) a six-dimensional predator-prey system is stacked with

the extended parallel coordinate method. Due to the simple shape of the

separated trajectories, the linking surfaces can be seen easily and so the

whole dynamics of that speci�c trajectory is visible. Figure 14(b) on the

other hand shows a trajectory of a complex dynamical system derived from

a Lorenz system. Here the structure of the linkage can not be perceived

easily. Therefore a small temporal interval has been highlighted on the linking

surface. This interval can be animated or interactively moved forward and

backward to reveal the structure of the linkage.
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(a) (b)

Fig. 14. A six-dimensional stacked predator-prey model with simple linkage (a)

{ Complex linkage with highlighted time interval for the trajectory of a chaotic
attractor (b)

Java applets concerning the above techniques have been implemented and

can be accessed at http://www.cg.tuwien.ac.at/research/vis/dynsys/NDim97/.

5 Advanced Streamsurface Representations

Streamsurfaces are generated by following a line of initial positions through

the phase space of a dynamical system. They help to understand topologi-

cal structures in phase space. The occlusion problem may, however, become

severe whenever large scale opaque surfaces are used in the visualization.

An interesting technique to deal with the problem of large scale occlusion

is utilized in [AS92]. The authors discuss various types of three-dimensional

dynamical systems by using hand-drawn illustrations representing the topo-

logical structure of the systems. Streamsurfaces make up an important part of

most of their images. To reduce the negative e�ects caused by occlusion they

use only arrow-shaped parts of a streamsurface instead of the whole surface.

Additionally they use arrow-shaped holes within streamsurfaces to diminish

occlusion and include directional information in the images. They also use

simple textures in their hand-drawn illustrations to convey a better under-

standing of the shape of objects in phase space. Highly occluding stream-

surfaces occur for example in dynamical systems that exhibit mixed-mode

oscillations [MSLG97]. A typical streamsurface for such a system occludes

important parts of itself by forming a shell-like roll with several turns. Vari-

ous extensions of streamsurface representation are discussed in the following

sections to cope with this problem.
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base tilebase tile

"inside"
"border"
"outside"

Fig. 15. Mapping of streamsurface vertices into the base tile and classi�cation.

5.1 Stream Arrows - Segmenting Streamsurfaces

With higly occluding streamsurfaces an opaque representation of the surfaces

is not appropriate. It is also not a good idea to represent a streamsurface being

homogeneously transparent. Portions of the image may be covered by many

layers of semi-transparent parts of the streamsurface. This makes it quite

di�cult to recognize the spatial arrangement of the objects. Several methods

modulate the transparency locally within a surface [IFP96,Rhe96].

Stream arrows [LMGP97] also belong in this area of research. Stream

arrows are a computer based realization of the ideas of [AS92] by automati-

cally segmenting a streamsurface with arrows. Semi-transparent parts of the

streamsurface allow the viewer to see through and perceive parts of the model

that otherwise would have been occluded. The opaque part of the stream-

surface on the other hand still conveys a clear impression of the shape of

the streamsurface. See Figure 17 for a typical image. The arrows used in the

segmentation are distorted according to the local 
ow and also indicate the


ow direction. Long stream arrows, for example, visualize a streamsurface

region of relatively high velocity. Comparing the width of an arrow's head to

the width of it's tail indicates regions of convergent or divergent behavior.

Stream arrows can be animated by moving them along streamlines. Only a

short animation sequence has to be calculated which is then cycled.

Stream arrows are generated by one of two approaches. On the one hand

they can be realized as an alpha-texture that is composed of a set of regularily

arranged arrows. Either the stream arrows or the remaining surface portions

can be rendered transparently. With this approach the geometric database

of the streamsurface which is a set of triangles is not modi�ed.

On the other hand stream arrows can be represented directly by geometri-

cally separating the original streamsurface into a set of arrow-shaped patches

and the remaining surface portions which contain holes. This approach al-

lows to further operate on both parts independantly from each other. The

streamsurface is tiled with a base stream-arrows tile (texture) which contains

a single arrow. The shape of the arrow, its size, and the tesselating scheme

are given as parameters of the base tile (see Figure 15).
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Each triangle of the streamsurface is classi�ed with respect to the base

tile as being inside, outside or on the border of a stream arrow. Triangles

lying on the border of a stream arrow are segmented into an inside and an

outside portion.

Fig. 16. Using di�erent shapes with the stream-arrows technique

Although the stream-arrows technique is based on the idea of mapping

arrow-shaped objects to streamsurfaces, the same method can be easily used

to map arbitrary shapes to streamsurfaces. Figure 16 shows a streamsurface

computed for a 
ow around a 3D torus. The streamsurface is segmented by

using two di�erent base tiles.

Figure 17 illustrates the stream-arrows texture applied to a streamsurface

typical for mixed-mode oscillations. In this case a streamsurface is generated

by following a line of initial conditions (colinear to the c-axis) through phase

space. As the streamsurface evolves over time it forms a shell-like roll. Color

coding was used to distinguish states later in time from earlier ones, i.e.,

as time goes on the corresponding streamsurface regions are colored blue,

green, yellow, and red, respectively. Due to local varying velocities and large

divergence, arrows located in the red part of the streamsurface are bigger

than those in the green region.

5.2 Hierarchical Stream Arrows

The stream-arrows approach is based on a regular tiling of texture space.

This is not well-suited for streamsurfaces that spread over regions of high

divergence or convergence. The arrows become either too big or too small in

certain areas. To eliminate this undesirable e�ect a hierarchical extension to

the stream-arrows technique is used [LMG97].
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Fig. 17. Streamsurface with stream arrows

The goal is to generate stream arrows which are almost equal-sized in the

rendered image. When the 
ow, for example, diverges locally, the method

switches discretely to the next detailed level of stream arrows.

The hierarchical stream-arrows texture consists of a stack of stream-arrows

textures, where successive levels contain arrows with decreasing size. The

hierarchical stream-arrows texture is speci�ed by the shape of one base tile,

i.e., the outline of an arrow, and two vectors dc and dr (see Figure 18) which

de�ne the o�sets between adjacent columns and rows of arrows, respectively.

base tile

Level 0

Level 2

dr

dc

o

a

Level 1

Fig. 18. Hierarchical stream arrows texture, speci�cation parameters

Additionally there is a factor a which represents the scale relation between

level i and i+ 1. If a=1=2, for example, the size of stream arrows is doubled,

when the algorithm switches to the next coarser level. Finally there is a vector

o, which is the o�set of the entire texture with respect to the origin of texture

space. O�set vector o becomes important, when animation is applied. Due

to this speci�cation each stream arrow can be addressed by exactly one ID

given by three numbers. ID (level, col, row) identi�es one stream arrow as a
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copy of the base tile, �rst translated by o+(dc � col, dr � row), and then scaled

about the origin by a
level.

The algorithm segments the streamsurface triangle by triangle. For each

triangle the corresponding level in the hierarchical stream-arrows texture is

determined by comparing the size of the triangle in texture space to its size

in phase space coordinates. This ratio is used to �nd the most appropriate

level in the stack of stream-arrows textures. Then all tiles of the chosen level,

which might intersect the triangle, are determined. It must be assured that

neighboring triangles are consistently segmented with arrows of the same level

in the hierarchical stream-arrows texture. For details see [LMG97]. Figure 19

shows two examples of dynamical systems with largly varying divergence

where hierarchical stream arrows are useful.

Fig. 19. Hierarchical stream arrows, two examples

5.3 Anisotropic Spot Noise as Streamsurface Texture

Spot noise [vW91] can be e�ciently used to emphasize streamlines and time-

lines simultaneously within a streamsurface. An anisotropic spot, e.g., cross

or hash, accentuates horizontal and vertical directions in the resulting spot

noise (see Figure 20).

The anisotropic spot noise of Figure 20 is mapped onto the streamsurface

so that the horizontal direction of the texture is aligned with the stream-

lines and the vertical direction of the texture is aligned with the timelines.

Figure 21(a) shows a textured streamsurface of the mixed-mode oscillations

model. The upper part of the streamsurface is rendered semi-transparently. In

Figure 21(b) the separated stream arrows are slightly shifted in the direction

perpendicular to the remaining streamsurface portions.
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Fig. 20. spot (enlarged) and the resulting spot noise texture

(a) (b)

Fig. 21. Streamsurface with anisotropic spot noise texture (a) {Stream arrows

shifted out of the stream surface and anisotropic spot noise (b)

6 Conclusion

Graphical analysis is a valuable tool in the investigation of analytically de-

�ned dynamical systems. This paper discusses some theoretical concepts con-

cerning such systems. In addition to a direct representation these concepts al-

low the display of derived characteristics of dynamical systems. An overview

of various visualization techniques shows that di�erent investigation goals

lead to greatly varying graphical representations. Three major research direc-

tions, i.e., texture based techniques, visualizing high-dimensional dynamical

systems, and advanced streamsurface representations, emphasize the diversity

of graphical tools available for the analysis of analytically de�ned dynamical

systems.
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