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Abstract

Fast Oriented Line Integral Convolution (FROLIC), which is a variant of LIC, illustrates
2D vector fields by approximating a streamlet by a set of disks with varying intensity.
FROLIC does not only show the direction of the flow but also its orientation.
This paper presents color-table animation of FROLIC images. Various color-table
compositions are discussed in detail. When animating FROLIC images visual artifacts
(pulsation, synchronization) must be avoided. Several strategies in this respect are dealt
with.
Color-table animation of FROLIC has been implemented as Visual C++ application for
Windows NT, whereby the calculation of the dynamical system is performed with
Mathematica. This allows researchers from various disciplines to conveniently explore
and investigate analytically defined 2D and 3D vector fields.

1 Introduction

Several texture-based techniques for the visualization of flow fields have been
investigated in recent years.

Spot noise [Wijk91] is a stochastic texture synthesis technique for visualizing
scalar fields and vector fields. A spot noise texture is constructed by adding randomly
weighted and positioned spots. To visualize a flow field the spots can be elongated in the
direction of the locally varying flow. The quality of the image depends on the type of
texture used and the calculation can be rather time consuming. In [LeWi95]
improvements and extensions of the spot noise technique are discussed.

With Line Integral Convolution (LIC) [CaLe93] a white noise input texture is
filtered along curved streamline segments. The intensity I(x0) at an arbitrary position x0

of the output image is calculated by

I k s s T s ds
s s

s s

l

l

( ) ( ) ( ( )) ,x0
?

= − ( )
−

+

∫ 0
0

0

1σ



2

where T is the input texture, σ(s) is a parameterized streamline through x0

(x0 = σ(s0)) and k describes the convolution kernel. sl specifies the length of the
streamline segment used in the filter operation. The texture values along the
streamline segment σ(s), (s0-sl) ≤ s ≤ (s0+sl), are weighted with the corresponding
kernel values k(s – s0) and are accumulated to give the intensity I(x0) at position x0.
Various kernel functions k() can be used in the filter operation. Animation of the
flow field can be achieved by using a ramp-like convolution kernel and phase
shifting the kernel in successive images. This gives the impression of flowing
ripples, which also encodes the orientation of the flow. Extensions and performance
optimizations of LIC are investigated in [FoCo95, StHe95, KiBa96, ShJo96, InGr97,
ShKa97].

Line Integral Convolution does not encode the orientation of a flow field in still
images. Oriented Line Integral Convolution (OLIC) [WeGr97a] overcomes this
disadvantage and shows the orientation of a flow even in still images. There are two
main differences between LIC and OLIC: First LIC uses typically textures with much
higher spatial frequency than OLIC. OLIC uses sparse textures, which consist of
randomly, distributed distinct spots. OLIC can be thought of as a set of ink droplets
which are distributed over a sheet of paper and the underlying vector field smears them
over the sheet of paper. Ideally the smeared ink droplets are so far apart from each other
that they do not overlap. The second difference between LIC and OLIC is that OLIC
uses a ramp-like convolution kernel k(). Such a kernel produces streamlets with varying
intensity along the trace. The sparse texture and the varying intensity of the streamlets
make it possible to recognize orientation of the underlying flow field. In figure 1 the
difference between LIC and OLIC is clearly visible. Figure 1 (a) shows the LIC image
of a circular flow. In this image it is not recognizable if the flow is in clockwise or
counterclockwise orientation. Figure 1 (b) shows the OLIC image of a circular
clockwise flow and figure 1 (c) shows the OLIC image of a circular counterclockwise
flow. The additional information in the OLIC image is gained at the expense of spatial
resolution.

Figure 1: LIC image of circular flow (a), OLIC image with clockwise flow (b),
OLIC image with counterclockwise flow (c) [WeGr97b]
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To avoid the appearance of undesirable macroscopic patterns in the OLIC image, the
starting points of the streamlets must be carefully selected. Positioning the starting
points (i.e., ink droplets of the texture) on a regular grid would produce annoying
macroscopic patterns. A jittered grid is a better choice. If the distance between the
starting points of the streamlets is too large a lot of flow information is not depicted in
the result image. On the other hand, if the starting points are too close together the
overlapping of the streamlets might be too extensive. Finding an optimal droplet
distribution in the input texture so that tight packing of streamlets results in the output
image is discussed in [WeGr97b].

The calculation of OLIC images is rather a time consuming task. Therefore Fast
Rendering of Oriented Line Integral Convolution (FROLIC) was introduced in
[WeGr97b]. FROLIC calculates an approximate solution to the exact convolution result
of OLIC.  In OLIC each droplet produces a trace with decreasing intensity from head to
tail. FROLIC approximates the droplet trace by a sequence of disks with varying
intensity. Each disk itself is drawn with a constant intensity. From head to tail the
intensities of the disks are decreasing. If n disks are taken to approximate the streamlet,
the intensity decreases in n discrete steps. The intensity of adjacent disks is decreasing to
simulate the continuous ramp kernel of the OLIC method. Figure 2 shows the difference
between droplet traces produced with OLIC and FROLIC.

Figure 2: Exact trace of a droplet with OLIC (a) and approximated trace of a
droplet with FROLIC (b) [WeGr97b]

FROLIC calculates a short streamline (streamlet) by integrating the underlying flow
field. Each streamlet is calculated over a short but fixed period of time. The length of the
streamlet indicates the velocity of the underlying flow field. If each streamlet consists of
a constant number of disks regardless of streamlet length an easy animation algorithm is
possible.

FROLIC allows a much faster calculation than OLIC, because drawing disks is
done faster than doing costly convolution operations. Investigations show that FROLIC
(without hardware supported rendering) is approximately two orders of magnitude faster
than OLIC. This is discussed in detail in [WeGr97b].

Animation of OLIC images is realized by simply phase shifting the convolution
kernel in successive images. There are two possible ways for achieving animation with
FROLIC. The first method phase shifts the convolution kernel the same way as is done
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to animate OLIC images. The second method uses color-table animation, with which
color table entries are shifted to achieve the impression of motion. A brief and
theoretical description of color-table animation for FROLIC images is given in
[WeGr97b].

This paper presents an in-depth investigation of color-table animation for
FROLIC. In section 2, color-table animation and several features, like the simulation of
various filter functions to avoid undesired effects during animation, are discussed. The
FROLIC algorithm and color-table animation is implemented as Visual C++ application.
Implementation details and results are discussed in section 3. The application uses
Mathematica to calculate and simulate a dynamical system. Finally in section 4
conclusions are given and future work is outlined.

2 Color-Table Animation of FROLIC

FROLIC images encode direction, orientation and speed of a vector field in a single
image. This information can also be represented within an animation. Animation of
OLIC is achieved by simply phase shifting the convolution kernel. This approach can be
adapted for FROLIC as well. As mentioned earlier a FROLIC streamlet consists of a set
of disks with decreasing intensity from head to tail. All streamlets consist of the same
number of disks. Within an image each streamlet is integrated over the same period of
time.  Therefore speed is encoded in the length of the streamlets. Streamlets are
calculated by integrating numerically the underlying flow field. The calculation can be
done either with Euler integration or with more elaborate Runge Kutta methods
[PrFl88].

Color-table animation is based on the fact that in successive frames of the
animation only the color of the disks changes but not their spatial position or shape.
Color-table animation is a very fast approach, which can be used for animating FROLIC
images. With a color table the intensity value of a pixel is specified indirectly. Each
pixel is assigned a short color-table index, which points to a specific entry in the color
table. Available intensities or colors are stored in the color table itself. Color-table
animation changes the entries of the color table instead of changing the corresponding
image. Changing the small color table can be done much faster then changing the image
itself. The possibilities of color-table animation are rather limited but sufficient for
animating FROLIC images. Figure 3 shows how animation of FROLIC images can be
achieved with color-table animation.
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Figure 3: Color-table animation for FROLIC, two consecutive frames, n = 6

The color table consists of a set of gray values with increasing intensities.  A color table
ct with n entries (n assumed to be even, e.g., 256) contains values with increasing
intensity. Intensity is in the range between 0 and 255.
Therefore

where ct[i] is the color-table entry on position i. If ctt is the color table at time t the color
table for the following time step is calculated incrementally.

Each streamlet consists of a set of disks, which are drawn with successive color-table
entries. Adjacent disks are represented by adjacent color-table indices. The assignment
of color-table indices to disks (i.e., drawing disks with corresponding color-table
indices), respectively pixels, is only done once for initialization and not changed
anymore. Animation is achieved by changing the content of the small color table instead
of redrawing the image on the screen. Cycling the color-table entries generates
consecutive frames of the animation. See figure 4 where the color table is initialized
with linearly increasing values.
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Figure 4: Consecutive color tables at time t = 0, t = 1 and t = 2

In the following we will discuss different compositions of color tables. Using a color
table as in figure 4 produces images, which encode orientation of the flow in still
images. During animation, however, two undesired effects are produced: the
synchronization effect and the pulsation effect. The composition of a color table, which
produces streamlets with orientation, and how to overcome the two undesired effects, is
described in section 2.1. Another composition of a color table, which does not encode
the orientation of the streamlets, is described in section 2.2. Such color tables encode the
orientation of the flow only when the image is animated, but overcomes the pulsation
effect.

2.1 Color table for streamlets with orientation in still images

To show the orientation of the flow in still images the color table is assigned a ramp
function, i.e., a linearly increasing function (see figure 5).

Figure 5: Color table, producing streamlets with orientation

When the head of a streamlet is drawn with the highest color-table index and the tail
with the lowest index the intensity decreases form head to tail and thus encodes the
orientation of the flow.
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Cycling a ramp function and starting each streamlet with the same color-table
index produces two undesired effects in the resulting image. The first problem can be
described as pulsation effect of the animated image. The human visible system is very
sensitive to appearing and disappearing bright spots, therefore the disappearance of a
bright disk at the head of a streamlet and the simultaneous appearance of a bright disk at
the end of the streamlet is very noticeable and disturbing to the eye. To solve this
problem a simple filter f (see figure 6) can be used, which initially increases linearly, is
constant in the middle portion, and finally decreases linearly. Filter f[i] is defined as
follows:

Figure 6: A simple filter f

The modified color table ctt´ of frame t is calculated by cycling the color table ctt-1 of
frame t-1 and applying filter f (see figure 7).

This approach assumes a smooth intensity fade-in and fade-out at the beginning and the
end of a streamlet.
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Figure 7: Color table and the filter with the modified color table

The second problem is called synchronization effect in the animated image. All
streamlets begin with the same color-table index, i.e. the same intensity values. During
animation, the disk with the highest intensity has in all streamlets the same relative
position. Bright spots disappear at the head and reappear at the tail of all streamlets
simultaneously. Up to now all streamlets are drawn with color-table indices decreasing
from n-1 (head) to 0 (tail). Using for each streamlet a random initial offset r (the tail is
assigned index r, the head is assigned index (n-1+r)mod n) would avoid the
synchronization effect. But this approach can not be used together with filter f to avoid
also the pulsation effect. Due to the filter f a color-table index can not simultaneously
represent a disk in the middle of one streamlet and a disk at the beginning or end of
another streamlet. To avoid both the pulsation and the synchronization effect the
following approach is feasible.

The color table is subdivided in m non-overlapping equal-sized subtables ctt
u.

Each subtable is assigned an initial offset and is cycled by its own. Assuming
n mod 2 = 0 and n mod m = 0

The composition of such a color table is shown in figure 8, which uses m color tables. n
is the number of color-table entries and m is the number of subtables.
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Figure 8: Color table divided into m non-overlapping subtables and corresponding filter

Cycling such a color table (by cycling each of the subtables by) and applying filter f to
each of the subtables is done according to the following formulas:

There is a trade off between the number of subtables and the number of color-table
entries belonging to a subtable. The more subtables the better the effect of reducing the
synchronization effect. On the other hand, a certain number of different intensities per
subtable is necessary to avoid too large intensity jumps along streamlets.

The perceived brightness of a disk depends on the intensity value and the area of
the disk. The previous method attenuates the intensity at the beginning and the end of a
streamlet with filter f. Another approach to overcome the synchronization and pulsation
effect modifies the size of the disks. Such a modified streamlet is shown in figure 9.
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Figure 9: Streamlet with disks of different size

The disk diameter is calculated by reducing the area of the disk by the underlying filter.

where r[i] is the modified disk diameter and f is the filter value. Using such a filter
reduces the impression of the appearance of a bright spot at the tail of the streamlet. The
streamlets are only drawn once and then animated by changing the color-table entries.
To reduce the synchronization effect it is not necessary to divide the color table into
subtables, because the intensities in the color table are not filtered with function f. Only
one color table can be used and a random initial phase shift is used for each streamlet. If
a color table has n entries, then n different phase shifts are possible. Therefore n
different kinds of streamlets can be found in the image.

2.2 Color table for streamlets without orientation in still images

Another method to reduce the pulsation effect of animated FROLIC images is to use
another color-table composition (see figure 10). For a color table with n color-table
entries and one peak in the middle the intensity ct[i] is calculated by:

If the number of representable intensities on a screen is limited, it may make sense to
use a color table which contains more than one peak. Using m evenly distributed peaks
the intensity ct[i] is calculated by:
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To overcome the synchronization effect, each streamlet is started with a random initial
color-table index. As mentioned the disadvantage of the method is that flow orientation
is not encoded in still images until the animation is started.

Figure 10: Color tables, producing streamlets without orientation

Using a color table as shown in figure 11 reduces the disadvantage that flow orientation
is not encoded in still images, but the pulsation effect is still reduced. To overcome the
synchronization effect, each streamlet is assigned a random initial color-table index. The
intensity ct[i] is calculated by:

ct i

n

m

i
n

m
i

n

m

n

m

n

m

i
n

m

n

m

n

m
i

n

m

n

m

[ ] =





 ≤ <

− −



 ≤ <














( )

255

2

0
2

255
255

2
2 2

10*

* mod mod

*

* mod
* *

mod

ct i

i

i
i i

i i

n i
i i n

p
p

p

p
p

[ ] =
≤ <

−
−

−
≤ <










( )

255
0

255
255 11

*

* ( )



12

Figure 11: Color table, producing streamlets with orientation, and reduces the pulsation
effect

3 Implementation and Results

In this section an implementation of FROLIC using Mathematica and Visual C++
[Proi96, Schil96] under Windows NT is described. The calculation of the dynamical
system is done with Mathematica [Wolf97] and the visualization is performed by the
Visual C++ application. Both, the Mathematica application and the Visual C++
application can be accessed at http://www.cg.tuwien.ac.at/research/vis/dynsys/ct/. Figure
12 shows the data flow from Mathematica to the Visual C++ application. A
Mathematica Notebook, which is a document that handles interaction between the user
and Mathematica, is used to specify the dynamical system (set of differential equations).
A module written in Mathematica numerically integrates the dynamical system and
writes the result on a file. The result is given as numerical approximations of streamlets
of the underlying dynamical system. Using Mathematica for calculating the dynamical
system has the big advantage of utilizing a powerful formula parser. The Visual C++
application reads the result file and visualizes the vector field.
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Figure 12: Data flow from Mathematica to the Visual C++ application

A Mathematica Notebook is shown in figure 13. This Notebook can be used to
calculate two-dimensional dynamical systems. Before using the Mathematica module, it
must be loaded into the Mathematica workspace. The command “<<Modulename” reads
in a particular Mathematica package (e.g., Frolic). After successfully loading the module
the parameter, which specify the dynamical system, can be altered.
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Figure 13: Mathematica Notebook for the specification of a dynamical system

The following parameters can be modified: xRes and yRes determine the vertical
and horizontal resolution of the result image. xMin, xMax, yMin and yMax determine the
calculation-window, i.e, the area of phase space where the dynamical system must be
calculated. GridDist is the distance between grid points, GridJitter determines the
maximum jittering of a grid point. tInt is the integration period and determines the
length of the streamlets. xDot and yDot are the differential equations of variable x and
variable y for the independent variable t (time). Finally filename is the name of the
output file which contains integration result of the dynamical system. After the
parameters are specified, “functionname” (e.g, Frolic) starts the calculation. With
“LinkLaunch[“frolic.exe”];” the Visual C++ application can be started within
Mathematica.

Another Mathematica module can be used for calculating three-dimensional
dynamical systems. The number of required parameters must be extended to allow the
specification of three–dimensional dynamical systems.

The Visual C++ application allows the visualization and animation of the
dynamical system previously calculated with Mathematica. The result file, which holds
the data for the vector field, is read in and the streamlets are drawn. A three-dimensional
dynamical system is visualized by simply using parallel orthographic projection.
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Various settings can be chosen for the visualization of vector fields. The dialog of the
Visual C++ application is shown in figure 14.

Figure 14: Dialog of the Visual C++ application

The Disk-Diameter determines the thickness of the streamlets. Two different color tables
can be chosen and are described in detail in section 2: color table producing streamlets
with orientation and color table producing streamlets without orientation. If a color
table, which produces streamlets with orientation, is selected, the number of subtables
can be chosen. Using such a color table and one subtable produces useful still pictures.
Figure 15 (a) shows such an image. Animating this vector field would produce the
synchronization effect, because all streamlets begin with the same color-table index, i.e.,
the same intensity values as described earlier in section 2. To avoid the synchronization
effect during animation a random offset (using more than one subtable) is required.
Figure 15 (b) uses 7 subtables within a color table. Using more than one subtable
produces still images, that do not show the orientation very well. For each streamlet in
figure 15 (a), the disk with the highest intensity has the same relative position, whereas
seven different random phase shifts, producing seven different types of streamlets, are
given in figure 15 (b).
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Figure 15: FROLIC image (a) with 1 subtable and (b) with seven subtables per color
table

Figure 16 (a) shows a FROLIC image with streamlets that do not show the orientation of
the flow. Figure 16 (b) shows the same dynamical system, but orientation is encoded by
using a color table which produces streamlets with orientation.

Figure 16: FROLIC image and  (a) color table producing streamlets without and (b) with
orientation

The speed of the animation is adjustable in two ways. Firstly, with Time Delay and
secondly with increasing the Colortable-Shift. A timer is a clock application that notifies
an application at regular intervals. Time Delay specifies the time in milliseconds after
which a timer message is sent periodically. Each timer message causes a color-table
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shift. The smaller the Time Delay the faster the animation. The speed of the animation is
limited by the calculation overhead. To increase the speed of the animation, it is possible
to increase the step size, with which the color-table entries are shifted.

To avoiding the pulsation effect, it is possible to choose between two different
methods. Scaling the intensity of the color-table entries with a filter and scaling the disk-
diameter of the streamlets. Scaling the intensities of the color-table entries is done before
the system palette is updated and slows down the animation. Scaling the disk-diameter is
done as an initial step, when the streamlets are drawn.
Figure 17 (a) shows a FROLIC image with streamlets using scaled disks. The FROLIC
image in figure 17 (b) shows streamlets consisting of equal sized disks.

Figure 17: FROLIC image with streamlets (a) with scaled disks and (b) with equal disks

4 Conclusion

Fast Oriented Line Integral Convolution (FROLIC) illustrates two-dimensional flow
fields by approximating a streamlet through a set of disks with varying intensity. This
paper describes various aspects of color-table animation for FROLIC images. Color-
table animation is a very efficient algorithm. Each disk of the streamlets, respectively
pixel, is assigned a short color-table index, which points to a specific entry in the color
table. Various different compositions of color tables are discussed: color tables
producing streamlets with orientation and color tables producing streamlets without
orientation. Two undesired effects, the pulsation and the synchronization effect, are
discussed and various techniques to reduce the two effects are described
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FROLIC color-table animation is implemented as a Visual C++ application,
whereby the calculation of the dynamical system is performed with Mathematica.
Mathematica has the advantages that it offers a powerful formula parser and it offers a
great flexibility concerning the specification of dynamical systems.

Future work will include further work in the visualization of three-dimensional
dynamical systems and investigatios of variations of streamlet approximation. For
example, disks with varying radii may represent streamlets in strongly converging or
diverging areas.
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