
Smooth Levels of Detail

Dieter Schmalstieg Gernot Schaufler
Vienna University of Technology, Austria Kepler University Linz, Austria

dieter@cg.tuwien.ac.at gs@gup.uni-linz.ac.at

Abstract
Levels of detail (LODs) are used in interactive computer
graphics to avoid overload of the rendering hardware
with to high numbers of polygons. While conventional
methods use a small set of discrete LODs, we introduce a
new class of polygonal simplification: Smooth LODs. A
very large number of small details encoded in a data
stream allows a progressive refinement of the object from
a very coarse approximation to the original high quality
representation. Advantages of the new approach include
progressive transmission and encoding suitable for
networked applications, interactive selection of any
desired quality, and compression of the data by
incremental and redundancy free encoding.

1. Motivation
When rendering complex three-dimensional scenes, it is
commonly the case that many objects are very small or
distant. The size of many geometric features of these
objects falls below the perception threshold or is smaller
than a pixel on the screen. To better use the effort put
into rendering such features, an object should be
represented at multiple levels of detail (LODs). Simpler
representation of an object can be used to improve the
frame rates and memory utilization during interactive
rendering. This technique was first described by Clark
already in 1976 [1], and has been an active area of
research ever since.

Coarser levels of detail should only be used for small or
distant objects, so that the difference in image quality
cannot be noticed by the observer. Frequently models are
too complex for the available rendering capacity, so that a
coarser approximation than the one desired must be
drawn to prevent a reduction of the frame rate. In such
cases, switching from one level of detail to another is
particularly distracting and annoying for the user.

With the increasingly widespread use of 3-D graphics
in distributed applications and over the Internet,
transmission of object models is a major issue as soon as
the simulated environment is complex enough to make
storing full copies of the environment on every computer

impractical. LODs with progressively higher detail will
be transmitted as the participant is approaching an object.
However, only the last completely transmitted level can
be displayed. As data sizes increase with LOD quality,
delays between model refinements increase rapidly. Such
stalling negatively affects the participant’s experience of
the simulation.

Adding levels of detail partly addresses the rendering
problem for large and complex objects, but makes overall
model size even larger. The reason for this problem is
that the standard approach of representing polygonal data
as lists of vertices and triangles is not powerful enough.
Instead, we need a more capable data structure that can
address the mentioned shortcomings.

The model data structure should represent many levels
of details (not only 3-6, but hundreds or thousands of
LODs), so that a continuous (or almost continuous)
refinement of the model is possible by repeatedly adding
small amounts of local detail to the model. Decoding of
the smooth LODs should be incremental, i. e. the next
finer LOD should be represented as the difference to the
current LOD. By reusing all the data from the coarser
LODs, model size can be kept small despite the large
number of LODs.

It should be possible to incrementally transmit the
model over the network, starting from the coarsest
approximation and progressing to the original model. In
particular, rendering should be able to make immediate
use all the data received up to a certain moment, and
render a model not yet fully transmitted. This is
important for progressive refinement of large models that
take an extended period to transmit, and allows
continuous operation in case of network failures.

The smooth LODs data structure should support
selection and rendering of any specific LOD in real-time
allowing to vary the level of detail (both coarser and
finer) at interactive speeds (during rendering).

It is preferred if the smooth LODs data structure
introduces no overhead in model size compared to the
original, uncompressed polygonal model. Ideally, the
introduction of smooth LODs should yield compression
instead of increasing the model size.

All these properties can be addressed by a novel object
representation called smooth levels of detail that is

presented in this paper. After reviewing related work, we
present how to create, manipulate and render smooth
levels of detail. We also show how they can be used for
geometry compression, and present some results from our
implementation.

2. Related Work
Generating levels of details addresses the the problem of
finding a series of progressive simplifications of a
polygonal object, that have fewer primitives (polygons),
but closely resemble the original object.

2.1 Topological algorithms

The methods that produce the highest quality work on the
surface of polygonal objects, e.g. [4, 10, 11]. For the
moment let us assume that we are only dealing with
triangles. With information on which triangles are
neighbors, local operations can be applied to remove
triangles and fill the holes created by that process. Such
algorithms can take into account local curvature and can
generate simplifications with guaranteed error bounds.
However, they are constrained to objects with well-
connected surfaces. Unfortunately, this constraint is often
not fulfilled by CAD models. Many of these algorithms
are also constrained to preserve the genus of the object,
and can therefore not simplify the objects beyond a
model-dependent level.

2.2 Geometric algorithms

Real-world applications almost always involve ill-
behaved data, and for very large scenes and slow
connections, it should be possible to produce very coarse
approximations as well as moderately coarse ones. More
apt to this task are LOD generation methods that ignore
the topology of objects and force a reduction of the data
set. The key idea here is to cluster multiple vertices of the
polygonal object that are close in object space into one,
and remove all triangles that degenerate or collapse in the
process. The problem here is that exact control over local
detail is not easily possible, but such an algorithm can
robustly deal with any type of input data, and produce
arbitrarily high compression. Vertex clustering can either
be done with a simple uniform quantization [7], octree
quantization [6, 17] or a nearest neighbor search [8, 9].

2.3 Progressive representations

Two approaches have been developed concurrently, that
draw from the a similar basic idea as the approach
presented in this paper, namely to abandon the use of a
small set of discrete levels of detail in favor of a
progressive representation that efficiently encodes a large
number of LODs. Eck et al. [3] develop a wavelet-based
representation of polygonal geometry, which is extended
in [12] to allow interactive multi-resolution surface

viewing. Hoppe’s representation - progressive meshes
[13] - is based on incremental topological operations on
the object’s surface. The major difference of these
algorithms to ours is that we use a geometrical rather
than a topological method to reduce object complexity,
which is simpler, more robust and efficient, but does not
yield as tight bounds on the visual error.

2.4 Selective refinement

The approaches presented in [12] and [13] allow selective
refinement of the model as opposed to choosing one LOD
per object. This property is also supported by Lindstrom
et al. in their terrain rendering model [14], by the
wavelet-based meshes from [16] and by the simplification
enveloped presented in [15].

2.5 Compression

As far as compression of geometry for storage and
transmission is concerned, some work is relevant for our
approach: Deering [2] introduces a compression method
for polygonal data sets. Levoy [5] proposes a combination
of geometry and compressed image data to preserve
bandwidth with a compressed video stream.

3. The hierarchical cluster tree representation
Hierarchical clustering for LOD generation, as first
presented in [8], is based on the idea that groups of
vertices which project onto a sufficiently small area in the
image can be replaced by a single representative: a many-
to-one mapping of vertices. As a consequence, the
number of triangles is reduced. The triangles’ vertices are
replaced by their representatives from the reduced vertex
set, and collapsed triangles are filtered out. Repeated
application of the clustering operation yields a sequence
of progressive simplifications (LODs). If exactly two
clusters are combined in every step, the result is a binary
tree, the cluster tree.

3.1 Construction of the cluster tree

The cluster tree is built by successively finding the two
closest cluster in the model and combining them into one.
The combined cluster is stored in a new node which has
the two joined clusters as its children. The process is
repeated until only one cluster containing all the vertices
remains, which is the root of the cluster tree.

For each new cluster, a representative is chosen from
the set of vertices in the cluster. More precisely, we chose
the representative to be one of the two representatives of
the child clusters. The distance of two clusters (used to
find the closest clusters) is computed as the Euclidean
distance of the two childrens’ representatives. This value
is also stored as the cluster size in the new cluster’s node
for further use. Finding the closest pair of clusters can
efficiently be done with a BSP tree.

The algorithm starts with a cluster for each vertex, with
the vertex serving as the representative. In each step, it
finds the two clusters with the closest representatives, and
replaces the two clusters identified in step 1 by a joint
cluster. For the joint cluster, a new representative is
selected. This procedure is repeated until only one cluster
containing all vertices remains.

Figure 1: The clustering process: A mesh is
mapped onto a vertex cluster tree, which is used
to group vertices. From the reduced vertex set, a
simplified model is computed.

Various heuristics are possible to select the new
representative of a cluster among the candidate vertices.
We used the vertex with the largest distance from the
object’s center to avoid shrinking the object as vertices
are moved together. An alternative was proposed in [7]
and tries to identify vertices that are visually important.

The cluster tree contains instructions for a continuous
simplification of the model, and therefore can be used to
construct a sequence of smooth levels of detail. However,
in its form described above, it only stores the vertices of
the model, but not the triangles. To use the cluster tree as
an alternate representation of the original polygonal
model, the triangles must also be encoded and stored in
the cluster tree in a way so that the original model (or any
desired level of detail) can be reconstructed from the
extended cluster tree alone.

When two clusters are joined and consequently on
representative vertex is eliminated, the events (changes)
are recorded in the triangle database. The reversed
application of these events can be used to reconstruct the
triangle database by evaluating the events node by node.

3.2 Triangle event recording during clustering

When the clustering stage combines two clusters into one,
those triangles which have at least one vertex in the new
cluster must be changed accordingly. For each such
triangle, three cases can be distinguished:
1. The triangle has one vertex in the new cluster, and

this vertex is elected the new cluster representative.
Therefore, no change is made to the triangle at all,
and the event need not be recorded.

2. The triangle has one vertex in the new cluster, but this
vertex is not elected the new cluster representative.
This vertex must be changed to the new cluster
representative. A list (the update list) of all such
triangles is kept in the cluster node (Figure 2a).

3. The triangle has two vertices in the new cluster.
Therefore it collapses to a line which is discarded
from the triangle set. A list (the collapsed list) of all
collapsed triangles is kept in the cluster node (Figure
2b).

Figure 2: Two events in the triangle database
during clustering are of interest for the
reconstruction of the original triangles:
Collapsing triangles (a), and triangles whose
vertices are updated (b).

The lists kept for events of type 2 and 3 make it efficient
to perform the construction of the new triangle list for
each generated level of detail. Stepping from one LOD to
the next is done by adding only one vertex (adding one
cluster, see Figure 3).

Figure 3: During the clustering, two vertex
clusters are joined into one, and the effect on
the triangles is recorded. The inverse operation,
cluster expansion, uses the recorded data to
reconstruct the triangles.

The involved changes are small, so coherence between
LODs is exploited by storing only the changes in the
update list and collapsed list at each node. A cluster tree
containing the cluster representatives and the information
on triangle changes (update list and collapsed list)
completely encodes the original model, plus instructions
how to create all intermediate levels of detail.

4. Manipulation of the cluster tree
While the cluster tree has the desired property of
compactly representing the original model plus all its
levels of detail, it is not directly usable. For rendering, it
is still necessary to reconstruct a vertex list and triangle
list (either for the original model or for a level of detail).
Moreover, a tree is also not suitable for network
transmission, it must be linearized first. A simple method
for selecting an arbitrary level of detail is required.
Therefore, we define a number of basic operations on the
cluster tree, from which the required functions
(linearization, model reconstruction, LOD selection, and
rendering) can easily be constructed.

4.1 Traversal of the cluster tree

During the hierarchical clustering process, the nodes of
the cluster tree were generated in the order of increasing
cluster size. Traversal of the cluster tree is done in the
reverse order. A set of active nodes is maintained to
reflect the current status of the traversal. Starting with the
root of the cluster tree, the algorithm processes the cluster
tree node by node, in the order of increasing cluster size.
Every visited interior node is replaced by its two children.

4.2 Reconstruction of the polygonal model

The original polygonal model, consisting of a vertex list
and a triangle list, can be reconstructed using the cluster
tree traversal. The root introduces the first vertex. With
every visited node, one new vertex is introduced and
added to the vertex list (the other child inherits the
parent’s representative). At the same time the triangle list
is reconstructed by processing each visited node’s
collapsed list and update list. Every entry in the collapsed
list introduces a new triangle into the triangle list
(reversing the process by which this triangle was
collapsed and removed). Every triangle in the update list
contains the parent cluster’s representative, which must
be replaced by the new vertex mentioned above. When all
nodes have been visited by the traversal, the original
model has been completely restored.

4.3 Selection of a LOD

The original model is only the most detailed version of a
large number of LOD approximations. A convenient way
to select any desired LOD from the available range is to
terminate the reconstruction process when all nodes

belonging to a particular LOD have been visited. The
desired LOD is specified as a threshold that is compared
to the cluster size contained in every node. A modified
traversal algorithm no longer continues until the active
node set is empty, but terminates if the biggest cluster
size of any such node is smaller than the given threshold.
The reconstructed triangle and vertex lists up to that
point represent the desired level of detail and can directly
be used for rendering.

4.4 Refinement

For refinement of the model, the fundamental operation is
to switch from a given level of detail to the next finer
one. A particular LOD is defined by a list of active node
in the cluster tree, and the corresponding vertex and
triangle lists. Refinement is achieved by expanding the
node with the largest cluster size in the active node list
into its two successors, and using the information
contained in that node to extend the triangle list and
vertex list. This is an incremental operation that typically
requires only a small amount of processing and can be
carried out at interactive speed. Selection of a LOD as
previously mentioned is nothing else than the repeated
application of refinement, starting with an initially empty
vertex and triangle lists.

4.5 Simplification

The inverse operation to refinement is simplification,
which is used to switch from a given level of detail to the
next coarser one. Two nodes are clustered into their
common parent node. One vertex is removed from the
vertex list, and references to that vertex in the triangle list
are removed. Collapsed triangles are filtered out, which
simplifies the model.

4.6 Rendering

“Snapshots” of the vertex and triangle lists can be taken
after reaching the desired model fidelity to obtain
conventional discrete levels of detail, or the cluster tree
and the vertex and triangle lists can be maintained in
parallel for interactive selection of smooth levels of detail.
In that case, the currently displayed object is constructed
by adapting the cluster size threshold to changes in the
viewpoint, applying simplification or refinement
operations as appropriate, and modifying the vertex and
triangle lists according to these incremental operations.

The comparison of the cluster size against the threshold
can also be made by estimating the cluster’s projected
screen size. This allows to make a different selection for
every node, depending on the distance of the cluster to
the observer. The displayed model allows non-uniform
simplification and automatically adapts to the user’s
position. Those parts of the object that are further away
from the observer will be displayed coarser than those

that are near. Consequently, the polygon budget is
exploited more efficiently.

However, neither cluster size nor update list can be
precomputed any more. Interactive frame rates can be
achieved by adapting the incremental algorithm for
simplification/refinement. The active node list is small
compared to the total number of clusters. It's items need
to be examined whenever the viewpoint changes.
However, spatial coherence can be exploited by re-
evaluating the projected cluster size only if the ratio of
the distance to the cluster and the distance travelled since
the last evalation exceeds a certain treshold. As projected
cluster sizes change slowly for smooth image sequences
the items in the active node list can be visited in a round-
robin fashion only every n frames.

5. Binary format
The traversal can not only be used to reconstruct the
model for rendering, but also to generate a sequential
version of the cluster tree suitable for network
transmission. Nodes are visited in the same order as for
LOD selection, but instead of reconstructing the original
model, the information containing the node is piped into
a sequential data stream. During that process, triangles
and vertices are automatically renumbered in the order in
which they are visited, so that references always point
back to available valid indices and incremental decoding
becomes possible.

From the linearized model it is easy to construct a
binary format that is very compact and suitable for
network transmission. No redundant information is stored
in the network packages, so the requirement of
compactness is satisfied by the network protocol. Actually
the packets represent the smooth LODs model in less
bytes than the original model (see section 8 for results).
Effectively, the protocol can be used as a compression
method.

Recall that the following information must be encoded
for every node in the cluster tree:

• the new vertex introduced by the refinement
operation

• the update list encoding which triangles must be
modified to contain the new vertex

• the collapsed list encoding which new triangles
must be created when the new vertex is
introduced.

The goal of the protocol was to encode the required
information with as little data as possible. Our protocol
currently deals with vertices, triangles and surface
materials and consists of four packets types: VERTEX,
TRIANGLE, MULTI-TRIANGLE, MATERIAL.

PACKET TAG FIELDS (length)
VERTEX 0 parent (variable)

coordinates (variable)
update list (variable)

TRIANGLE 10 vertex_id (variable)
orientation (1 bit)

MULTI 110 duplicate_flag (1 bit)
vertex_id (variable)

MATERIAL 111 material_id (8 bit)

Table 1: Protocol packets with parameters and
sizes in bit

Packet headers are encoded using a variable length tag
according to their frequency. Table 1 summarizes the
packets including their parameters (field sizes in bits are
given in parenthesis).

5.1 VERTEX

Format: VERTEX(parent, x, y, z, update_list)

A new vertex is introduced. One node of the cluster tree
is replaced by its two children. The coordinates of the
representative of one of the new clusters are encoded in
this package. The other inherits the coordinates from the
parent.

Parent cluster: The parent field indicates the cluster that
is being split in two. Indices can only point to already
existing clusters, so they can have variable length: As the
number of clusters increases, more bits are needed to
encode the index. This variable length encoding of
indices saves more than 50% of the bits needed for
indices.

Vertex coordinates: The (x,y,z) tuple gives the
coordinates of the new vertex. Details on the encoding of
the vertices are given in the next section.

Update list: VERTEX also encodes the update list
associated with the parent node. Already encoded
triangles which contain the parent cluster’s representative
can either continue to use that representative or from now
on use the new vertex. This information must be encoded
to allow updating of the triangles correctly. The update is
simply the replacement of the parent cluster’s
representative with the new vertex within the triangle.
One bit is sufficient to indicate for each candidate
triangle containing the parent cluster’s representative
whether or not the update should take place. These bits
are compactly stored as a variable length bit list.

A variable length bit list is used to encode these
updates. Since the number of candidate triangles as well
as the order of the triangles given by their position in the
global triangle list is known to both sender and receiver,
the update process is well defined.

5.2 TRIANGLE

Format: TRIANGLE(vertex_id, orientation)

As the reconstruction of the object from the network data
stream is the inverse operation of the clustering stage, for
every new vertex encoded by VERTEX, the triangles
stored in the parent node’s collapsed list must be re-
introduced as new triangles. This is done by a sequence of
TRIANGLE packets. The triangle in question collapsed
because new vertex and the parent’s representative were
clustered, so two of the original vertices are already
known. The missing third vertex is encoded in the packet
as an index into the array of vertices. Like cluster indices,
vertex indices can have variable length.

The new triangle has either the orientation
(new_vertex, parent_rep, vertex_id) or (parent_rep,
new_vertex, vertex_id), which is distinguished by the
orientation bit.

5.3 MULTI-TRIANGLE

Format: MULTI(duplicate_flag, vertex_id)

The clustering process may produce identical triangles
that are not collapsed and consequently not removed.
These doublets were intentionally left in the data, because
removing them would greatly complicate the coding and
decoding process. Instead, the MULTI package can
introduce either 2 or 4 related triangles at once, which
efficiently covers the most frequent cases produced by the
clustering algorithm. If the duplicate flag is zero, 2
triangles with opposite orientation (new_vertex,
parent_rep, vertex_id) and (parent_rep, new_vertex,
vertex_id) are created. If the duplicate flag is one, 2
triangles of either orientation are created.

5.4 MATERIAL

Format: MATERIAL(index)

While polygonal models always contain geometry, they
may or may not contain materials or colors. Our models
consist of a small set of fixed materials, that can be
encoded in an 8 bit index. A MATERIAL packet sets the
current material of the following geometry to the new
value until another material package is encountered. As
our models use only a few different materials, such
packets are relatively infrequent, and no further
optimization efforts were taken. Material definitions are
distributed once to all participating sites. If required,
material definitions can be given in the header of the
model. A more sophisticated shading support may
include vertex colors for pre-shaded (e.g., radiosity)
models or texture mapping. The latter would require to
take into account the cumulated error in texture
coordinates when computing distances between vertices,
as shown by Hoppe [13].

6. Hierarchical precision encoding of vertices
About half the size of the model is due to the vertex
coordinates. These are not affected by the algorithms and
therefore are not yet compressed. Deering argues that
while coordinate data is usually represented using
floating point numbers, the finite extent of geometric
models allows representation using compact fixed point
numbers [2]. To minimize errors resulting from lossy
compression via quantization, we have developed a
hierarchical precision encoding scheme for the coordinate
data. Our method still yields compression ratios of 1:2 to
1:3.

For every ordinate, a neighborhood is chosen by
defining a fraction of the object diameter. If the new
ordinate lies within the neighborhood of the
corresponding ordinate of the parent cluster’s
representative, the ordinate is encoded with a relative
offset to it. This offset is stored as a fixed point value
(“relative encoding”). As the new vertex is expected to be
in the vicinity of the parent’s representative, most of the
ordinates can be encoded relatively, thus saving storage.
If the ordinate is not in the neighborhood, it is stored as
an absolute (32 bit) single precision float (“absolute”
encoding).

Typically we define the neighborhood to be a quarter of
the extent of the model (computed separately for every
axis), and consequently can bound the error to (1/4) *
1/(2^16) = 0.000004% of the model extent. At this
precision, we use either 8 or 16 bit values (many relative
values are small, and consequently 8 bit or less are
sufficient).

Another method further reduces storage consumption:
A special bit code indicates if the difference to the
parent’s ordinate is zero. In this case the specification of
the 16 bit delta value can be omitted (“null” encoding).
Often CAD models have edges aligned to the axises of
the coordinate system, so this is frequently the case.

Note that while the use of fixed precision for relative
encoding makes the compression scheme lossy, the
inaccuracies introduced can be controlled by the user by
selecting the fraction of the model extent which is to be
considered as the neighborhood of parent vertices.

COORDINATES TAG FIELDS
relative16 0 16 bit fixed
relative8 10 8 bit fixed
null 110 (none)
absolute 111 32 bit float

Table 2: Protocol for encoding of coordinates

The distinction between the encoding variants is made by
variable length tags. Table 1 gives an overview of
coordinate encoding.

7. Results
Comparison of model sizes: Table 3 allows to compare
the sizes of models encoded as a smooth LOD packet
stream as detailed in section 6 to the original models
(vertex list and triangle list) with and without levels of
detail. Every model is listed with its vertex and triangle
count, the original object size, computed from 12 byte per
vertex and 6 byte per triangle, assuming 16 bit indices for
vertex references in triangles. The next column (LOD
size) lists the size of the model with 5 conventional LODs
including the original object (additional LODs only
increase the triangle count, vertices are reused from the
original model [8]). These values should be compared to
the size of the corresponding smooth LOD model (smooth
LOD size), stored in the format given in section 6. The
size of the smooth LOD model is also given as a
percentage of the original model (% of obj. size) and level
of detail model (% of LOD size).

Note that the smooth LOD model is always not only
significantly smaller than the level of detail model, but
also smaller than the original model. As far as model size
is concerned, smooth LODs come for free!

model
name

of
verti-
ces

of
trian-
gles

object
size

LOD
size

smooth
LOD
size

% of
obj.
size

 % of
LOD
size

lamp 584 1352 13968 17712 6106 43.7 34.5

tree 718 1092 15168 20460 7288 48.0 35.6

shelf 1239 2600 30228 37188 12635 41.8 34.0

plant 8228 13576 179352 200154 89921 50.1 44.9

stool 1024 1600 21864 30528 8406 38.4 27.5

tub 3422 5404 73488 84906 26993 36.7 31.8

sink 2952 4464 62208 81558 23743 38.2 29.1

ball 1232 2288 28512 39420 14099 49.4 35.8

curtain 4648 8606 107412 109770 44334 41.3 40.4

Table 3: Comparison of model sizes - smooth
LODs against conventional models (sizes given
in bytes)

Comparison of the visual effect: Our experience shows
that the refinement of a model with smooth LODs is
superior to the coarse-grained switching between a few
(typically 3-6) conventional LODs. However, such a
subjective statement is hard to prove formally. If we
assume that image quality is roughly proportional to the
number of triangles used for display, we can compare
smooth to conventional LODs by plotting triangles
available for rendering as a function of transmitted bytes
for both methods. Figure 4 shows two such examples.

The maximum triangle count is reached much earlier
using the smooth LODs than using conventional LODs
because of the smooth LODs’ more compact
representation (see the % of obj. size column in Table 3).
This difference is also obvious when comparing the
obtained images.

(a)

0%

20%

40%

60%

80%

100%

transmitted data

conventional LODs

smooth

(b)

0%

20%

40%

60%

80%

100%

transmitted data

conventional LODs

smooth

Figure 4: Comparison of visual effect of smooth
vs. conventional LODs (a - shelf, b - plant). We
measured the quality as the number of
transmitted triangles for a certain amount of
data (1 notch on the x-axis ≈ 5 KB)

Note that the roughly linear correspondence between
transmitted data (x-axis) and available triangles (y-axis)
is very suitable for networked virtual environments,
where an object is often approached at constant velocity,
while its geometric representation is still being
transmitted over a network of constant bandwidth.

8. Conclusions
We have presented a new polygonal model representation
called smooth LODs designed for interactive rendering
and transmission in networked systems. A hierarchical
clustering method which has been used to compute
conventional simplifications of triangle meshes is
extended to yield a continuous stream of approximations
of the original model. A very large, practically continuous

number of levels of detail is possible. The result can be
represented in an extremely compact way by relative
encoding.

The resulting data set is smaller than the original
models without levels of detail. If the data set is
transmitted over a network, a useful representation is
available at any stage of the data transmission. The data
set can be used to compute conventional levels of detail,
or the underlying hierarchical structure can be exploited
to generate and incrementally update any desired
approximation for rendering at runtime.

When running real world applications on low cost
systems, the constraint of using a coarse LOD only if the
difference to the high fidelity model is not noticeable is
regularly violated because of insufficient rendering
performance. Slow network connections such as Internet
downloads make the user wait for completion of
transmission while the model is already displayed at full
screen resolution. In these situations, our approach is
clearly superior, because it makes new data immediately
visible (compare Figure 4 and Figure 5) and finishes
earlier due to its compact representation.

Acknowledgments. This work was sponsored by the
Austrian Fonds zur Förderung der wissenschaftlichen
Forschung under project no. P11392-MAT.

Animations and visual results are available at
http://www.cg.tuwien.ac.at/research/vr/smoothlods/

Figure 5 (right): Comparison of development
stages of the chair and lamp model. The left
column shows smooth LODs, the right column
conventional LODs for corresponding amounts
of data. Black bars on each side indicate the
amount of triangles received and displayed.

References

[1] J. Clark: Hierarchical Geometric Models for Visible
Surface Algorithms. Communications of the ACM, Vol. 19,
No. 10, pp. 547-554 (1976)

[2] M. Deering: Geometry Compression. Proc. of
SIGGRAPH’95, pp. 13-20 (1995)

[3] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.
Lounsbery, W. Stuetzle: Multiresolution Analysis of
Arbitrary Meshes. Proceedings of SIGGRAPH’95, pp. 173-
182 (1995)

[4] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W.
Stuetzle: Mesh Optimization. Proceedings of
SIGGRAPH’93, pp. 19-26 (1993)

[5] M. Levoy: Polygon-Assisted JPEG and MPEG
Compression of Synthetic Images. Proceedings of
SIGGRAPH’95, pp. 21-25 (1995)

[6] D. Luebke: Hierarchical Structures for Dynamic Polygonal
Simplification. Technical Report TR-96-006, Univ. North
Carolina Chapel Hill (1996)

[7] Jarek Rossignac, Paul Borrel: Multi-Resolution 3D
Approximation for Rendering Complex Scenes. IFIP TC
5.WG 5.10 II Conference on Geometric Modeling in
Computer Graphics (1993)

[8] G. Schaufler, W. Stürzlinger: Generating Multiple Levels
of Detail from Polygonal Geometry Models. Virtual
Environments’95, Springer Wien-New York (1995)

[9] D. Schmalstieg, G. Schaufler: Incremental Encoding of
Polygonal Models. Proceedings of HICSS-30 (1997).

[10] G. Turk: Re-Tiling Polygon Surfaces. Proceedings of
SIGGRAPH’92, pp. 55-64 (1992)

[11] W. Schroeder, J. Zarge, W. Lorensen: Decimation of
Triangle Meshes. Proceedings of SIGGRAPH’92, pp. 65-
70 (1992)

[12] A. Certain, J. Popovic, T. DeRose, T. Duchamp, D.
Salesin, W. Stuerzle: Interactive Multiresolution Surface
Viewing. Proceedings of SIGGRAPH’96, pp. 91-98 (1996)

[13] H. Hoppe: Progressive meshes. Proceedings of SIGGRAPH
‘96, pp. 99-108 (1996)

[14] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust,
G. Turner: Real-Time Continuous Level of Detail
Rendering of Height Fields. Proceedings of
SIGGRAPH’96, pp. 109-118 (1996)

[15] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. Brooks, W. Wright: Simplification
Envelopes. Proceedings of SIGGRAPH’96, pp. 119-128
(1996)

[16] M. Gross, R. Gatti, O. Staadt: Fast Multiresolution Surface
Meshing. Proceedings of Visualization'95, pp. 135-142
(1995)

[17] D. Schmalstieg: Lodestar - An Octree-Based Level of
Detail Generator for VRML. To appear in: Proceedings of
the SIGGRAPH Symposium on VRML’97 (1997)

