
Modeling and Rendering of Outdoor Scenes for Distributed Virtual Environments

Dieter Schmalstieg and Michael Gervautz
Vienna University of Technology
dieter|gervautz@cg.tuwien.ac.at

Abstract. We present an approach for modeling and real-
time rendering of outdoor scenes, for use in virtual reality
applications such as flight simulators and multi-user virtual
environments. The models are based on a procedural
representation using directed cyclic graphs. It allows to
represent extremely complex scenes with little memory and
modeling effort. Very large scale virtual environments are
supported by a bandwidth-preserving networking approach
that makes use of the compact representation and on-the-fly
database amplification.

1. Introduction

Many real-time graphics and virtual reality (VR) applications
aim to immerse the user in an outdoor scenario composed to
a large extent of natural phenomena a landscape, plants,
trees, mountains and so on. Some of the most successful
virtual reality applications are based on outdoor settings,
among them flight simulators, tactical training systems, video
games, and urban reconstruction projects. Outdoor
environments are typically flat and sparsely occluded, so the
area that can be observed by the user is rather large. Another
desired characteristic is that the user should be able to move
freely over a large area without reaching an artificial border
too fast. The environment should contain plenty of detail (e.
g. leaves on trees) even at close inspection to obtain a
realistic impression. The successful simulation of a large
virtual environment represented with a high degree of fidelity
requires construction, run-time management, rendering, and
network transmission of very large geometric databases.

Traditionally, research has focused on the problem of real-
time rendering of very large geometric databases. Powerful
rendering hardware for polygonal models has been developed
for that purpose [Akel93]. In combination with texture
mapping [Fole90], level of detail (LOD) rendering [Funk93],
and scene culling [Funk95], even large scene databases can
be rendered in real time.

Yet despite the power of state of the art graphics
technology, the craving for even more realism often defeats
the purpose, because the large scene databases are difficult to
handle. In particular, we see three areas where improvement
is needed:
1. Modeling: The construction of a large number of detailed

models is extremely labor-intensive. While models of
artificial structures such as machines or buildings are

relatively easily obtained from CAD sources, this is not
true for plants and other natural phenomena. The use of
texture maps (e. g. photographs) reduces modeling costs,
but this shortcut becomes painfully obvious when
inspecting models at close-up. Instancing (i. e. using the
same model multiple times) is also easily detected and
destroys the user’s believe in the virtual world.

2. Storage requirements: A very large geometric database
requires lots of storage. Today’s typical workstations
have enough memory to store scene databases that by far
exceed the capacity of the image generator. However, if
only a small portion of an extensive virtual environment
is visible at any time, and the application allows the user
is to cover large distances, the actual database can easily
exceed memory capacity. Loading data from disk in real-
time has its own set of problems [Funk95], so a compact
representation that allows to hold all or a large portion of
the scene database is highly preferred.

3. Networking: If the geometry database is to be distributed
over a network, a compact representation is even more
essential. The rapid growth of Internet-based VR
applications that suffer from notoriously low and
unpredictable bandwidth drives the desire for compact
geometric representations that can be transmitted in
shorter time [Deer95].

A solution to these problems lies in the use of procedural
modeling and fractal geometry. Procedural models allows the
concise description of objects whose structure can be
formulated as a program, and is especially suitable for plants
and trees. A very powerful class for that purpose are
Parametric Lindenmayer systems [Prus90a]. The algorithmic
description is usually very compact, and can easily be
extended to yield a large number of different objects instead
of a single one, making the instancing of large populations
effective. Creating a large scene from a very small data set is
called database amplification in [Smit84].

Numerous methods for modeling and rendering of plants
have been presented in the past, e. g. [Aono84, Gerv95,
Max96, Neyr96, Prus90a, Prus90b, Reev85, Smit84, Trax97,
Webe95], but most are aimed at photo realism and do not
produce images in real-time. Most methods create an explicit
geometric model from the procedural model as a
preprocessing step to rendering. Such a geometric model can
be used for virtual reality applications, but does no longer
address the requirements regarding storage and networking.
Some methods produce images without the use of explicit
geometric primitives [Reev85, Neyr96, Max96], but they
cannot make use of polygonal rendering hardware. Special
support for real-time applications with level of detail
rendering is presented in [Webe95], but the approach is also
not storage preserving.

2. Overview of our approach

Our approach is based on the work by Gervautz and Traxler
[Gerv95], who used directed cyclic graphs for raytracing of
natural phenomena without an intermediate representation.
This approach is equivalent to Parametric Lindenmayer
systems [Prus90a]. A VR rendering system that employs
directed cyclic graphs for virtual reality applications uniquely
addresses the problems mentioned in the introduction:

• Direct rendering of procedural models. Unlike other
procedural modeling approaches for interactive
rendering, our models can directly be rendered, thereby
creating geometry on the fly. There is not need for an
intermediate polygonal representation.

• Unified rendering of procedural and non-procedural
models is possible.

• Good memory utilization: Direct rendering of the
procedural model supplants the use of explicit detailed
geometry, and yields vast savings in storage, in particular
if large populations are instanced. Database amplification
can further be enhanced through the use of statistical
distributions and random numbers.

• Network bandwidth savings: The compact
representation is also very suitable for network
transmission.

• High quality rendering: The problem of artifacts when
viewing textures at close-up is solved by providing actual
geometric detail, but without the penalty of elevated
memory requirements.

The remainder of this chapter discusses the details of our
approach: Section 3 gives background on the rendering of
directed cyclic graphs. Section 4 discusses the application of
directed cyclic graphs in distributed systems. Section 5 pays
attention to the issue of efficient rendering. The discussion is
complemented by details about a sample implementation
using Open Inventor (section 6), followed by examples and
results (section 0).

3. Background: Rendering Directed Cyclic Graphs
In this section, we aim to give the reader an introduction to
the formalism of PL-systems, and its equivalent, directed
cyclic graphs, as developed by Gervautz and Traxler. We also
review the implications of modeling and rendering directed
cyclic graphs for interactive applications.

3.1 A brief introduction to PL-systems

PL-systems are commonly written as a grammar called a
rewriting system, consisting of an alphabet of modules (a
symbol plus a set of parameters), a set of productions for
every module that specify how to derive valid expressions,
and an axiom. Starting with the axiom, productions are
concurrently applied to the modules of an expression (hence
the term parallel rewriting system) to derive new
expressions. Associated with each parameter is an arithmetic
expression that is evaluated upon application of a production,
the result of the evaluation controls the selection of the
production (if there is more than one production for a
particular module). Images are generated by interpreting an
expression geometrically, usually with a construction tools
called turtle. Figure 1 shows a simple PL-system and the
resulting model.

Instead of deriving an explicit geometric model, we use a
representation equivalent to rewriting systems based on
graphs. This approach is enabled by a simple modification to
conventional modeling: extending a directed acyclic graph
(DAG) to a directed cyclic graph (DCG). DAGs are the
standard approach for modeling geometry databases for
interactive applications: A hierarchical structure (tree) allows
efficient definition and manipulation of properties such as
material for arbitrary parts of objects or scenes. For example,
transformation nodes modify the object space transformation
matrix for all objects traversed after the transformation,
allowing the construction of articulated figures.

axiom: Worm(4)
productions for Worm(c):
 if(c=0): Worm → Cone
 if(c>0): Worm → Sphere Translation(1,0,0) Worm(c-

1)

Figure 1: A very simple recursive model

Actions such as rendering are applied to such a data
structure by graph traversal. Allowing multiple references to
a subgraph enables instancing and turns a tree into a DAG.
To represent recursive structures, we allow cyclic references
in the graph structure, thus creating a DCG.

3.2 Translating a rewriting system into a DCG

An expression-based PL-system can easily be translated into
an equivalent DCG using the process outlined in this section.
We consider a form of rewriting system where symbols are
divided into non-terminals and terminals. Only non-terminals
can be substituted, and the productions for every variable
require that there is at least one substitution that consists
only of terminals. Only terminals have a geometric
representation. To get an expression that consists only of
terminals (and can hence be rendered), any remaining non-
terminal is substituted according to the production that
generates only terminals.

The right hand side of every production is interpreted as a
subgraph. Concatenated modules are represented as children
of a group node, that traverses all its children. For every non-
terminal module of the alphabet, exactly one selection node
is created. Upon traversal, the selection node traverses only
one child as indicated by a parameter. The children of the
selection node are the subgraphs constructed from the right
hand sides of the productions for that particular module.
Consequently, any non-terminal module in such a subgraph
becomes a link to a selection node. Recursive productions (of
the form A → … A …) thereby create cycles in the graph;
indirect recursion is possible as well. The selection node for
the axiom becomes the root.

The arithmetic expressions passed as parameters to the
modules in the productions are translated into separate

nodes, the calculation nodes. In these nodes, the old value of
a parameter is saved and a new value for the parameter is
computed from the given arithmetic expression, emulating
the behavior of a call by value parameter in a recursive
procedure. The initialization of parameters at the root of the
graph is also done with calculation nodes. Calculation nodes
evaluate the associated functions only when they are visited
upon traversal, so their behavior can be characterized as lazy
evaluation in terms of compiler technology. The example
from Figure 1 is transformed into the graph in Figure 2.

3.3 Traversal of the DCG

An important step in the rendering of graph-based models is
the graph traversal. The order of traversal is depth first and
left to right (i. e. children of a group node are visited from
left to right). For every node, the appropriate behavior is
called; for example, a rendering traversal will render
primitive nodes such as polygons or spheres, and for a group
node simply traverse all its children.

Figure 2: Simple recursive graph for the model shown in
Figure 1

An important concept is the accumulation of state during the
traversal, for example, transformations must be multiplied as
they are encountered during the traversal. While the
propagation of accumulated state is usually desired while
traversing deeper into the graph, it should not affect other
branches of the graph that are traversed later. Therefore,
state is saved before performing depth traversal, and restored
when the traversal returns from the subgraph.

Such a graph traversal works well for DAGs, but the cycles
contained in DCGs would lead to infinite looping without
special measures. Therefore, recursive models use a
parameter-dependent selection node to branch into a
terminating (i. e. cycle-free) subgraph after the desired
number of recursions. The selected child is functionally
dependent on one or more parameters, that are modified and
evaluated during traversal. An obvious construction is to use
one parameter as a counter of recursion depth, and terminate
when it reaches a specific value.

3.4 Database amplification with parameterized models

Using model represented with DCGs, database amplification
is very easily possible. Parameterized models allow the
creation of a large and diverse population from a single
model. A DCG can be though of as a genotype of a species,

with the initial settings of the parameters responsible for the
appearance of the phenotype. For example, a model of a
fractal tree can be varied in the height of the tree, the number
of branches, the color and so forth. Position in the scene is
just another parameter affecting a translation node.

A population can be generated with very little effort in
computation and memory consumption by creating the
desired number of instance nodes that store initial values for
the parameters of the model and reference the model. This
can be achieved even more efficiently by an enumerator node
that stores references and initialization data in arrays. For
example, a forest can be created from a single model as in
Figure 3.

enumerator
 n = 1000
 tree(random [100m, 200m],

random [100m, 200m],
random [3m, 6m],
random [1m, 2m],
random [mid-green, dark-green]

)

(x,y)
w

hc

tree(x,y,h,w,c)

network transmission

(200,200)

(100,100)

Figure 3: Creating a forest by varying a tree

Parameters can either be user-specified (for better control
over the scene), or generated from random numbers. In that

case it is only necessary to associate a unique seed value for
the random number generator with each model, so that the
random numbers used for a particular model can be re-
created every time the model is traversed. Note that the
random number generator must work cross-platform, so that
models have the same appearance on every platform.

A combination of user-defined and random values is often
desirable: For example, the user may wish to specify only the
general appearance (height of a tree, peaks and valleys of a
terrain model), and leave the details to a statistical
distribution of random numbers (crease angle of individual
branches, number of leaves on a twig, small variations in
terrain height).

For distributed virtual environments, the demand-driven
geometry protocol is adapted to work with DCG models.
Since the same basic rendering algorithm is used, this is
straight forward. As models are potentially instanced many
times, the model’s actual geometric description must only be
transmitted when the first instance of a species is
encountered, later instances can be specified by parameters
only.

4. Exploiting directed cyclic graphs for distributed
virtual environments

Database amplification as described in the last section is very
useful for constructing and managing very large-scale
distributed virtual environments by combining DCG models
and demand-driven geometry transmission [Schm96]: A
geometry database is maintained by a server, while users
invoke individual clients to interact with the environment
(Figure 4). The server stores the data for a very large virtual
environment, composed of objects that are arranged spatially.
The client allows the user to display and navigate this VE
database. For this purpose, the client needs only those data
items, that are actually being displayed. Consequently, there
is no need to transmit the whole database from the server and
store it at the client. It is sufficient if the client has the data
for those objects available that are contained in its area of
interest (AOI). By restricting the geometry transmission to
the data that is actually required for display and making sure
that data is delivered “just in time” for display, we can gain
significant savings in network bandwidth and local memory
requirements, allowing to handle more complex, more
interesting data sets.

Server
Client 2

Client 3

Client 1

Figure 4. A distributed geometry database: A server stores
geographically dispersed objects (small white circles).
Each client’s view is limited to an AOI (large circles).

The major benefit for this application is that very little
storage is needed for the procedural models compared to
conventional modeling, which benefits the size of the area of
interest and the responsiveness of network transmission

(e. g., when the user is moving fast). Furthermore, as models
are potentially instanced many times, the model’s actual
geometric description must only be transmitted when the first
instance of a species is encountered, later instances can be
specified by parameters only.

5. Level of detail rendering

Especially when large and complex scenes are to be
rendered, support for levels of detail is essential to assure
that the image generator is not overloaded. Some models
(e. g. terrain) exhibit plain self-similarity and can easily be
displayed at multiple levels of detail by simply reducing
recursion depth.

However, more complex DAG models use the recursion
level to represent different parts of the object. A typical
example is that early recursion levels create the stem and
branches of a tree, and late recursion levels create the leaves.
Consequently, recursion cannot simply be pruned, but instead
sub-DAGS must be replaced by single primitives of
appropriate shape and color. For example, the complex twig
of a conifer tree can be replaced by a flat green cone. An
example is given in Figure 7. While selection of such levels
of detail is done automatically, the creation of levels of detail
cannot easily be automated. In general, levels of detail must
always be hand-crafted by substituting simple primitives for
complex sub-graphs, which can be a labor-intensive process.

6. Implementation

A number of basic elements is required for the
modeling/rendering system for DCGs, independent of
implementation language, platform, or even rendering
method:

• data structures for nodes, including geometric primitives
(polygon sets, simple solid bodies such as spheres),
materials, transformations; plus group, selection, and
computation nodes

• a traversal mechanism that walks through a graph and
calls appropriate functions for every node encountered
during the traversal to perform performing rendering,
bounding box computation etc.

• global variables accessible by the nodes, that can be used
as the parameters of the PL-system

• a stack for parameters to simulate local scope of recursive
function calls

• support for evaluation of functional expressions in the
calculation nodes

• a text-based file format for easy specification of models,
so that models can be created without using a compiler

All these features are not specific to fractal modeling, but
rather are standard features of advanced modeling toolkits.
So it is not surprising that the Open Inventor toolkit from
Silicon Graphics [Stra92] comes with all the elements listed
above, and is well suited for our needs. Using a commercial
toolkit as a foundation also has the advantage that all the
additional features combined in the toolkit are readily
available. We decided to stick to the rule that no feature that
was already available in Inventor should be re-implemented,
so most of the work went into tweaking Inventor’s features to
work under circumstances not originally intended by the
designers. The software resulting from this effort is called
RECURSIV.

Inventor is an object-oriented toolkit composed of a large
body of C++ classes, providing an abundance of nodes to
construct scenes from. All the required nodes listed above are
available. The exception are calculation nodes and group
nodes supporting cyclic links (see below). New node types
can be derived as subclasses of existing nodes, which helps
to save implementation work.

The traversal mechanism in Inventor is based on action
classes, that traverse a given scene graph, and call nodes’
methods as appropriate. If a selection node (SoSwitch) is
coupled to a counter that makes traversal branch into a
terminal subgraph at some point, traversal of graphs
containing cycles works as expected without additional
measures. A more subtle issue, however, is the automatic
notification of events (e. g. attribute changes) happening
somewhere in the graph, that are propagated upwards.
Notification can be seen as a kind of inverse traversal, and
consequently does not get caught by the selection nodes. We
therefore had to block notification after the first cycle by
introducing a special kind of parent-child link in the form of
a special group node called RecursionSeparator.

Inventor scene graphs store data in fields contained in
nodes, for example, the SoMaterial node has a field called
transparency. Additionally, global fields are supported, that
are not part of any node and can be shared by many nodes.
We use global fields to store the parameters of the PL-
system.

Elements are Inventor’s concept for holding state that
changes during the traversal of a scene graph. Unlike global
fields, that store user-defined data, elements are special
purpose data items (for example, the current object space
transformation is used by the rendering library). Separators
are special group nodes that save the current state on a stack,
and restore the old value when traversal returns from the
subgraph of the separator. This is exactly the behavior we
need for the parameters of the PL-system modified by
calculation nodes. Since standard Inventor behavior does not
allow to save global fields on the element stack, we created a
new element, the RecursionElement, that registers the global
fields declared as parameters, and stores/retrieves them from
the stack every time a RecursionSeparator is traversed.

Mathematical expressions as required for the computation
performed by the calculation nodes is provided in the form of
calculator engines. Engines are Inventor’s concept for
introducing functional dependencies among fields in the
scene graph (either triggered from outside, such as by the
system clock, or to connect fields inside the scene graph).
Engines also provide an expression parser, so we constructed
a calculation node (RecursionCalculator) containing a single
field that is made functionally dependent on the parameter
global fields using a calculator engine. Upon traversal, the
functionally dependent variable is evaluated (lazy
evaluation), and the results is written back to the parameter
global field associated with the calculation node (the left
hand side of the assignment). Note that computing new
values for parameters (performed by RecursionCalculator) is
separated from saving parameter values on the stack
(performed by RecursionSeparators), so multiple parameters
can be computed in series for better efficiency.

RecursionCalculator { expression “c=4” }
DEF Worm RecursionSwitch {
 expression “c>0” #child to
traverse
 Cone {} #terminal
child
 Separator { #recursive
branch
 Sphere {}
 Translation { translation 1 0 0 }
 RecursionCalculator { #dec
counter
 expression “c=c-1”
}
 RecursionSeparator { USE Worm }
 }
}

Inventor has a well readable text-based file format. Writing
new nodes automatically extends the file format, so that that
an extension of the parser is not necessary. However, the file
format syntax for engines is rather arcane, so we decided to
build a small parser extension that simplifies specification,
and also adds transformations that are functionally dependent
on parameter global fields, a feature frequently required
when modeling recursive artifacts. The example shows the
Inventor file for the model from Figure 1.

We also added two Inventor actions that initialize and
disassemble a recursive scene graph. The
RecursionInitAction must be applied after reading in a scene
graph from a file to transform expressions into engines, to
create parameter global fields and register them with the
RecursionElement for proper stacking behavior, and maintain
reference counters for the parameters (one parameter can be
shared by multiple objects). The RecursionDoneAction
allows proper deletion of a scene graph: Inventor uses
reference counting for nodes, which requires that cycles must
be cut open before the graph can be properly deleted;
furthermore, reference counters of parameter global fields
must be updated.

While the extended Inventor file format is a very efficient
tool for precise modeling of RECURSIV models, it lacks
intuitivity. To overcome this restriction and make the tool
more useful for casual users, an interactive graphical editor
was developed that allows convenient specification of
RECURSIV models with interactive previewing and tweaking
of parameters. A screen shot is given in Figure 5.

7. Results

While modeling DCGs takes a little practice, we found that it
is possible to achieve very appealing results (examples are
shown in the color section). To support our claims of
improved memory usage and network utilization, in the
following we list a comparison of the sizes of some
procedural models (uncompressed ASCII RECURSIV files) and
their conventional counterparts where every detail is
explicitly stored. We did only consider geometry, not color
(color was fixed in both variants). In the binary file cones and
cylinders were taken into account as 7 floats (3 bottom, 3 top,

1 radius), individual vertices of triangles with 3 floats (x, y,
z).

• The tree model (Figure 8) consists of 16884 cones, 13776
cylinders and 603 leaves (triangle strips of length 4). The
RECURSIV file uses 7556 bytes, while the binary file
consumes 74076 bytes.

• The conifer tree, variant 1 (Figure 7) consists of 211
cylinders and 15600 cones. The RECURSIV file uses 7418
bytes, while the binary file consumes 442708 bytes.

• Terrain (Figure 7) can be set to arbitrary resolution. A
pure fractal implementation in RECURSIV (only the edges
of the terrain tile and the fractal dimension are explicitly
specified) takes 3832 byte. A height field at resolution
1024x1024 with 1 float per height value takes 4MB.

It is easy to see how memory and network transmission time
can be saved by using the procedural models instead of their
conventional counterparts. Note that these are only for one
instance of a given model. For example, the tree model is
specified using only three parameters (height, average branch
length, branching frequency), all other detail are generated
from random numbers.

As far as rendering performance is concerned, the traversal
of a DCG is only slightly more costly than the traversal of a
DAG (the overhead coming mostly from the necessary
calculations). Our implementation in Open Inventor shows
that interactive frame rates (10 frames and above on an
Indigo2) are easily achieved for scenes of moderate
complexity (e.g. a small forest); the limits of the method
mostly come from the absolute number of primitives
(triangles) that the image generator hardware is capable of
(note that the hierarchical structure of the model interferes
with the use of high-performance triangle strips). The key
lies in well designed models with efficient levels of detail.

8. Conclusions

We have presented a simple extension to DAG based
rendering toolkits for interactive rendering. With the addition
of cycles, PL-systems can be directly modeled and rendered
as directed cyclic graphs. Interactive design of natural
phenomena and efficient representation of outdoor scenes,
especially for distributed virtual environments, are made
possible by this approach. Future work will involve
extending the number of models developed with this system
to cover a larger range of botanical species, and developing
larger-scale landscape models with realistic vegetation.

While detailed geometry is important at close range,
image-based simplifications can be very efficient at medium
and far range. The use of dynamic imposters [Scha96] is
ideal for that purpose: The rendering cost for a large number
of complex objects is reduced to rendering individual
textured polygons, with the exception of infrequent refreshes
of the imposters. Future work will involve improving the
performance of rendering by impostors.

9. Acknowledgments
This work was sponsored by the Austrian Science Foundation
(FWF) under contract number P-11392-MAT.

For further information on the recursIV project please refer
to:

http://www.cg.tuwien.ac.at/research/vr/recursIV/

10. References
[Akel93] K. Akeley: Reality Engine Graphics. Proceedings of

SIGGRAPH'93, pp. 109-116 (1993)
[Aono84] M. Aono, T. Kunii: Botanical Image Tree

Generation. IEEE Computer Graphics and Applications,
Vol. 4, No. 5, pp. 10-34 (1984)

[Deer95] M. Deering: Geometry Compression. Proceedings
of SIGGRAPH’95, pp. 13-20 (1995)

[DeRe88]P. DeReffye, C. Edelin, J. Francon, M. Jaeger, C.
Puech: Plant models faithful to botanical structure and
development. Proceedings of SIGGRAPH’88, pp. 151-158
(1988)

[Fole90] J. Foley, A. van Dam, S. Feiner, J. Hughes:
Computer Graphics: Principles and Practice. Addison-
Wesley Publishing Co., ISBN 0-201-12110-7 (1990)

[Funk93] T. Funkhouser, C. Sequin: Adaptive Display
Algorithm for Interactive Frame Rates During
Visualisation of Complex Virtual Environments.
Proceedings of SIGGRAPH’93, pp. 247-254 (1993)

[Funk95] T. Funkhouser, S. Teller, C. Sequin, D.
Khorramabadi: The UC Berkeley System for Interactive
Visualization of Large Architectural Models. Presence,
Vol. 5, No. 1, pp. 13-44 (1995)

[Gerv95] M. Gervautz , C. Traxler: Representation and
Realistic Rendering of Natural Phenomena with Cyclic
CSG Graphs. Visual Computer, Vol. 12, No. 1, pp. 62-74
(1995)

[Max96] N. Max: Hierarchical Rendering of Trees from
Precomputed Multi-Layer Z-Buffers. Proc.
EUROGRAPHICS Workshop on Rendering Techniques'96
(eds. Pueyo, Schröder), Springer Vienna-New York, pp.
165-174 (1996)

[Neyr96] F. Neyret: Synthesizing Verdant Landscapes using
Volumetric Textures. Proc. EUROGRAPHICS Workshop
on Rendering Techniques'96 (eds. Pueyo, Schröder),
Springer Vienna-New York, pp. 215-224 (1996)

[Prus90a]P. Prusinkiewicz, A. Lindenmayer: The algorithmic
beauty of plants. Springer, New York (1990)

[Prus90b] Prusinkiewicz P., Hanan J.: Visualization
of botanical structures and processes using parametric L-
systems. Scientific Visualization and Graphics
Simulation,Wiley & Sons, pp. 183-201 (1990)

[Reev85] W. Reeves: Approximate and Probabilistic
Algorithms for Shading and Rendering Structured Particle
Systems. Proceedings of SIGGRAPH’85, pp. 313 (1985)

[Scha96] G. Schaufler, W. Stürzlinger: A Three-Dimensional
Image Cache for Virtual Reality. Proceedings of
EUROGRAPHICS’96 (1996)

[Schm96]D. Schmalstieg, M. Gervautz: Demand-Driven
Geometry Transmission for Distributed Virtual
Environments. Proceedings of EUROGRAPHICS (1996)

[Smit84] A. Smith: Plants, fractals and formal languages.
Computer Graphics (Proceedings SIGGRAPH), pp. 1-10
(1984)

[Stra92] P. Strauss, R. Carey: An Object Oriented 3D
Graphics Toolkit. Computer Graphics (Proceedings
SIGGRAPH), Vol. 26, No. 2, pp. 341 (1992)

[Trax97] C. Traxler, M. Gervautz: Efficient Raytracing of
Complex Natural Scenes. Proceedings Fractals'97, World
Scientific Publishers (1997)

[Webe95] J. Weber, J. Penn: Creation and
Rendering of Realistic Trees. Computer Graphics
(Proceedings SIGGRAPH), pp. 119-128 (1995)

Figure 5: User interface of the interactive editor

Figure 6: Parameters allow to model different leaves from one model

Figure 7: (left)Levels of detail for a tree are modeled by modifying sub-graphs; (right) a forrest from of conifer trees

Figure 8: A monopodial tree at normal distance and a close-up view

