
Device-Independent Navigation and Interaction in Virtual Environments

Chris Faisstnauer, Dieter Schmalstieg, Zsolt Szalavári

Vienna University of Technology, Austria

Abstract. We present a new approach to the integration of
input devices into virtual environment software systems.
Our approach employs a so-called Mapper module as an
intermediate between input device drivers and virtual
environment application. Major advantages of our
approach are full device-independence, including the
easy integration of new input devices and emulation of
missing device capabilities, interactive reconfiguration,
sharing of input devices among multiple applications,
automatic selection of devices and interaction
appropriate for the task, and high-level support for a
large variety of navigation styles in virtual environments.

1. Introduction

Successful human-computer interaction requires efficient
transfer of information from humans to computers. Such
communication is mediated via input devices, which have
become more diverse with the introduction of virtual
reality systems that frequently use 6 degree of freedom
(DOF) trackers and other devices that cannot really be
considered commodities yet.

While most input devices are conceptually simple
(e. g., a digital joystick is nothing more than a set of
switches), a lack of standards, especially in 3-D
interaction, prevents input devices from being
interchangeable. Applications are generally designed to
work with a fixed set of input devices. While this allows
to exploit such devices to the fullest both in terms of
function and performance, it has several disadvantages:
The application may present a limited choice of input
devices. Support for a new device may require changes in
the application, or the application may not be able to fully
support the features of the new device (if operated in
backward compatibility mode). Also, the application may
depend on certain devices to be present and may refuse to
operate otherwise. Separation of input device handling
and application is necessary to overcome these
restrictions.

Beyond general purpose interaction in 2-D and 3-D,
virtual environments place additional requirements on the
software dealing with user inputs. For a convincing
simulation of a virtual world, simple and efficient
navigation is very important. Traditionally, navigation
was a task of the virtual environment application, that
simulated a particular navigation metaphor from raw data
obtained from input devices. This usually requires the
presence of certain input devices (e. g., 6-DOF tracker),
and also leads to re-implementation of the code that
simulates the navigation metaphor. A software module
that implements a user configurable navigation metaphor

may levitate the virtual environment application from
simulating navigation and untie it from specific input
device hardware.

This paper presents an approach for device-
independent navigation and interaction that overcomes the
limitations mentioned above. Its defining features are:

• Complete separation of management and querying of
input devices from the application. Data coming from
the input devices is transformed in a device-
independent format that allows applications to process
input data of a specific input class (e. g., position)
regardless of the source. In this way, new input
devices can be integrated without the need to alter the
application. It also allows to emulate input behavior in
case the most appropriate device is not available (e. g.,
emulating a mouse with the keyboard).

• A module capable of making educated guesses - called
the Mapper - processes the applications’ requests for
interaction and navigation and automatically selects
the most appropriate device and interaction style from
the available input devices.

• A navigation module performs the necessary
processing for simulating a wide variety of navigation
metaphors and delivers high level data to virtual
environment applications where it is immediately
useful.

Mapper and navigation module encapsulate generalized
world knowledge about input devices and navigation
metaphors, respectively. In combination, they allow a
virtual environment system to specify interaction and
navigation requirements on a very high level of
abstraction.

2. Related work

While the focus of research work has been laid on specific
interaction styles for 3-D and VR applications, little
attention has been paid to the issue of device
independence. Both experimental (e. g., MR [Shaw93])
and commercial (e. g., DVS [Ghee94]) virtual
environment systems try to provide a driver architecture
that allows incorporation of new devices, and ship with an
extensive list of built-in drivers for common VR devices
(tracker, data glove etc.). However, applications are still
designed for a particular device setup and cannot operate
independent of the available devices.

The only work towards device-independent interaction
that we are aware of was presented by He and Kaufman
[He93]. Their device unified interface (DUI) pursues the
same goals as we do, but aims at general interaction for

3-D systems. Consequently, their approach covers only
general purpose 3-D interaction (equivalent to our
interaction layer covered in section 5), but lacks an
equivalent to automatic selection of input devices and
support for navigation metaphors. Instead of a built-in
intelligence for the selection of devices, they provide a
comprehensive “device information-base” and rely on the
application to perform the selection.

3. Overview of the Mapper

The Mapper is a software module with the task to provide
applications with input data from the human user, no
matter which devices are available at runtime. It does so
by employing a set of device-independent data classes,
which can be grouped into four layers as outlined below
(Figure 2). The Mapper is launched as an independent
background process, and opens network connections
labeled “logger” and “provider”.

To make input devices available to the Mapper, it is
necessary to write a device driver that follows a set of
specifications for the communication with the Mapper. At
runtime, the device driver connects to the “logger”, so that
the Mapper can query the input device. As part of the
connection setup, the device driver transmits a description
of the device it manages to the Mapper, which maintains
an inventory of all connected devices.

Applications which want to request input data connect
to the “provider”. Upon connection, the new application is
added to the Mapper’s application list and can now issue
requests to the Mapper. The Mapper selects the most
suited input device for request from those devices in the
inventory that have not been occupied with previous
requests. If the data provided by the input devices does
not fulfill the application’s requests, the Mapper enhances
and processes the raw data in order to construct the data
types requested by the application. The Mapper works
with user configurable preference lists containing a
ranking of input devices in reference to their suitability for
specific tasks. Figure 1 shows a schematic view of the
Mapper.

 Figure 1: The Mapper provides the application with a
unified view of the input devices’ capabilities

The selected configuration is communicated back to the
application, whose responsibility it is to instruct the user
of the device usage, which may be different on
workstations with different connected input devices. The
set of input devices connected to one particular
workstation rarely changes, so that adaptation to a
particular usage of a known application is not needlessly
compromised. Furthermore, use of a particular device may
be enforced by modifying the preference lists.

3.1 Layers

As the Mapper is the only connection from input
devices to applications, it must provide every type of data
the application could need from the user. Furthermore, to
implement specialized types of navigation and interaction
not natively provided by the Mapper, the application must
also be able to obtain low-level data from the devices.
Furthermore, the Mapper should serve a large range of
possibly concurrent 2-D and 3-D applications including
virtual environments.

 Figure 2: The application may request data on four
layers of increasing abstraction

These considerations motivate the use of four layers of
abstraction for the requests that may be issued to the
Mapper:

1. Device layer: This layer delivers raw device data from
specific input devices without any processing on the
side of the Mapper.

2. Interaction layer: This layer supports generic
interaction data classes, that allow simplified
construction of any type of 2-D or 3-D graphical user
interface, such as 3-D selection or choice from a set of
options. Intelligent selection of appropriate input
devices for the requested interaction task are carried
out on this layer.

3. Navigation layer: By describing the desired style of
navigation (e. g., ground following or flying, constant
velocity or acceleration), an application can request
the Mapper to interpret the user’s input as navigation
commands and directly deliver the resulting movement
to the application.

4. Metaphor layer: As a further step of abstraction, the
application can be freed from describing the
navigation style in detail, and rather pick from a set of
predefined, intuitive navigation metaphors such as “car
driving”, which cover the majority of navigation
needs.

The layers depend hierarchically on each other, so that
requests to a higher level layer can be translated into
requests on a lower level layer, possibly with some
additional processing. The four layers are shown in Figure
2 and described in detail in the following sections.

3.2 Mapping strategy

The task of the Mapper is to match requests for input data
on the mentioned layers coming from the application to
input devices or device components that are currently
available. A brief examination of the problem reveals two
fundamentally different strategies to solve this problem:

• An application may request complete information
about all currently available input devices (type, DOF,
absolute/relative positioning etc.), and then decide on
its own. The selection of the device mapping will be
completely application specific. While this strategy
will always grant the maximum amount of flexibility,
it requires that all processing of device selection is
implemented for every application. It therefore defeats
the goal of achieving true device independence: the
application may be relieved from dealing with device
specific hardware details, but it still needs to consider
trade-offs in specific input devices.

• The Mapper may decide on the device mapping based
on a static characterization of each available device,
such as DOF, accuracy, number of buttons etc. It
therefore completely frees the application from any
input device considerations at all. Unfortunately, such
an approach fails to encapsulate real-world knowledge
that is used by humans to decide the appropriateness
of a particular interaction device or style for a
particular task. For example, a car simulator is better
controlled with a steering wheel than with a mouse,
but this fact cannot be represented using a technical
classification only.

We therefore decided to implemented a device mapping
strategy executed by the Mapper, but driven by preference
lists provided by the application or the user. The
preference lists define an order of choices regarding
devices to use for a particular request. They allow a
detailed modeling of suitability of particular devices for
particular tasks (the latter being defined by the
application’s request). Reference lists but do not force
applications or users to deal with device selection. In fact,
a user satisfied with the default preference list may never
need to deal with Mapper configuration at all.

4. Device layer

On the lowest level, the device layer routes raw input
device data to the application. No or very little processing
is done to the data. The Mapper does not need to know
anything about the input device parameters or the purpose
of the requested data. This layer is used if applications
wants to have direct access to the device, and requires the
application to know device-specific details.

A characterization of the input devices (see also
[Fole90] and [Burd94]) we used for our implementation is
given in Table 1.

Device Parameters

Analog
joystick(*)

Resolution (X/Y), number and type of
buttons (front, top, base)

Digital
joystick(*)

Number of directions (4 or 8); number
and type of buttons (front, top, base)

Mouse Resolution (X/Y); number and type of
buttons (left, middle, right)

Trackball Resolution (X/Y); number and type of
buttons (left, middle, right)

Keyboard Number of function keys;
numerical keypad available?

Tracker Resolution (for all 6DOF); number and
type of units (mounted to head, torso,
dominant hand, non-dominant hand);
physical setup (offset emitter, offset
receivers); if hand-tracker (“flying
mouse”): number and type of buttons

Spaceball Resolution (for all 6DOF); number and
type of buttons (left, middle, right)

 Table 1: Input devices and their characterizing
parameters
(*) Note that multi-joysticks (flight sticks with an extra joystick,
e. g., “coolie hat” etc.) are described in this context like a group
of multiple separate joysticks.

5. Interaction layer

The interaction layer provides basic interaction classes to
support generic human-computer interaction. These data
types provide the information typically needed by a wide
range of graphical applications to interact with the user.

The data types delivered by the interaction layer and
higher layers are device independent and completely free
the application from any consideration regarding hardware
specific details. The supported interaction data classes
(see also [Fole90]) are given in Table 2.

If an interaction class is issued to the Mapper, it
consults the preference lists to look up the most
appropriate device mapping. We distinguish between
devices and device components, the latter being parts of
devices like individual buttons or functional groups like
the cursor keys. Note that components can overlap in their
utilization of a device (e. g., the numerical pad on a
keyboard can be used to enter numbers or control a
cursor, but not both tasks at the same time). Device
components are the unit of assignment handled by the
Mapper, in other words, a device can be shared by
multiple requests as long as the assigned components do
not overlap.

Class and Characterization Parameters
Confirmation: Command issued to
application

-

Selection: Selection from a set of
discrete values

Number of
choices

Position: Input of a 1-D, 2-D or
3-D position

X-axis: yes/no?
Y-axis: yes/no?
Z-axis: yes/no?
Value range(s)
Absolute/relative

Orientation: Input of a 1-D, 2-D,
or 3-D orientation

Yaw: yes/no?
Pitch: yes/no?
Roll: yes/no?
Value range(s)
Absolute/relative

Direction: Boolean values with
directional meaning; used for
simple steering without physical
movement model

X-axis: yes/no?
Y-axis: yes/no?
Z-axis: yes/no?

Quantity: Abstract numerical
value

Value range
Absolute/relative

Velocity: Special quantity
indicating “velocity”; prefers
absolute device

Value range

Acceleration: Special quantity
indicating. “acceleration”;
prefers relative device

Value range

 Table 2: Interaction data classes and their description

The Mapper first picks a candidate device from the
device preference list, and then consults the device
component preference list for that device to find a suitable
mapping to device components. Starting from the top of
the preference list, the Mapper searches for a component
that is both physically available and not already occupied.
Once such a selection is made, the Mapper marks the
component as occupied and starts delivering input data to
the application (for details see the next section).

To make the basic algorithm apt for practical use, a
number of additional features can be controlled by the
user:

• Use of modifiers: It is common user interface design
practice to use so-called modifiers to better exploit
limited input device resources. By concurrently
pressing a key or button, an interaction is modified in
its behavior, essentially, the same input device is used
for two or more, mutually exclusive tasks. Examples
are the use of the shift-key to distinguish cursor
navigation vs. selection in word processors, or moving
the mouse vs. dragging (with the mouse button
pressed). While the use of modifiers slightly increases
the cognitive load on the user, it may still be desirable,
especially if few devices are available (e. g., in a
typical desktop system where the only efficient 2-D
input device is a mouse). Consequently, requests to the
Mapper can be attributed with up to two modifier keys
that may be assigned to the Mapper to reuse a
particularly suitable device component that is already
in use.

• Total vs. partial device assignment: By demanding
“total” device assignment, a user may indicate that a
particular request does not share a device with other

requests even if some components of the device are
left unused. This is necessary if one wishes to create a
dedicated device to a particular task.

• Grouping: Frequently, a task may require multiple
channels of input data that belong together
semantically. It is therefore good design practice to
assign these requests to a single device or a small set
of devices. The standard mapping as described above
does tend to spread sequential requests over multiple
devices according to the most suitable available
device. By defining a group of requests rather than a
sequence of individual requests, a user may override
this behavior and instruct the Mapper to attempt to use
as few devices as possible, including the use of
modifiers. The latter may be restricted to avoid
“overload” of a particular device.

 Figure 3: Example of interaction among device driver,
Mapper and application requesting data

• Depth search vs. width search: Once the Mapper has
picked a device, in order to find an available device
component it may either prefer to check all devices of
the same type if the initial choice is unavailable, or it
may stick with the chosen device, stepping through all
entries of the device component preference list. This
behavior can be selected by specifying width search or
depth search, respectively.

• Absolute vs. relative input: The application may
specify a preference to whether an absolute or a
relative input is preferred for a particular request. The
Mapper tries to take this preference into account, but
is free to pick a relative device for absolute values and
vice versa and simulate the requested behavior, if the
request cannot otherwise be satisfied.

• Direct vs. indirect selection: selection can either be
direct (every choice has a 1:1 correspondence to a
device component, e. g., a key) or indirect (the choice
is made by simulating an array of choices, e. g., by
cycling through the choices with a joystick and
confirming with a joystick button). Indirect selection is
necessary if the set to select from is larger than the
available set of suitable device components. A request
for selection may allow indirect selection, or it may
enforce direct selection, even if the ranking of the
chosen device is lower in the preference list.

• Semi-dependent device components: Some device
components such as the X and Y-axis of a mouse do
not allow fully independent manipulation (i. e. when
moving the mouse, it is not easily possible to move it
strictly along one axis). Therefore a request may be set
to isolating, meaning that it cannot share a semi-
dependent device component with another request.

• Continuous or polling mode: The application must
indicate whether it wishes to receive data in regular
intervals, or if it data is sent at runtime only if the
application asks for it. Furthermore, the application
can specify whether the Mapper should continuously
update its internal representation of the input devices’
state independent of the reports to the application.

Figure 3 shows an example of how the Mapper processes
a request for interaction by the application and mediates
between device driver and application (the same principle
applies to higher layers).

6. Navigation layer

The navigation layer supplies a convenient way for an
application to control the user’s avatar in the virtual
environment without having to care about the
particularities of navigation. The supported navigation
was designed with the intention to cover a large range of
navigation styles.

6.1 Design considerations

A fundamental component of virtual environment
software is the user’s representation (avatar) that can be
directed through the simulated space, often controlling the
virtual camera that is used to generate the three-
dimensional image sequence. However, there are other
important issues to navigation that are usually hard-coded
in the application, but can freely be specified when using
the Mapper:

Structure of avatar: A humanoid avatar suitable for
direct control may contain the following body parts: head,
torso, left hand, right hand (compare [Robi93, Robi95]).
If only one body part is simulated, it may be seen as a
combined torso/head, and defines the user’s point of view.
If head and torso are both present, the torso is taken as the
frame of reference (defining the “overall” position of the
avatar), while the head is defined in relation to the torso
and defines the user’s point of view - head and body may
be moved independently. Selection of the direction of
movement and general interaction can only be made via
the line of sight unless a dominant hand (or cursor) is
present, which can be moved independently of head and
torso. Advanced models include a non-dominant hand as a
fourth part; feet are generally omitted. Another dimension

of the model is whether the simulated parts are also drawn
by the application, so that the user can see his or her own
body. Figure 4 illustrates the relationship of the avatar’s
body parts, a reference coordinate system and a tracking
system.

 Figure 4: Structure of the avatar with relevant coordinate
systems

Point of presence: Navigation is very dependent on how
the user relates to the avatar. We speak of 1st person
presence, if the user perceives the world “through the
eyes” of the avatar. 3rd person presence is established if
the user observes and controls the avatar from a viewpoint
other than the avatar’s. According to this distinction,
several models can be distinguished:

1st person models:

• No body: The user directly controls the point of view,
and there is no visible representation of the user’s
body. The appeal of this models is mainly its
simplicity.

• Direct control of an avatar with body: The user
directly controls an avatar composed of one or
multiple body parts and is also able to see these body
parts (torso, hands) if gazing down.

• In vehicle, no body: The user is situated in a simulated
vehicle such as a car or plane, and controls the
viewpoint via simulated cockpit instruments. Body
parts are neither simulated nor drawn

• In vehicle, with body: The user is situated in a
simulated vehicle, but may see and control body parts.
Instruments are operated by employing the simulated
hand(s). While the visual effect may be appealing, the
double indirection (control simulated hands to control
simulated instruments) can deteriorate performance.

3rd person models:

• Body controlled from outside: The body of an avatar is
controlled while being viewed from outside. This is a
rather unconventional approach more often found in
computer games than in immersive virtual
environments.

• Vehicle controlled from outside: The user operates a
vehicle in a simulated “remote control” model much
like a model airplane.

For 3rd person presence to be useful, it must be ensured
that the vehicle does not leave the user’s field of view.
This is usually done by coupling the user’s viewpoint to
the vehicle (e. g., a camera that trails behind a racing car
at a fixed distance), or by using a fixed camera.

Physical setup: For successful implementation of a
navigation style, consideration has to be paid to the
intended type of physical setup. We distinguish two
variations:

• The user is standing and free to walk around (in a
limited area). This is generally used for fully
immersive virtual environments (using head mounted
displays) or augmented reality. As it is inconvenient to
use desktop-devices such as mouse or keyboard when
standing, this setup assumes the use of 6DOF trackers.

• The user is sitting at a workstation, and is not expected
to physically move around. The workstation is
regularly equipped with desktop devices, trackers
cannot be expected.

Dimension: Navigation may be constrained to a ground
plane, effectively walking about in 2-D only, or may allow
unconstrained 3-D (flying) movements.

Velocity: Specification of velocity may be given by
impulse (either standing still or moving at a preset speed),
linear (any speed from a preset range may instantly be
selected), acceleration (a simplified physical simulation
that requires an acceleration phase to reach the desired
speed). Negative velocities (backwards movement) may or
may not be allowed.

6.2 Navigation data classes

The application communicates to the Mapper which type
of avatar it wishes to implement; the Mapper selects an
appropriate control mechanism based on the available
input devices, and supplies the application with position
and orientation of the avatar’s parts. The only task left to
the application is to draw the avatar’s visual
representation to provide visual feedback to the user. The
navigation layer relies on the interaction layer to provide
basic input data; however, it employs separate navigation
preference lists together with rule-based knowledge in
order to select the appropriate input devices for the
control of the avatar.

Selection of a particular style is done by a number of
parameters, the most important of which is the navigation
class, which instruct the Mapper on how the user should
control the avatar. Choices are: walking human, flying
human, or vehicle. The parameters are listed in Table 3.

Walking human: This class simulates a human that is
able to walk in a virtual environment following ground
level. This model simulates a style of movement very
close to our real world experience. The human user
physically walk around in a small area bound by the range
of the measuring device. Because humans are bound to
stay on the ground level, the movement is essentially 2-D
(although eye height can be varied). 6 DOF are the
preferred input device configuration for the walking
human class, as they allow direct correspondence between
the user’s movements in reality and movement in the
virtual environment. This also means that movements are

constrained by physical limitations such as tracker range,
cable length or walls.

Flying human: This class extends the walking human
class to the third dimension. The simulated human may
navigate freely in three dimensions. Direct
correspondence with physical movement is no longer
possible (as humans cannot fly), so the scenario of usage
is that the human remains more or less stationary and
navigates by indicating direction and velocity of the
movement. The movement can also artificially be limited
to 2-D, to achieve a ground movement while remaining
physically stationary (unlike walking).

Vehicle: The vehicle class simulates traveling in an
artificial vehicle. While walking and flying are geared
towards “direct” navigation by using ones body in an
immersive virtual environment, the vehicle class is
introduced for desktop setups, where the user controls a
simulated vehicle via a “dashboard” of desktop devices
while sitting and looking at a screen. While the control
style is quite different to the flying human class, the
request parameters are mostly the same. However, the
vehicle class allows no choice of direction specification:
in 2-D, direction is always specified via heading, in 3-D
via heading and pitch.

Navigation
class

Parameters

Walking
human

Body parts: head, torso, left hand, right
hand

Flying
human

2D or 3D; body parts: head, torso, left
hand, right hand; preferred direction
specification [Mine95] (head direction,
torso direction, hand direction, line from
head to hand, line from torso to hand);
preferred velocity specification (impulse,
linear); maximum velocity; negative
velocity allowed?

Vehicle 2D or 3D; body parts: head, left hand, right
hand; preferred velocity specification
(impulse, linear); maximum velocity;
negative velocity allowed?

 Table 3: Navigation classes with their characterization

Because they are designed to establish direct
correspondence between a user’s movements and the
navigation in the virtual environment, the walking or
flying human model is only supported by the Mapper if
6DOF tracking is available. Each request for a particular
body part may be mandatory or optional. For every
mandatory part, a tracker must be available. Body parts
for which the request is optional may be omitted by the
Mapper if too few trackers are available. If the
application’s requirements cannot be fulfilled or desktop
device must be used, the Mapper automatically selects a
vehicle metaphor, which may be controlled by desktop
devices.

7. Metaphor layer

The possibilities for navigation as provided in the
navigation layer are numerous, and most of the
capabilities may not be needed for the majority of possible
application. To simplify the selection, the metaphor layer
offers preconfigured choices of navigation style

(metaphors) describing the most useful parameter
combinations. Metaphors are well understood by
experience or cultural knowledge by most people, and
therefore give designer and users alike a good impression
about the structure and abilities of the avatar. Some
examples like “remote controlled car” or “Superman” are
given in Table 4.

Metaphor Class Dim
.

Body Velocity

Walker Walkin
g

- Head, torso, hand

Skater Flying 2-D Head, torso, hand Linear
Superman Vehicle 3-D Head, torso, hand Linear

w/ neg.
Flying
carpet

Vehicle 3-D Head, torso, hand Impulse
w/ neg.

Remote c.
car

Vehicle 2-D - Linear

Remote c.
plane

Vehicle 3-D - Linear

Car driver Vehicle 2-D Head, hand
Airplane
pilot

Vehicle 3-D Head, hand

 Table 4: Overview of the metaphors

8. Implementation

The Mapper has been implemented in C++ under Linux
running on a PC, while the graphical applications run on
an SGI workstation. Connections via Ethernet allow
multiple workstations to be serviced by one device PC.
This setup It functions as a part of the network
infrastructure of the “Remote Rendering Environment”
developed by our group [Schm96].

Linux as a platform was chosen for multiple reasons:
While polling of the input devices and data processing is a
simple task, it occupies a substantial amount of CPU
power. Compared to the cost of a workstation-based
solution, a dedicated PC is an extremely inexpensive way
to add multiprocessing and decoupled simulation
[Shaw93] to the system. It also allows the use of PC-based
input devices (e. g., joysticks and steering wheels), which
are cheap and readily available in a large variety. The
communication of Mapper and application is carried out
via a local network, which separates the Mapper from any
particular graphics platform. The only constraint
introduced by this setup is that the Mapper PC must be in
physical vicinity to the workstation so that the connected
input devices can be used together with the workstation.

The network protocol is based on standard TCP
sockets. All communication regarding registration of
devices and applications, interaction and navigation
request and mapping is done using simple humans-
readable ASCII strings. For the delivery of input data
from the Mapper to the application, a compact binary
format is adopted for reasons of network efficiency. Each
binary data packet is headed by a tag. The tag allows the
receiving application to identify which of its requests the
packet belongs to and therefore conclude how to decode
the binary format.

9. Evaluation

To illustrate the operation of the Mapper, we conducted a
number of simple experiments.

Experiment 1: Control of one or more vehicles. We
choose this task to demonstrate the Mapper’s response to
interaction requests, and how multiple successive requests
for interaction (multiple tanks) are satisfied. Simple
movement of a tank is controlled by specifying a heading
(1-D orientation) and absolute velocity, both constrained
by an interval. The command issued to the Mapper is
ORIENTANGLE ABS H -180 180 +
 VELOCITY -10 10

In the configuration we tested, a joystick was available
and chosen as the most appropriate device for the request:

• Heading was mapped to the X-axis of the joystick

• Velocity was mapped to the Y-axis of the joystick

Using the upper, front, and finally both buttons of the
joystick as modifiers, the Mapper is able to satisfy up to
four requests for concurrent tanks, running as independent
applications. In other words, a single joystick controls
four tanks at once (Figure 5). A fifth tank would be
controlled using the keyboard.

X-axis + Front

X-axis + UpperX-axis

Y-axis

Y-axis + Front

Y-axis + Upper

Y-axis + Upper
+ Front

X-axis + Upper
+ Front

 Figure 5: Controlling four tanks simultaneously with one
mouse and button combinations

Experiment 2: Navigation with different device
configurations. The requested navigation is aimed for
exploring a virtual environment: A flying human in 2-D
(note that terrain following is provided by the
application), consisting of head, torso, and an optional
right hand (to be omitted if no tracker available). Travel
direction should be specified by flying in crosshair
direction (from head to right hand: HEADRHAND, see
Figure 6) at variable velocity (max. speed: 10) determined
by distance between head and hand. The requested
navigation is accompanied by an interaction request to
select among 10 objects and use the currently selected
object (confirm). Issued requests are
NAVIGATION FLYING 2D HEAD! TORSO!
 RHAND VEL 10 HEADRHAND
SELECTION 10 + CONFIRM

At the first attempt, trackers for head, torso and hand
(flying mouse with 1 top and 3 front buttons), mouse and
keyboard were available. The resulting mappings:

• Head, torso, hand controlled by head, torso, hand
tracker, respectively

• Movement triggered by flying mouse button 1 (top
button)

• Selection cycled by flying mouse buttons 3 and 4
(front buttons)

• Confirm triggered by flying mouse button 2 (front
button)

Direction of movement

Velocity determined
from distance

 Figure 6: Cross-hair specification of the direction is used
for navigation using a head-mounted display and tracker.

The second attempt tried to demonstrate the emulation
behavior when only desktop devices are present.
Consequently, only mouse and keyboard were made
available to the Mapper. As a result, the Mapper changes
the navigation style from “flying human” to “vehicle” (the
torso coordinate system becomes the vehicle coordinate
system) and the optionally requested right hand is omitted.
The resulting mappings:

• Vehicle heading controlled by mouse X-axis

• Vehicle velocity controlled by mouse Y-axis

• Head heading controlled by mouse X-axis + left button

• Head pitch controlled by mouse Y-axis + left button

• Selection controlled by middle and right button

• Confirm is controlled by keyboard (space-key)

10. Conclusion

We have presented an architecture aimed at achieving
independence of virtual environment applications from
particular input devices. This is realized by introducing a
separate component, the Mapper, that is capable of
supplying the application with the desired user input
processed to represent interaction and navigation. An
algorithm to select appropriate devices based on the
applications’ requirements and the presently available
input devices frees the application from any concerns
about devices. Our experimental implementation verifies
that this approach is feasible and eases the development of
virtual environment software.

Acknowledgments. The authors would like to thank
M. Eduard Gröller for proofreading and Anton Fuhrmann
for assistance with the hardware setup. This work was
sponsored by the Austrian Science Foundation (FWF)
under contract no. P-11392-MAT.

Further information and software for download can be
obtained from our web site

http://www.cg.tuwien.ac.at/research/vr/mapper/

References
[Burd94] G. Burdea, P. Coiffet: Virtual Reality

Techology. John Wiley & Sons (1994)
[Fole90] J. Foley, A. van Dam, S. Feiner, J. Hughes:

Computer Graphics: Principles and Practice. Addison-
Wesley Publishing Co. (1990)

[Ghee94] S. Ghee, J. Naughton-Green: Programming
Virtual Worlds. SIGGRAPH’94 Course, No. 17 (1994)

[He93] T. He, A. Kaufman: Virtual Input Devices for 3D
Systems. Proc. IEEE Visualization’93, pp. 142-148
(1993)

[Mine95] M. Mine: Virtual Environment Interaction
Techniques. SIGGRAPH’95 Course, No. 8 (1995)

[Robi93] W. Robinett, R. Holloway: Implementation of
Flying, Scaling, and Grabbing in Virtual Worlds.
SIGGRAPH’93 Course, No. 43, pp. 6.1 - 6.4 (1993)

[Robi95] W. Robbinet, R. Holloway: The Visual Display
Transformation for Virtual Reality. Presence, Vol. 4,
No. 1, pp. 1-23 (1995)

[Schm96] D. Schmalstieg, M. Gervautz, P. Stieglecker:
Optimizing Communication in Distributed Virtual
Environments by Specialized Protocols. Virtual
Environments and Scientific Visualization‘96 (ed.
M. Göbel), Springer (1996).

[Shaw93] C. Shaw, M. Green, J. Liang, Y. Sun:
Decoupled simulation in virtual reality with the MR
toolkit. ACM Transactions on Information Systems,
Vol. 11, No. 3, pp. 287-317 (1993)

/research/vr/mapper/

