
Exploiting coherence in 2 1/2 D visibility computation

Dieter Schmalstieg and Robert F. Tobler
Vienna University of Technology, Austria

(dieter | rft)@cg.tuwien.ac.at http://www.cg.tuwien.ac.at/

In interactive 3-D graphics used for visualization, virtual
reality and computer games, the complexity of the scenes
(the amount of geometric primitives passed to the display
algorithm) frequently exceeds the capacity of the
rendering engine and compromises interactive frame
rates.

Visibility computation is used to reduce the amount of
geometry that must be passed to the rendering engine.
The model is subdivided into subvolumes called “cells”,
and the visibility algorithm computes the set of cells that
can at least partly be seen from the given viewpoint Airey
[Aire90] called this the “potentially visible set” (PVS).
The geometry associated with these cells (walls, interior
objects) is then displayed, and conventional hidden
surface removal (e.g. a Z-buffer) is employed to resolve
the actual visibility. Variants of such algorithms have
been discussed in [Tell93, Gree93, Lueb95, Nayl95,
Yage95].

If visibility can be completely determined from the
floor plan, 3-D visibility is effectively reduced to a 2-D
problem. This imposes restrictions on the model (e.g.
bridges are impossible), but nevertheless allows
interactive display of a large variety of interesting models
such as building interiors and dungeons. Since a three-
dimensional image is produced from an extended two-
dimensional data structure, we call such algorithms 2
1/2D visibility algorithms.

At the low end, computer games such as DOOM [ID94]
make use of this restricted type of environment that can
be rendered with little effort. Image generation for such a
model is done by intersecting rays with the scene. When
a wall is hit, a vertical span is drawn. Thereby, one pixel
column is drawn in turn, thereby avoiding the need for a
more complex general 3-D rendering algorithm.

Figure 1: A triangulated floor plan

Here we propose an algorithm that exploits coherence
to accelerate visibility computation in 2 1/2D and can be
used for on-the-fly computation of potentially visible sets,

and also for computing the exact visible portion of the
scene. The algorithm computes the equivalent of a
viewing ray swept horizontally from left to right, which
is a one-dimensional sequence of discrete visibility
changes. The intervals between the visibility changes are
spatially coherent (a single wall is visible). This
information can be used for incremental operations such
as drawing, texturing etc.

The input to the algorithm is a mesh of triangular cells
(Figure 1), where each edge can or cannot be a wall.
Such a data structure can easily be obtained by
triangulation from a floor plan or blue print.

Adjacency information of the cells allows the PVS to be
computed by visiting all potentially visible cells using a
recursive algorithm. The algorithm starts by considering
the edges of the cell containing the viewpoint (the initial
current cell). If one of these edges is a wall, it can be
displayed immediately. Otherwise, we step over this
current edge from the current cell to the adjacent cell.

case 1:
newVec left of currentVec.
1 recursive call

case 2:
newVec between currentVec
and clipVec. 2 recursive calls

case 3:
newVec right of clipVec
1 recursive call

left
edge

currentVec clipVec

newVec

current
edge

eye

output

left
edge

right
edge

currentVec clipVecnewVec

current
edge

eye

output

right
edge

currentVec clipVec
newVec

current
edge

eye

output

left
edge

right
edge

Figure 2: The algorithm distinguishes three cases

The adjacent cell has one “new” vertex that is not part of
the current edge. The position of this vertex within the
sector defined by viewpoint and current edge is relevant
for the operation of the algorithm. Three topological
cases are distinguished (Figure 2) and lead to different

recursive calls. All relevant points are examined by their
relative position as seen from the eye.

To examine these relations, the following variables are
needed:
• currentVec: the vector representing the “viewing

ray” that is monotonically swept over the scene
• currentEdge: the edge shared by current cell and

adjacent cell
• clipVec: the vector up to which the current edge is

visible
• newVec: the vector from the eye to the vertex of the

adjacent cell not contained in the current edge.
• leftEdge: the left edge of the adjacent cell

containing the newVec.
• rightEdge: the left edge of the adjacent cell

containing the newVec.

The relative position of these vectors with respect to each
other can easily and quickly be computed with a dot
product (isLeft operator).

In the following, we sketch an implementation that
computes the PVS. For brevity, we have abandoned those
portions of the implementation that deal with the
manipulation of the triangle mesh.

Vec2D currentVec; //global

void
PVS(Edge currentEdge, Vec2D clipVec)
{
 Vec2D newVec;
 if(isWall(currentEdge))
 {
 //output: 1. current cell in PVS,
 // 2. current edge visible
 // from currentVec to clipVec
 currentVec = clipVec;
 return;
 }
 newVec = getNewVec(currentEdge);

 if(isLeft(newVec,clipVec))
 PVS(rightEdge,clipVec); //case 1,2
 if(isLeft(currentVec,newVec))
 PVS(leftEdge,clipVec); //case 2,3
}

Exact visibility computation. In the presented form, the
algorithm outputs all cells that are potentially visible, i.e.
where at least one point in the cells extent can be seen
from the given viewpoint. However, the exact fraction of
the current cell that is visible can easily be computed by
intersecting the cell with the sector between
currentVec and clipVec.

Incremental computation of vertical spans. The same
idea can be applied if the purpose is to produce vertical
spans for a simple display algorithm. In this case,
currentVec is incrementally advanced in constant

steps corresponding to the distance between pixel rows
on the screen until it is right of clipVec. Depth
computation, shading and texturing operations can be
carried out incrementally in the same way.

The major advantage of the proposed algorithm over
raycasting is its use of coherence as can be seen in the
code fragment above: The whole visible fraction of a wall
is considered at a time, allowing faster incremental
drawing operations and avoiding the need to re-compute
ray/scene intersection for every pixel column.

Extending the algorithm to three dimensions. In 3-D,
the model space can be represented as a mesh of
tetrahedrons or cubes whose faces may be either walls or
portals to neighboring cells. Again starting with the cell
that contains the eyepoint, all walls of this cell are
drawn, and then the algorithm steps on to the adjacent
cells. The major problem with this approach is that
clipping regions can become complex, and that a single
monotonic sweep like in 2-D is no longer possible
(compare [Lueb95]).
References
[Aire90] J. M. Airey, J. H. Rohlf, F. Brooks Jr.: Towards

Image Realism with Interactive Update Rates in
Complex Virtual Building Enviroments. Computer
Graphics, Vol. 24, No. 2, pp. 41 (1990)

[Gree93] N. Greene, M. Kass, G. Miller: Hierarchical Z-
Buffer Visibility. Proceedings of SIGGRAPH’93, pp.
231-237 (1993)

[ID94] ID Software: DOOM. Computer game (1994)
[Lueb95] D. Luebke, C. Georges: Portals and Mirrors:

Simple, Fast Evaluation of Potentially Visible Sets.
Proceedings SIGGRAPH Symposium on Interactive
3D Graphics, pp. 105-106 (1995)

[Nayl95] B. Naylor: Interactive playing with large
synthetic environments. SIGGRAPH Symposium on
Interactive 3D Graphics (1995)

[Tell93] S. Teller: Visibility Computations in Densely
Occluded Polyhedral Environments. PhD Thesis,
Princeton University (1993)

[Yage95] Yagel R., Ray W.: Visibility Computation for
Efficient Walkthrough of Complex Environments.
Presence, Vol. 5, No. 1, pp. 45-60 (1995)

