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Abstract
2D wavelets are usually generated from 1D wavelets through the rectangular or through the
square decomposition scheme. In this paper a new adaptive 2D decomposition scheme for
compression related applications is presented. The adaptive 2D decomposition selects 2D
wavelet functions based on the compression of the coefficients, but needs only the same
number of 1D filter operations as the rectangular decomposition for the compression and
even less for the decompression. Results for lossless image compression have shown
improvements in the compression rate between 1% and 10% compared to the square
decomposition. Only in the case of very small images (below 50x50) the adaptive
decomposition was outperformed by the square decomposition because of the overhead to
store the selection, which 2D wavelets should be used.
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1. Introduction
Wavelets and wavelet transformations have a wide variety of different applications in
computer graphics including radiosity [1], multiresolution painting [2], curve design [3],
mesh optimization [4], volume visualization [5], image searching [6], animation control
[7], BRDF representation [8], and, one of the first applications in computer graphics, image
compression [9][10][11][12]. As it is noticed in the preamble of [13], wavelets and wavelet
transforms can become as important and ubiquitous in computer graphics as spline based
techniques are now.
In this paper a new decomposition scheme for 2D wavelets based on adaptive selection of
2D wavelets based on the compression of their coefficients is presented and the application
of this scheme in the field of lossless image compression is discussed. Chapter 2 gives a
short introduction in the theory of orthonormal wavelet transformations and multiresolution
analysis in one dimension. Chapter 3 gives an overview of extensions to generate
multidimensional wavelets. In Chapter 4, the proposed method, the adaptive 2D
decomposition is presented. Chapter 5 deals with some special aspects of wavelet based
lossless image compression. Experimental results with some standard test images of
photographs and also with some computer generated images are analysed in Chapter 6, and
conclusions with some future research directions are outlined in Chapter 7.

2. Orthonormal Wavelets in 1D
This short introduction deals only with a subset of wavelets. A more detailed overview of
the different kinds of wavelet transforms including continuous wavelet transform, frames,
and biorthogonal wavelets can be found in [14] and [15].



The orthonormal wavelet transform is based on two functions ψ(x) and φ(x), which have
the properties:

( ) ( )φ ψx dx x dx= =∫ ∫1 0; (1)

These functions with their translations and dilatations ψj,k(x) and φj,k(x) build an
orthonormal basis and therefore any function in L2(R) can be reconstructed with these basis
functions. φ(x) is called scaling- or smooth-function, and ψ(x) wavelet or detail function. ψ
j,k(x)  and φj,k(x) can be constructed from their mother functions ψ(x) and φ(x) in the
following manner:
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{φj,k | k ∈Z} form an orthonormal basis of functions in vector space Vj. These vector
spaces are nested, that is, V0⊂V1⊂V2⊂V3⊂ ... . Given a function f(x) over [0,1], this
function can be aproximated in Vj with 2j scaling coefficients sk
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Also the detail functions {ψj,k | k ∈Z} form an orthonormal basis of functions in the detail
vector space Wj, which is the orthogonal complement of Vj in Vj+1. Wj can be thought of
as containing the detail in Vj+1, which can not be represented in Vj. The vector space Vj+1

can be decomposed in the following manner:
Vj+1=   Vj ⊕ Wj =   Vj-1 ⊕ Wj-1 ⊕ Wj =   ... =   V0 ⊕ W0 ⊕ W1 ⊕ ...⊕ Wj (4)

Let dk
j  be the detail coefficients, given through:
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then f j(x) can be calculated from the detail coefficients {dk
i  | i<j} and the scaling

coefficient s0
0  as follows:
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The calculation of the coefficients { s0
0 , dk

i  | 0≤i<j; 0≤k<2i } from the scaling coefficients

{ sk
j  | 0≤k<2j } is called wavelet transformation. The fast wavelet transformation uses a

pyramid scheme with two subband filters, the smoothing or scaling filter (hm), and the
detail or wavelet filter (gm). In one transformation step the 2i scaling coefficients sk

i  are

replaced by 2i-1 scaling coefficients sk
i−1 and 2i-1 detail coefficients dk

i−1 :
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This step is repeated on the remaining scaling coefficients, until s0
0  is computed. The

reconstruction step can be performed using the adjoint filtering operation:

s h s g dk
i

k m
m

m
i

k m m
i= +−

−
−

−∑ 2
1

2
1 (8)

3. Wavelets in Higher Dimensions
The definitions in Chapter 2 deal with wavelets in 1D space, but for image compression
wavelet transformations in 2D are needed. One way to extend the formulas to 2D is to use
a dilatation matrix D in (2) as described in [16], instead of a simple dilatation factor, e.g.
the quincunx scheme uses the dilatation matrix D = −( )1

1
1
1 .



More popular methods extend the one dimensional wavelets to higher dimensions with
tensor products of 1D wavelets and scaling functions, i.e. the rectangular and the square
wavelet basis functions.

3.1 The Rectangular Decomposition
The rectangular or standard wavelet basis functions are generated through the carthesian
product of the 1D wavelet basis functions in every dimension. In the 2D case, the
rectangular wavelet basis functions are:
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The fast wavelet transformation with the rectangular basis wavelets, also known as
rectangular decomposition, is computed by successively applying the 1D wavelet
transformation to the data in every dimension. In the 2D case, all the rows are transformed
first, then a 1D wavelet transformation is applied on all columns of the intermediate result.
Figure 1a illustrates the rectangular decomposition. The wavelet coefficients of the 1D
transformation steps are stored in the right (row transform) or lower (column transform)
part, the scaling coefficients in the left or upper part, respectively.

figure 1

3.2 The Square Decomposition
The square or nonstandard wavelet basis functions are also generated through cartesian
product of 1D wavelets and 1D scaling functions. In contrast to the rectangular basis
functions, the square basis functions always use tensor products of wavelet and/or scaling
functions of the same resolution level. In the 2D case, the square wavelet basis functions
are:
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The square wavelet decomposition can be computed with a similar technique as the
rectangular decomposition: A 1D wavelet transformation step, as described in (7) - not the
whole wavelet transformation as in the rectangular decomposition - is applied in every
dimension. This generates (2dim -1) subbands with wavelet coefficients and one subband
with scaling coefficients. This transformation scheme is applied recursively on the scaling
coefficients until the lowest level is reached (figure 1b). The square decomposition is
slightly more efficient to compute than the rectangular decomposition: For an m ×  m
image only (8/3)(m2-1) assignments are needed, compared to 4(m2-m) in the rectangular
decomposition. Also the compression ratios are usually better for the square
decomposition, because the support of the wavelet functions are square and support width
of the wavelet basis functions are lower or equal than their counterparts in the rectangular
decomposition and therefore they exploit more locality.

4. The new method: Adaptive 2D Wavelet Decomposition
Let us take a closer look at the difference of the square and the rectangular decomposition
in the 2D case: The first obvious similarity of the two schemes is the use of the same
scaling function φ(x,y), whose coefficient is stored in the upper left corner of the
transformed images.
In one decomposition step of the square decomposition three wavelet subbands and one
scaling subband are generated. The wavelet subbands are not altered in the following
decomposition steps. The first wavelet subband in the upper right part of the transformed
image consists of the coefficients of the wavelet functions hψ as defined in (10), the second
subband in the lower left part has the coefficients of vψ, and the third subband in the lower
right part holds the coefficients of  dψ. All the wavelet functions in dψ are also contained in
R3ψ of the rectangular decomposition, therefore the coefficients in this part of the
transformed image are the same for both decompositions. The upper right part of the square
transformed image contains coefficients of the wavelet functions hψL(x,y) = ψL(x)φL(y),
where L is the maximum resolution level. The corresponding rectangular decomposition
holds the coefficients of the wavelet functions {R1ψ

L
(x,y); R3ψ

L,i
(x,y) | 0 ≤ i < L }

(figure 2). It can be seen from the definition of these wavelet functions in (9)(10), that this
part of the transformed image in the rectangular decomposition can be generated from the
square decomposition with a 1D wavelet transformation within every column of this part.
In analogy, the lower left part of the rectangular decomposition can be generated from the
square decomposition with a 1D wavelet transformation within every row.



    
             a.) rectangular decomposition                         b.) square decomposition

figure 2

This relation between the square decomposition and the rectangular decomposition remains
also in the following decomposition steps of the square decomposition with the resolution
level L reduced by 1 from the above step.
This observation leads to an alternative construction scheme for the rectangular
decomposition:

• apply a square decomposition step
• for every column in the upper right part:

apply a 1D wavelet transform in the y-dimension
• for every row in the lower left part:

apply a 1D wavelet transform in the x-dimension
• apply this scheme recursively on the upper left part of the transformed image

The 1D wavelet transformation consists of an iteration of transformation steps. The idea of
the adaptive 2D decomposition is to replace the 1D transformations in the alternative
construction scheme of the rectangular decomposition with an optimal number of
transformation steps in respect to the compression rate of the coefficients. The pseudo-code
of the adaptive 2D decomposition can be written as:

• apply a square decomposition step
• for every column in the upper right part:

apply all 1D wavelet decomposition steps in the y-dimension
calculate the compression rates for all steps
select the number of steps with optimal compression rate

• for every row in the lower left part:
apply all 1D wavelet decomposition steps in the x-dimension
calculate the compression rates for all steps
select the number of steps with optimal compression rate

• apply this scheme recursively on the upper left part of the transformed image

Note that this adaptive 2D decomposition also includes the rectangular and the square
decomposition: If the square decomposition has the best compression of the coefficients,



the adaptive 2D decomposition selects the square decomposition wavelet functions. The
same is true for the rectangular decomposition. In the general case, the adaptive 2D
decomposition selects some wavelet functions from the square decomposition, some from
the rectangular decomposition and some "between" the square and the rectangular
decomposition.
There are only 4(m2-m) coefficient assignments needed to do the transformation for an
m x m image, the same number as for the rectangular decomposition. The invers transform
even needs less coefficient assignments, since the number of transformation steps is usually
lower than the maximum.
There is a slight overhead for storing the number of 1D transformation steps: For an m × n
image less than m⋅(ld(n)-1)+ n⋅(ld(m)-1) bits are needed for storing the adaptive
decomposition. For example, an 1024x768 image with 8 bit graylevels needs 768 kBytes
for the uncompressed image and about 16 kBytes for the additional data, only about 2% of
the original.

5. Wavelets for Lossless Image Compression
Even though there are many papers about wavelet based image compressions, only few
deal with the lossless case [11][12].
Lossless wavelet image compressions use a 2D wavelet transform to improve the
compression rate of conventional compression algorithms like Huffman or arithmetic
coding [17]. Since the pixels have to be reconstructed exactly, some special properties for
the wavelet transformations are required.
Let us first consider graylevel images: There is one color channel with a finite number of
possible values, it usually has 8 bit depth or 256 shades of gray. For lossless compression it
must be guaranteed, that the invers transformation of the transformation does not change
the pixels. This can be achieved for all compact wavelets, if the precision of the
transformed image is high enough. But for high compression of the coefficients, the needed
precision should be as low as possible.
Bekaert et al. [11] used unnormalized Haar wavelets for lossless image compression. Since
the least significant bit of the scaling coefficient is redundant, all wavelet coefficients can
be stored in 9 bit, in the case of a carthesian product of a 1D scaling function with a 1D
wavelet, i.e. coefficients of R1ψ,R2ψ, hψ and vψ from (9) and (10),  or 10 bit, if the 2D
wavelet is a product of two 1D wavelets, i.e. coefficients of R3ψ and dψ .
Zandi et al. [12] proposed the Reversible Two Six (RTS)-wavelet, which is more efficient
than the Haar wavelets. Comparisons with state of the art lossless image compression
algorithms, including DPCM, JBIG and JPEG, showed better results for the wavelet based
method.
Images with colormaps can be dealt with the same algorithm efficiently, if the colormap is
(re-)arranged in a way that neighbouring color indices represent colors with slight
differences.
RGB direct color images can be handled as three independent color channels, each encoded
the same way as a graylevel image.

6. Experimental Results
My implementation of lossless wavelet compression used an adaptive arithmetic coder [17]
for the entropy encoding. In the RGB pictures, every color component was handled
independently. The proposed decomposition was tested with standard grayscale pictures,
including "Lena" and "baboon", and some computer generated RGB images, generated
with various programs developed at our Institute. Table 1 shows the compression rates of



the 8bit grayscale images with the popular TIFF image format with LZW compression,
square decomposition with Haar and RTS wavelets, and adaptive 2D decomposition, also
with Haar and RTS-wavelets. In all cases, the adaptive 2D decomposition performed better
than the square decomposition. In almost all cases, the RTS wavelet has better results than
the Haar wavelet.

name size
compr. rate
TIFF LZW

compr. rate
square dec.
Haar wav.

compr. rate
adapt. dec.
Haar wav.

compr.rate
square dec.
RTS wav.

compr. rate
adapt. dec.
RTS wav.

airplane 512x512 1.23 1.71 1.74 1.80 1.84
baboon 512x512 0.86 1.25 1.26 1.27 1.29
boats 720x576 1.14 1.70 1.75 1.78 1.85
bridge 256x256 0.87 1.28 1.30 1.29 1.31
camera 256x256 1.20 1.58 1.60 1.54 1.57
couple 256x256 1.23 1.74 1.79 1.77 1.84
goldhill 720x576 1.05 1.58 1.62 1.65 1.68
lena 512x512 0.95 1.57 1.58 1.63 1.65
peppers 512x512 0.98 1.59 1.62 1.65 1.69

table 1

Since the adaptive 2D decomposition produces some overhead for storing the number of
optimal transformation steps, which is proportional to m⋅ld(n)+n⋅ld(m) in an m×n image, a
comparison between the adaptive 2D decomposition and the square decomposition with the
same image in different resolutions was made. Table 2 compares the compression rates
with RTS wavelets between adaptive 2D decomposition and square decomposition of the
"Lena" image in different resolutions. Only in the resolutions below 64x64 pixels the
square decomposition performed better, but in this case even the uncompressed image is
more efficient.

decomposition 512x512 256x256 128x128 64x64 32x32
square 1.63 1.423 1.242 1.024 0.854

adaptive 2D 1.65 1.442 1.249 1.033 0.851
table 2

A comparison of compression rates of computer generated RGB images is shown in table
3. The wavelet compression uses RTS wavelets and encodes every color channel
separately. The images "denker", "trees", and "xmas94" were generated with raytracing
programs, "room1" with a radiosity package, and "roessler" with a visualization program.

name size compression rate
TIFF LZW

compression rate
square decomp.

compression rate
adapt. decomp.

denker 263x381 2.18 2.09 2.24
roessler 410x343 8.91 3.09 3.42
room1 480x320 1.59 2.49 2.57
trees 800x500 2.30 1.96 2.01
xmas94 800x600 3.23 2.75 2.92

table 3



As expected, all images could be encoded more efficiently with the adaptive decomposition
scheme than with the square decomposition. The results also showed, that the simple
separate encoding of the color channels looses much coherence, so that the TIFF LZW
compression gives better results sometimes. Therefore more sophisticated encoding models
for the adaptive arithmetic coder which exploit the coherence between the color channels
have to be considered to get better results.

7. Conclusion and Future Work
The new adaptive 2D decomposition scheme offers better compression rates than the
square and the rectangular decomposition, if the images are above a threshold size. In the
studied case of lossless image compression, this threshold size is about 50x50 pixels. Also
a comparison between RTS and Haar wavelets was made, which showed better
performance for the RTS wavelets. The experimental results also showed that for color
encoding the coherence between the color channels should be exploited, because a simple
separate color channel arithmetic encoding generates sometimes worse results than LZW
based compression algorithms.
Future research will be made in the application of this adaptive decomposition in other
computer graphics areas, including lossy compression, extensions to 3D for volume data
compression, video compression, and wavelet radiosity.
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