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Abstract

This Paper presents an efficient algorithm for median filtering with a 3x3 filter kernel with

only about 9 comparisons per pixel using spatial coherence between neighbouring filter

computations. The basic algorithm calculates two medians in one step and reuses sorted

slices of three vertical neighbouring pixels.

An extension of this algorithm for 2D spatial coherence is also examined, which calculates

four medians per step. Even though theoretical results would yield 5% performance increase

compared to the basic algorithm, experimental results showed less significant increase or

even worse performance dependent on the hardware.
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1 Introduction

The median filter is often used to remove "shot" noise, pixel dropouts and other spurious

features of single pixel extent while preserving overall image quality [Huang 1981] [Paeth

1986a] [Paeth 1986b]. In contrast, low pass filters would only blurr the noise instead of

removing it. An efficient algorithm to determine the median is desired, because this operation

often has to be repeated millions of times for filtering large images.

One simple approach, which is often found in image processing textbooks, is to calculate the

3x3 median using a simple sorting algorithm, like bubble sort or quicksort, and pick the 5th

element after the sorting. An improvement to this simple technique is only to sort until the

5th element is determined. For example a modified bubble sort can be used to sort until the

5th element. This approach yields 30 comparisons for one median calculation.

A better approach is published in the first Volume of the Graphics Gems series by Paeth

[Paeth 1990]. This approach is based on a successive minmax-elimination: the minimum and

the maximum of the first six elements are determined and eliminated. Then the 7th element is

added to the remaining four of the first pass and the minimum and the maximum of the five

elements are determined and eliminated. This scheme is repeated until the 9th element is
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added to the remaining two and the minmax-elimination results in the median of all nine

elements. This algorithm needs 20 comparisons per median. The drawback, that the

algorithm does not use spatial coherence, can easily be remedied: Simply calculate two

neighbouring medians in one step, where the first minmax-elimination is computed from the

common six elements and can be used for both medians. This improvement would result in a

better performance using only 16.5 comparisons per median.

A comparison of other median filtering algorithms can be found in [Juhola et al. 1991], but

these techniques are not optimized for the common 3x3 kernel.

The algorithm proposed here uses coherence information between neighbouring median

calculations more efficiently and therefore needs only a maximum of 9.5 comparisons per

median. The average number of comparisons is even a little smaller.

2 Algorithmic Concept

The proposed algorithm computes two neighbouring medians in one step. Let us assume that

the neighbouring medians we want to calculate are horizontally adjacent to each other. This

means, if the first median is at position (x,y), the second is at (x+1,y). Therefore we have to

look at the 4x3 pixels within the rectangle (x-1,y-1)-(x+2,y+1). Let us subdivide these

points into four vertical slices each containing three pixels.

The first step of the algorithm sorts the pixels within the slices. Only the last two slices have

to be sorted, because the first two were already sorted during the calculation of the medians

calculated before. Only when the first two medians in a row are computed, the first two

slices also have to be determined as well. Therefore this step consumes a maximum of 6

comparisons for a median calculation in the non border case.

The second step sorts the second and third slice according the merge sort algorithm. Because

of time considerations this should be done with nested IF statments instead of a conventional

loop. This adds up to a maximum of 5 comparisons for this step.

The third step computes the first median with a modified merge sort of the first slice and the

sorted middle six elements and the second median from the sorted middle six elements and

the fourth slice. Since we are not interested in the sorting of the elements, but only in the

median, the merge sort is modified so that it does not store the elements in the sorted order,

but only remembers which rank it is now processing and which are the two possible

elements, which could have the next rank. Also the first and the last element of the sorted six

elements can not be a 3x3 median: The median of nine element has rank 5 therefore it has

four elements, that are lower or equal the median and four that are higher or equal. Since the

first of the six elements has only possibly three elements - the elements from the compared

slice - which are lower or equal, this element can not be the median. The proof for the last

element is analog. Instead of computing the median via the determination of the rank five
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element of a sorted slice and a sorted list of six elements, it can be computed via the rank

four element of a sorted slice and the middle four elements of the sorted six elements. For

efficiency reasons the modified merge sort should be computed with nested IF statements

rather than with loops. This step needs maximal two times 4 comparisons.

Summing up the maximal comparisons of the three steps gives 19 comparisons per two

medians or 9.5 comparisons per median in the worst case. The average of an efficient

implementation is about 9.0 comparisons.

3 Extension using 2D coherence

An extension to the proposed algorithm uses 2D coherence through the computation of four

medians arranged in a 2x2 grid,  instead of the computation of only two neighbouring

medians per step. The extended algorithm handles these four medians in two times two

medians using our proposed 1D coherence algorithm. The only difference lies in the

computation of the sorted slices (step one). Instead of computing them independently for the

upper two medians and the lower two, coherence is used: For each slice for the upper part

we have an overlap of two elements with one slice of the lower part. The idea is to sort these

two elements first and use it for the sorting of both slices. This improvement saves an

additional 1/2 comparison yielding 9.0 comparisons per median in the worst case.

4 Experimental Results

Table 1 shows time comparisons of median filter algorithms for a 1024x768 raster image on

different hardware. Basic is the basic algorithm described in chapter 2, 2D-Coherence uses

the extension described in chapter 3 and Minmax refers to the minmax elimination algorithm

described in [Paeth 1990]. The tests were computed with optimizing compilers on three

computers with different hardware: R3000 refers to a Silicon Graphics Personal Iris 4D/35

with a MIPS R3000 processor, R4000 denotes a Silicon Graphics Indigo with a MIPS

R4000 processor and 486DX2-50 is a PC with a Intel 486DX2-50 processor running the

Linux operating system. The relative timings are based on the Basic algorithm.

R3000 R4000 486DX2-50

Basic 1335 ms 0 688 ms 0 1465 ms 0

2D-Coherence 1454 ms +8.9% 691 ms +0.4% 1447 ms -1.2%

Minmax 2510 ms +88.0% 1281 ms +86.2% 5852 ms +299.4%

Table 1: Calculation times of median filter computations for a 1024x768 raster image
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Even though the 2D-Coherence algorithm has a 5.3% better theoretical performance than the

Basic algorithm, the actual performance was worse on the MIPS processor based machines

and only 1.2% better on a Intel processor based machine. Reasons for this results may be

greater storage reqirements for register variables and for the code caching. Since the results

are machine and compiler dependent, the Basic and the 2D-Coherence algorithm should both

be considered for a verry fast 3x3 median filter.

5 Conclusion

This paper presented an algorithm how a 3x3 kernel median filtering of a raster image can

efficiently be implemented using spatial coherence between neighbouring median

calculations. The 2D extension to the algorithm showed better theoretical but depending on

the hardware little better to little worse practical results.
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