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Abstract

This paper presents agorithm forfilter calculations using symmetric matrix kernélgis
algorithm outperforms traditional methods for kernels larger than or equal to 5x5 on
machinedased on RISC designs, where tinee needed to calculate an addition equals the
time neededor a multiplication. The algorithm is based on a decompositiothekernel

matrix into several kernel matrices of decreasing size, which cawrbputedvery fast
because of spatial coherence. A comparison with traditional methods shows the efficiency of
the presented approach.

Keywords: image processing, anti-aliasing, filtering, symmetric matrix kernels, spatial
coherence

1 Introduction

Filtering using matrix kernels is a common technique in image processing [Russ92][Habe89]
and anti-aliasingFole90][Watt92]. Thefiltered pixel isthe weightedsum ofthe original

and its neighbouring pets within arectangle defined by maximumdistance in x- and y-
direction which is determined lifie kernel size. The weights form a (M x N) matcilled

the kernel matrix. Thedimensions M and N athe kernel matrixare usually odd, which
guarantees that thmaximumdistance of accounteaeighbouring pixels fronthe original

pixel in one dimension isthe same in positive and in negative directidquation (1)
describes the filter computation using a kernel matrix:

M N
= M+1 N+1
pX,Y = Z Z Ki,j q)x+i—m,y+j—n; m = 2 , = 2 , (1)

=1 j=1
Py, - filtered pixel at position (x,y)
Pyy - Original pixel at position (x,y)
K ... (M x N) kernel matrix

According to Equation (1), a straight forwarplementation of a general kernel filter
would require (MN) multiplications and (NAN-1) additions for eacliiltered pixel. Since a
pictureusuallycontains several hundreds of thousands to sendlii@ins of pixels, efficient
filtering is important to get the results in resonable time.



In this paper we want to cope with kernel filtesich aresymmetric withrespect to the x-
axis andhey-axis. Given a (M x N) kernel matrix K, K is symmetric witspect to the x-
axis, iff

Kij =Kyis; 1<isM; 1<jsN (2a)
and symmetric with respect to the y-axis, iff

Kij =King+1; 1<i<M; 1<j <N (2b)

Most of thefrequently usedilter kernelsare symmetric withrespect to the x- anglaxis,
including Gauss kernels [Russ92], Box kernels [Watt92], and Bartlett kernels [Crow81].

A simple improvement forsymmetric kernels tahe general kernel filter algorithm could
make use othe symmetry toreduce thenumber of multiplications: Théour symmetric
pixels are added and theommon weight K= I . = iy 5+1= K +1 1S

multiplied afterwardsThis improved method needsly 1/4 (MIN) multiplications if M and
N are even and a little bit more, if M or N are odd, but stilli{M.) additions.

2 Basic algorithm

2.1 Concept of our proposed algorithm

Our goal is to reduce theumber ofoperations, consisting of additions amdiltiplications,
needed in théltering. This goal wll be reached through the reduction of additions, but the
number of multiplications W be larger than or equal tthose in traditional methods.
Therefore we areassuming, thathe calculation timefor a multiplication equals the
calculation time for an addition, which is usually true on RISC based machines.

The efficiency of our algorithm is based on spatial cohererf€&6193], the use of
information gained from the filtering of neighbouring pixels for the actual filtering.

To achievethe goal we vll recursivelydecompose th&ernel matrix intothe sum of a
smaller kernel matrixand two lesscomputational expensive kernel matricestlué same
size. Equation(3) showsthis decomposition othe kernel into threesimpler tocompute
kernels. From(1) it can be derived, that theum of the filtering with the kernels 'F,

anz

i=1,2,...,anz , is equal to the filtering with kerr’EI‘F.
i=1

Chapter 2.2escribesour decomposition scheme, chap®B explainsthe filter algorithm
based on the decomposition and appendix B shovexample ofthe proposedalgorithm
with a 5x5 kernel filter.
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2.2 Matrix decomposition

The firststep in thealgorithm is a decomposition ¢fie (M x N) kernel matrix'K in a
scalar value S a (M x N) matrix'A and a ((M-2)x(N-2))matrix K. S;, *A and ?K are
computed according to the following equations with k=1:

S, = “Ky; -1 (4)
A1 = Auamiar™ A v a2 Ay ae -z 2= 1 (5a)
kAi’1 = kAi,N = kKi,l; 1<i <M -2K +2 (5b)
“Auj = Ay = Koji 1<) <N -20 +2 (%)
A= ALOA L 1<i<M -2K+2 1<) <N - 2K + 2 (5d)
UK = Koo Aegyep 1sisM -2K; 1<j N - 24 (6)

Furthermore'A can be written as the product of a vertical vebtoand a horizontal vector
1
h:
“h=F Ay Mv= A “AsfvEh; (7)
1<isM-2K+2 1<j<N-2K + 2

With this recursive calculation scheng,, “v, *h and**'K are calculatedrom K, k>1,
until one of thedimensions ofthe matrix “'K reaches one otwo. The result ofthis
recursive decomposition are q scalatues $, g vertical vectors kv, and q horizontal

vectors®h and the remaining kernel matfA%K with g=min Q—Mz_lJ,{—NZ_ 1D

2.3 Filter computations with the components

First we can sum ughe pixels affected by the scalalues $, 1<i<qg. This leads tohefirst
intermediate sum:



q

Surrh:z$[(],\p,i+/\9|—i+1i+Al9++]N++1+,}R el (8)
Ei

Pii = Pesimysin: 1SiSM; 1<j<N

The next step is to compute tkernel filtering withthe kernel “A, 1<k<q and add these
filterings to the intermediate sunBut instead of applyinghe wholematrix “A on the
window of neighbouring pixels, we appthe horizontalfilter *h on each line of this
window, followed bythe vertical filter v applied onthe result of the horizontdiltering.
From (1) and(7) it can be proved, thahis method prodces thesame results aspplying
kA itself. Note thatbecause of theymmetry of‘v and“h, only one multiplication has to
be performed in théltering for each pair of oppositpixels. The kernel calculationgith
the horizontafilters can beeused irfiltering of the neighbouring vertical pixels. Therefore
only one new horizontdilter has to be applietbr the calculation ofone kerne*A on a
new pixel window except in the calculation of the first lines of the picture.

Finally the kernel matrix filtering with?™K is computed and added to the previous sum
usingthe conventional method witsymmetry enhancements describechapter 1. Note
that thesize of the remaining kernel"*!K is less than or equal to ((M-N+2) x 2) or
(2 x (N-M+2), respectivelyFor squarekernelsthe remaining kernef*'K is (1x1) or
(2x2), respectively.

3 Optimizations

One obvious optimization is tetop therecursive decomposition, if the last computed
intermediate kernélK equalsthe nullmatrix O. Note that the Bokernel andhe Bartlett
kernel neednly one decompositiostep,because these kernels can directlywoiten as
the product of avertical and a horizontalector with integer values. Also obvious, scalar
valuesS, can be ignored, if they are 0.

Our algorithm outperforms traditional onestlile size ofthe kernel is bigand is beaten, if
the size is smallTherefore one optimization is to alter the decompostiireme tostop
decomposing, if theemaining kernel**'K can be computed faster with a traditional
algorithm.

Often integer arithmetic is used fitre calculation ofthe filtering with integer values in the
kernel andthe result isdivided by a scaling value. This is becatise frame bufferonly

deals with integer color values and the filtering is made for diisplay. Thereforefloating

point arithmetic would cause some additional conversion overhead. If floating point
arithmetic is used because of the neepiettision ofthe result, the decomposition of the
kernel matrix can be modified to get rid of most of the scalar valyes S



IF (K., =0) DO
calculate decomposition according to (4),(5),(6),(7)

ELSE DO
§<:O K k k ®)
Al = Ancake21= A ncme 2™ A e N- ge 2— 'K 11 (10)

calculate rest of matri%A and“*'K according to (5b)-(5d), (6)
k

A.
“h="FA; Mv= A"l;lsisM—2[R+2 1<jsN-2K+2 (11)

k u
With this decomposition schemeg, &an only be -1 or 0, therefore most addition@ncan
be skipped, becausg 3. Therefore (8) can be replaced with:

sum, = - Z(Ap,i+AR/I—i+Jj +A9++1\1++1+Aip»l ++1) (12)

S #0;1<i<q

4 Results

Table 1 shows a comparison of operations needethéocomputation of oniitered pixel
using square matrix kernels with odd dimensions whigsymmetric withrespect to the x-
and y-axis. Weausedodd squarematrix kernelsfor our comparison, because these are the
most frequently used kernels in image processing and anti-aliasing.

Standardis the brute forcemplementation of general kernel matrix filteringymmetric
refers to the standard methimdproved by reducing multiplicatiorthroughadding up the
symmetric pixeldefore themultiplication.Baseis thealgorithm described in chapter 2 and
Optimizedusesour basic algorithm enhanced withe optimization testopdecomposing, if
the remaining kernel*’K can be computed faster with tlBymmetricalgorithm. The
decomposition threshold for this algorithm with odd square matrix kernels is 3x3.

To calculate the operations needed forBasealgorithm with a NxN kernel, we need:
 the operations needed for a (N-2)x(N-2) kernel
* 4 additions and 1 multiplicatiofor the addition of the four corner pointsultiplied
with S
* N-1 additions and (N-1)/2 multiplications for the filtering with the horizontal vector
* N-1 additions and (N-1)/2 multiplications for the filtering with the vertical vector
» 1 addition to add the result of the vector filtering to the rest.

Because thdirst andthe last weights in the horizontal andrtical vector are 1.0nly
(N-1)/2 andnot (N+1)/2multiplicationsare needed for the vectéltering. Therefore to
calculate the operations needed for a Nk®tnel withodd N weneed the operations
needed for a (N-2)x(N-2) kernel filter pluf2-3 additions plus N multiplications.

The only difference inthe calculation of operations fahe Optimizedalgorithm is that it
starts from a 3x3 kernel filtering computed with the Symmetric algorithm.



Standard Symmetric (Sym)ll Base Optimized
Add | Mul | Op | Add| Mul | Op || Add| Mul| Op| Add| Mul| Op
3x3 8 9 17 8 4 12 || 10 4 14 Sym Sym Sy

5x5 | 24| 25| 49| 24| o] 33l 23 o 3 21 4

7x7 | 48| 49| 97| 48| 16 64|| 40 14 5¢ 38

m
)
6 4
9x9 80 | 81| 161] 80| 25 10" 61 2% 8¢ 5p 25 4

11x11| 120| 121] 243 120 36 15“3 86 36 1p2 84 86 320

13x13] 168| 169 339 168 49 2]I|7 115 49 1p4 113 49 162

15x15| 224| 225 449 224 64 24'3 148 64 212 146 64 P10

Table 1 - Comparison of algorithms with kernel symmetric with respect to the x- and y-axis

Usuallysquare kernel filtersyhich are symmetric withrespect to the x- angtaxisarealso

symmetric with respect to the diagonals. Therefore tBgmmetricalgorithm can be
extended to copwith thediagonal symmetry, whickeduces th@umber of multiplications
needed for dilter computation to bemallerthan that our algorithm.But thenumber of
operations isstill lower in our proposedalgorithm, therefore it beats th®ymmetric
algorithm onRISC machines, wherthetime neededor an addition equals thtene needed
for a multiplication. Table 2 shows the actual numbers.

Symmetric Optimized Optimized Optimized
(Sym) general case Box kernels Bartlett kernels

Add | Mul | Op || Add| Mul | Op || Add| Mul| Op| Add| Mul| Op

3x3 8 3 11 || Sym  Sym Syril 4 0 4 4 2 4

5x5 24 6 30 || 21 8 29|| 8 0 8 8 4 13
7x7 | 48| 10| 58 || 38| 15 53|| 12 o 14 12 § 1B
9x9 80| 15| 95 || 59| 24 83|| 16 0 16 16 8 2p
11x11] 120 21 14]I| 84| 35 11||a 20 Q0 2p 20 10 3o
13x13| 168| 28 1gd| 113 48 16“ 24 0 20 24 1 6
15x15] 224| 36 26(!! 146 63 2(1_!9 28 Q2B 28 14 42

Table 2 - Comparison of algorithms with kernel symmetric with respect to the x- and y-axis
and the diagonals and optimized algorithms for Box and Bartlett kernels

Table 2 also contairthe number ofoperations needed forhaghly optimized filtering with

Bartlett kernels and Box kernels, described in chapter 3. Bélett kernels itself are
shown in appendix A. TheOptimized Box kernelcomputation doesnot need a
multiplication, becausall values inthe kernel matrixare 1. Note that ithese optimizations
the number ofoperations needed for tifitering of onepixel is only linear tadhe horizontal

or vertical dimension of the kernel.



5 Conclusions

This paper presented atgorithm forefficient computation of matrix kernefdtering with
symmetry withrespect to the x- anglaxis. Our proposedlgorithm clearlybeats the brute
force method and also tlemhanced method usirige symmetry toreduce thenumber of
multiplicationsfor kernels larger than or equal to 5x5ite case of squareatrix kernels,
which are alsosymmetric withrespect to the diagonals, theoposed algorithm usdess
operations, but morenultiplications with large kernels thathe standardalgorithm
improved forexploiting thesesymmetriesTherefore the proposealgorithm also performs
better than thesymmetry enhancedtandard algorithm orRISC machines, where the
calculation time for an addition equals the calculation time for a multiplication.

Also optimizations othe basic algorithm using speciptoperties of somspecific kernels
were exploited. Examples for these include the Box and the Bartlett kernels.
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A Bartlett kernels
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B Example of the algorithm with a 5x5 kernel filter

Given a 5x5 kernel matrix’K and the 5x5matrix W containingthe original and
neighbouring pixels:

2 3 4 3 2 102 3 3
05 6 50 2 0122
'K={17 -17 1 w={2 1012
05 6 50 2 2001
2 3 4 32 22000

To check the results of our algorithm, we compute the kernel filtering directly:
Pairec= 20+30+42+33+23+02+50+6(1+...=79.



According to (4), $= 2-1 = 1,'A can be computed from (5a)-(5d) aftd from (6):

1 3 4 3 1) (134371
0 0B 04 I3 00000 5-0 6-0 50 (5 6 5
A={1 1B 14 13 1=|1 3 4 3 1| K=|7-3 -1-4 7-3=|4 -5 4
0 0B 04 I3 00000 5-0 6-0 50 (5 6 5
1 3 4 3 113431
FromA 'h and'vcan be computed via (7):
1
0
h=(1 3 4 31 =|1
0
1
Now we enter the second level of the recursion and compute $ ,A K %hand v
S,=5-1=4
1 6 1) (1 6 1 1
AN=|4 4B 4|=|4 24 4] K =(-5-24=(-29 h=(16 ) ¥=|4
1 6 1) (1 6 1 1

Sincethe dimension of*K is one, the decomposition is haltdcet us look at thdilter
computations with the components: First we computestine ofthe pixels affected by the
scalar values Sand S using (8):

sum,= 11 +3+0+2) + 40+2+0+2)= 22

The next step to do is to compute #eznel filters*’hand! v on W2hand? v on thénner
3x3 window of W and add it to the sum.

10+ 30+ 402+ 303 T 21
12+ 30+ 40 32 1T 14
1v(1h(W)): N 12+ 30+ 400+ T 02=1]10|=121+ 014+ D16 @9 ms 39

102+ 32+ 400+ 316- T 9
102+ 32+ 400+ 316F T 8

01 2 100+ 601+ 112 8

2yl ?2n|1 0 1||=2v| 10+ 600+ 1M1|= 2| 2 |=10B+ 4[R2+ 112= 18
2 00 102+ 6[D+ 100 2

sum, = sum +39+ 18= 79
Finally we have to add the 1x1 kernel filfé& on the inner point of W to the sum:

P = sum,+3 K(0) = 79+ (-2900= 79
This yields to the same result as with the direct kernel filter computation.



