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Abstract

This paper presents an algorithm for filter calculations using symmetric matrix kernels. This
algorithm outperforms traditional methods for kernels larger than or equal to 5x5 on
machines based on RISC designs, where the time needed to calculate an addition equals the
time needed for a multiplication. The algorithm is based on a decomposition of the kernel
matrix into several kernel matrices of decreasing size, which can be computed very fast
because of spatial coherence. A comparison with traditional methods shows the efficiency of
the presented approach.
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1 Introduction

Filtering using matrix kernels is a common technique in image processing [Russ92][Habe89]
and anti-aliasing [Fole90][Watt92]. The filtered pixel is the weighted sum of the original
and its neighbouring pixels within a rectangle defined by a maximum distance in x- and y-
direction which is determined by the kernel size. The weights form a (M x N) matrix called
the kernel matrix. The dimensions M and N of the kernel matrix are usually odd, which
guarantees that the maximum distance of accounted neighbouring pixels from the original
pixel in one dimension is the same in positive and in negative direction. Equation (1)
describes the filter computation using a kernel matrix:
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px y,  ... filtered pixel at position (x,y)

px y,  ... original pixel at position (x,y)

K    ... (M x N) kernel matrix

According to Equation (1), a straight forward implementation of a general kernel filter
would require (M⋅N) multiplications and (M⋅N-1) additions for each filtered pixel. Since a
picture usually contains several hundreds of thousands to several millions of pixels, efficient
filtering is important to get the results in resonable time.



In this paper we want to cope with kernel filters, which are symmetric with respect to the x-
axis and the y-axis. Given a (M x N) kernel matrix K, K is symmetric with respect to the x-
axis, iff

K K i M j Ni j M i j, , ; ;= ≤ ≤ ≤ ≤− +1 1 1 (2a)

and symmetric with respect to the y-axis, iff
K K i M j Ni j i N j, , ; ;= ≤ ≤ ≤ ≤− +1 1 1 (2b)

Most of the frequently used filter kernels are symmetric with respect to the x- and y-axis,
including Gauss kernels [Russ92], Box kernels [Watt92], and Bartlett kernels [Crow81].

A simple improvement for symmetric kernels to the general kernel filter algorithm could
make use of the symmetry to reduce the number of multiplications: The four symmetric
pixels are added and the common weight K K K Ki j M i j M i N j i N j, , , ,= = =− + − + − + − +1 1 1 1 is

multiplied afterwards. This improved method needs only 1/4 (M⋅N) multiplications if M and
N are even and a little bit more, if M or N are odd, but still (M⋅N-1) additions.

2 Basic algorithm

2.1 Concept of our proposed algorithm

Our goal is to reduce the number of operations, consisting of additions and multiplications,
needed in the filtering. This goal will be reached through the reduction of additions, but the
number of multiplications will be larger than or equal to those in traditional methods.
Therefore we are assuming, that the calculation time for a multiplication equals the
calculation time for an addition, which is usually true on RISC based machines.

The efficiency of our algorithm is based on spatial coherence [Gröl93], the use of
information gained from the filtering of neighbouring pixels for the actual filtering.

To achieve the goal we will recursively decompose the kernel matrix into the sum of a
smaller kernel matrix and two less computational expensive kernel matrices of the same
size. Equation (3) shows this decomposition of the kernel into three simpler to compute

kernels. From (1) it can be derived, that the sum of the filtering with the kernels iF,

i=1,2,...,anz , is equal to the filtering with kernel i

i

anz

F
=
∑
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Chapter 2.2 describes our decomposition scheme, chapter 2.3 explains the filter algorithm
based on the decomposition and appendix B shows an example of the proposed algorithm
with a 5x5 kernel filter.



k

k k k
N

k
N

k k k
N

k
N

k
M

k
M

k
M N

k
M N

k
M

k
M

k
M N

k
M N

k k k

k k k
N

k
N

k k k
N

k
N

K

K K K K

K K K K

K K K K

K K K K

A B K

A A A A

A A A A

=





















= + + =

−

−

− − − − −

−

+

−

−

1 1 1 2 1 1 1

2 1 2 2 2 1 2

1 1 1 2 1 1 1

1 2 1

1

1 1 1 2 1 1 1

2 1 2 2 2 1 2

3

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

, , , ,

( )

L

M L M

L

L

M L M

k
M

k
M

k
M N

k
M N

k
M

k
M

k
M N

k
M N

k k

k k

k k
N

k
M

k
M NA A A A

A A A A

S S

S S

K K

K K− − − − −

−

+ +
−

+
−

+
− −





















+





















+



















1 1 1 2 1 1 1

1 2 1

1
1 1

1
1 2

1
2 1

1
2 2

0 0

0 0 0 0

0 0 0 0

0 0

0 0 0 0

0 0

0 0

0 0 0 0
, , , ,

, , , ,

, ,

, ,

...

...L

L

M M

L

L

M M L M M

L

L




2.2 Matrix decomposition

The first step in the algorithm is a decomposition of the (M x N) kernel matrix 1K in a
scalar value S1, a (M x N) matrix 1A and a ((M-2)x(N-2)) matrix 2K. S1, 

1A and 2K are
computed according to the following equations with k=1:
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k= −11 1, (4)
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Furthermore 1A can be written as the product of a vertical vector 1v and a horizontal vector
1h :

k k
j

k k
i

k k kh A v A A v h= = = ⋅1 1, ,; ; ; (7)
1 2 2 1 2 2≤ ≤ − ⋅ + ≤ ≤ − ⋅ +i M k j N k;

With this recursive calculation scheme, Sk , kv, kh and k K+1  are calculated from kK, k≥1,
until one of the dimensions of the matrix k K+1  reaches one or two. The result of this
recursive decomposition are q scalar values Sk , q vertical vectors kv, and q horizontal

vectors kh and the remaining kernel matrix q K+1  with q
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2.3 Filter computations with the components

First we can sum up the pixels affected by the scalar values Si , 1≤i≤q. This leads to the first
intermediate sum:



sum S p p p pi
i

q

i i M i i M i N i i N i1
1

1 1 1 1= ⋅ + + +
=

− + − + − + − +∑ $ $ $ $, , , ,c h (8)

$ ; ;, ,p p i M j Ni j x i m y i n= ≤ ≤ ≤ ≤+ − + − 1 1

The next step is to compute the kernel filtering with the kernel kA , 1≤k≤q and add these
filterings to the intermediate sum. But instead of applying the whole matrix kA  on the
window of neighbouring pixels, we apply the horizontal filter kh on each line of this
window, followed by the vertical filter kv applied on the result of the horizontal filtering.
From (1) and (7) it can be proved, that this method produces the same results as applying
kA itself. Note that because of the symmetry of kv and kh, only one multiplication has to
be performed in the filtering for each pair of opposite pixels. The kernel calculations with
the horizontal filters can be reused in filtering of the neighbouring vertical pixels. Therefore
only one new horizontal filter has to be applied for the calculation of one kernel kA  on a
new pixel window except in the calculation of the first lines of the picture.

Finally the kernel matrix filtering with q K+1  is computed and added to the previous sum
using the conventional method with symmetry enhancements described in chapter 1. Note
that the size of the remaining kernel q K+1  is less than or equal to ((M-N+2) x 2) or
(2 x (N - M + 2) , respectively. For square kernels the remaining kernel q K+1  is (1x1) or
(2x2), respectively.

3 Optimizations

One obvious optimization is to stop the recursive decomposition, if the last computed
intermediate kernel kK  equals the null matrix O. Note that the Box kernel and the Bartlett
kernel need only one decomposition step, because these kernels can directly be written as
the product of a vertical and a horizontal vector with integer values. Also obvious, scalar
values Sk  can be ignored, if they are 0.

Our algorithm outperforms traditional ones, if the size of the kernel is big and is beaten, if
the size is small. Therefore one optimization is to alter the decomposition scheme to stop
decomposing, if  the remaining kernel k K+1  can be computed faster with a traditional
algorithm.

Often integer arithmetic is used for the calculation of the filtering with integer values in the
kernel and the result is divided by a scaling value. This is because the frame buffer only
deals with integer color values and the filtering is made for direct display. Therefore floating
point arithmetic would cause some additional conversion overhead. If floating point
arithmetic is used because of the needed precision of the result, the decomposition of the
kernel matrix can be modified to get rid of most of the scalar values Sk :



IF (kK11,  = 0) DO

calculate decomposition according to (4),(5),(6),(7)
ELSE  DO

Sk =0 (9)
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calculate rest of matrix kA  and k K+1  according to (5b)-(5d), (6)
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With this decomposition scheme, Sk  can only be -1 or 0, therefore most additions in (8) can
be skipped, because Sk =0. Therefore (8) can be replaced with:

sum p p p pi i M i i M i N i i N i
S i qi

1 1 1 1 1
0 1

= − + + +− + − + − + − +
≠ ≤ ≤
∑ $ $ $ $, , , ,
;

c h (12)

4 Results

Table 1 shows a comparison of operations needed for the computation of one filtered pixel
using square matrix kernels with odd dimensions which are symmetric with respect to the x-
and y-axis. We used odd square matrix kernels for our comparison, because these are the
most frequently used kernels in image processing and anti-aliasing.

Standard is the brute force implementation of general kernel matrix filtering. Symmetric
refers to the standard method improved by reducing multiplications through adding up the
symmetric pixels before the multiplication. Base is the algorithm described in chapter 2 and
Optimized uses our basic algorithm enhanced with the optimization to stop decomposing, if
the remaining kernel k K+1  can be computed faster with the Symmetric algorithm. The
decomposition threshold for this algorithm with odd square matrix kernels is 3x3.

To calculate the operations needed for the Base algorithm with a NxN kernel, we need:

• the operations needed for a (N-2)x(N-2) kernel

• 4 additions and 1 multiplication for the addition of the four corner points multiplied
with S1

• N-1 additions and (N-1)/2 multiplications for the filtering with the horizontal vector

• N-1 additions and (N-1)/2 multiplications for the filtering with the vertical vector

• 1 addition to add the result of the vector filtering to the rest.

Because the first and the last weights in the horizontal and vertical vector are 1, only
 (N-1)/2 and not (N+1)/2 multiplications are needed for the vector filtering. Therefore to
calculate the operations needed for a NxN kernel with odd N we need the operations
needed for a (N-2)x(N-2) kernel filter plus 2⋅N+3 additions plus N multiplications.

The only difference in the calculation of operations for the Optimized algorithm is that it
starts from a 3x3 kernel filtering computed with the Symmetric algorithm.



Standard Symmetric (Sym) Base Optimized

Add Mul Op Add Mul Op Add Mul Op Add Mul Op

3x3 8 9 17 8 4 12 10 4 14 Sym Sym Sym

5x5 24 25 49 24 9 33 23 9 32 21 9 30

7x7 48 49 97 48 16 64 40 16 56 38 16 54

9x9 80 81 161 80 25 105 61 25 86 59 25 84

11x11 120 121 241 120 36 156 86 36 122 84 36 120

13x13 168 169 337 168 49 217 115 49 164 113 49 162

15x15 224 225 449 224 64 288 148 64 212 146 64 210

Table 1 - Comparison of algorithms with kernel symmetric with respect to the x- and y-axis

Usually square kernel filters, which are symmetric with respect to the x- and y-axis are also
symmetric with respect to the diagonals. Therefore the Symmetric algorithm can be
extended to cope with the diagonal symmetry, which reduces the number of multiplications
needed for a filter computation to be smaller than that of our algorithm. But the number of
operations is still lower in our proposed algorithm, therefore it beats the Symmetric
algorithm on RISC machines, where the time needed for an addition equals the time needed
for a multiplication. Table 2 shows the actual numbers.

Symmetric

(Sym)

Optimized

general case

Optimized

Box kernels

Optimized

Bartlett kernels

Add Mul Op Add Mul Op Add Mul Op Add Mul Op

3x3 8 3 11 Sym Sym Sym 4 0 4 4 2 6

5x5 24 6 30 21 8 29 8 0 8 8 4 12

7x7 48 10 58 38 15 53 12 0 12 12 6 18

9x9 80 15 95 59 24 83 16 0 16 16 8 24

11x11 120 21 141 84 35 119 20 0 20 20 10 30

13x13 168 28 196 113 48 161 24 0 24 24 12 36

15x15 224 36 260 146 63 209 28 0 28 28 14 42

Table 2 - Comparison of algorithms with kernel symmetric with respect to the x- and y-axis
and the diagonals and optimized algorithms for Box and Bartlett kernels

Table 2 also contains the number of operations needed for a highly optimized filtering with
Bartlett kernels and Box kernels, described in chapter 3. The Bartlett kernels itself are
shown in appendix A. The Optimized Box kernel computation does not need a
multiplication, because all values in the kernel matrix are 1. Note that in these optimizations
the number of operations needed for the filtering of one pixel is only linear to the horizontal
or vertical dimension of the kernel.



5 Conclusions

This paper presented an algorithm for efficient computation of matrix kernels filtering with
symmetry with respect to the x- and y-axis. Our proposed algorithm clearly beats the brute
force method and also the enhanced method using the symmetry to reduce the number of
multiplications for kernels larger than or equal to 5x5. In the case of square matrix kernels,
which are also symmetric with respect to the diagonals, the proposed algorithm uses less
operations, but more multiplications with large kernels than the standard algorithm
improved for exploiting these symmetries. Therefore the proposed algorithm also performs
better than the symmetry enhanced standard algorithm on RISC machines, where the
calculation time for an addition equals the calculation time for a multiplication.

Also optimizations of the basic algorithm using special properties of some specific kernels
were exploited. Examples for these include the Box and the Bartlett kernels.
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B Example of the algorithm with a 5x5 kernel filter

Given a 5x5 kernel matrix 1K and the 5x5 matrix W containing the original and
neighbouring pixels:
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To check the results of our algorithm, we compute the kernel filtering directly:

pdirect= 2⋅1+3⋅0+4⋅2+3⋅3+2⋅3+0⋅2+5⋅0+6⋅1+...=79.



According to (4), S1= 2-1 = 1, 1A can be computed from (5a)-(5d) and 2K from (6):
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From 1A 1h  and 1vcan be computed via (7):
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Now we enter the second level of the recursion and compute S A K h and v2
2 3 2 2, , , :

S2= 5-1 = 4
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Since the dimension of 3K is one, the decomposition is halted. Let us look at the filter
computations with the components: First we compute the sum of the pixels affected by the
scalar values S1 and S2  using (8):

sum1= 1⋅(1+3+0+2) + 4⋅(0+2+0+2)= 22

The next step to do is to compute the kernel filters 1 1h and v on W, 2 2h and v on the inner
3x3 window of W and add it to the sum.
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sum sum2 1 39 18 79= + + =

Finally we have to add the 1x1 kernel filter 3K on the inner point of W to the sum:

p sum K= + = + − ⋅ =2
3 0 79 29 0 79( ) ( )

This yields to the same result as with the direct kernel filter computation.


