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Abstract

Solid geometric models can be deformed to free-form solids by the use of trivariate
B-Splines. This paper describes the problems of implementing such transformations for
shaded rendering.

The surfaces are subdivided into triangles adaptively so that the error in image space is
limited. This adaptive triangulation ensures a smooth appearance of the resulting
pictures.
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1.Introduction

Deformation of regular primitives to free form objects is a powerful tool to describe a wide variety
of objects. Unfortunately, the rendering process (€.g. ray tracing) of deformed surfaces and
deformed solids is not trivial. Many authors have addressed problems of this kind and have
proposed mathematical solutions to different cases. Jet, no one really describes the algorithm that
was used to render such objects for shaded display, except for some special cases [1] [2][9] [10]
[12] [14] [19] [20].

This paper deals with arbitrary b-rep solids which are deformed by trivariate B-Splines. It describes
a concrete implementation of the deforming process, and gives practical solutions to the arising
problems. The result is a boundary representation of the deformed object with a given accuracy. In
chapter 2 an unusual notation for B-Splines is introduced, chapter 3 describes the theory of trivariate
B-Spline deformation. Chapters 4 and 5 give the details of the algorithm, chapter 6 describes the

rendering process.

2. B-Spline Notation

The following notation for B-Splines is introduced on the basis of a curve in Rz, which is a
univariate parameter curve. The formal extension to multivariate B-Splines can then be done easily.

A B-Spline curve is a parameter curve:

n
Bk(t) = .ZlNki,k(t) Pi with te [0, n-k]
1=

where P, € R2 are the "control points” of the curve and where Nki ,k(t) are the "weighting functions”
of these control points.
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Nki (0 are defined as follows:

(i) the knot vector T = (tl, tys e tn+k+1) is defined by:

0 fori=1,..,k
ti=] i-(k+1) fori=k+1,..,n+1
n-k fori=n+2,.., n+k+1
(i1)
i 1 for(tj<t<tj;jand0<t<n-k) or (i=nandt=n-k)
N300 = :
’ 0  otherwise
(iii)
-4k Li+m+1-t Kk
, NYm-10+———— Nt m-10®
Livm ™ 4 Y+m+1 i+l
NS () = for t;# tizms1
Lm (if a N = 0, then the value of the containing expression is zero)

0 fortj=tiims1

The notation is slightly different from the usual notation [15] [17] [8].
There the parts (ii) and (iii) are only valid for t £ [0, n-k); Nkn k(t) =1 and Nki k(t) =0 (1=sigk-1)

are defined separately for t = n-k. The advantage of our notation is that the whole curve can be
calculated at once and no special cases are necessary. This is extremely important for
multidimensional B-Splines.

Since k is constant for a given B-Spline, we will denote Nki m by Ni m in the rest of the paper. But
note that the Ni m &re different for different k. , ’

The extension for trivariate B-Splines is simple:

m n
B = : _ .
kSO0 = 2 Nb i 6 iEINI’ky(t)(j)EINJ’kz(U)P h,l,J)

3

where s € [0, m-kx], te [0, n-ky], ue [0, p-kz] and P ER".

h,ij
3. Deformation of a Box and of an Enclosed Solid with Trivariate B-Splines

This chapter gives a short comprehension of the deformation of a solid enclosed in a box as
described in [19]. '
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3.1 Definition of a Box 1’1l s T, U) in R?

Let E,, Ey, E, be the unit vectors with E, —(100)T y-(010)T E,=00D",
_ T _ _ ; +
and § = (5,5, S) —aEx,T—(TxTyTZ) ~bE,, U=(U,U U)T=cE_witha,b,ceR",

X z
11,1 %3 d

and P eR".

The vectors S, T, U placed on the top of P1'1*] define the box @ = @1'*, 8, T, U) (fig.1).

z A U

/

fig.1

3

Definition: A pointP=(P_,P_,P ) € R~ lies within the box

X’
&= Ellel. 7
+Sx and
111 111
P e SPZSPZ” +Uz'

S, T, U), iff
Py <Py.<_Py e +Ty and
1,1,1 1,1,1
z
3.2 Grid of Control Points
The box Q is filled with a grid of control points:

1,1,1 h13+£T+Jl
n-1 p-1

h,i,j

pblbl_ph

withm,n,pe N\ {0,1}, 1<h<m,1<i<n, 1<j<p.

The grid is defined by m planes that are parallel with the UT-plane, n planes that are parallel with the
SU-plane and p planes that are parallel with the ST-plane.

3.3 Local Box Coordinates of a Point

Let kx, ky, kz be the orders of three B-Splines with k< m, ky <n, kZ <p.
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Definition: The local box coordinates (s, t, u) of a point P € Q are given by:
- 1,1,1
=@, -, "7/ (m-k.
={(P_-P_ 7 -k
t=(( y )/b) (n y)’

y
u=(®,-P,""H/0) (p-k).

From this definition can be immediately concluded:
se[(),m-kx],ta[(), n-ky],ue[O,p-kz].
3.4 Deformation of a Box

The deformation of a box is performed in thg following way: First the grid points Ph’l’J are

displaced arbitrarily to form the control points P h’1’-'; then the local box coordinates of every point
*

P(s, t, u) € Q are mapped to P (s, t, u) with the following function:

0 P (s, t,u) = %Nhk s EN-k (t EN_k(u)P*h,i,j
h=1 X |i=1 ¥ lj=1 IFz

The result is a B-Spline-Box.
Remarks

*h,i

: *
a) The B-Spline-Box lies within the convex hull of the P ") because the points P are a

convex combination of the control points P*h’i’j.
b) The bounding surfaces of the box are transformed to B-Spline surfaces.
¢) The computational expense to evaluate function (1) is of order O(kxkykz) and therefore

independent of the number of control points.
3.5 Deformation of an Object inside a Box

An object K of arbitrary shape can be deformed in the following way:

LetQ = (Pl’l’l, S, T, U) be a box and K an object lying inside Q. A deformation of Q causes a
transformation of all interior points of Q and therefore of all points of K.

There are many different object description schemes in computer graphics. They include b-reps,
CSG trees, sweeps, mathematical equations or simple rules (as for fractals). The theory of B-Spline
deformation of objects is independent of these schemes.

Nevertheless, for a concrete implementation one has to concentrate on one representation. The most
general description structure would certainly have been the use of CSG: Unfortunately it turns out
that a ray-object intersection requires the solution of an equation of at least degree 6 [19] and so it is
difficult to use deformed CSG-objects for ray-tracing. We therefore chose the b-rep method, since
all other concepts are not general enough. Also, it is possible to transform different representation
schemes to a b-rep approximation (see [13] for CSG objects). The result of deforming a b-rep
object with 3D-B-Splines will again be of b-rep kind.

The outlines of the algorithm will be as follows. First all polygons are subdivided into triangles.
These triangles are then deformed resulting in non planar triangular patches. These will then be
approximated by plane triangles to a given level of accuracy. The resulting b-rep objects can be
rendered with standard methods.
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4. Deformation of a B-rep Object

Let K be a b-rep object bounded by convex polygons. Then every polygon of K can be subdivided
into triangles, i.e. the surface of K is triangulated.

This triangulation is arbitrary. E.g., an efficient solution of the problem is the following algorithm:

Let ax + by + cz + d = 0 be the equation of the plane ¢ of the polygon, then n = (ab c)T isa
perpendicular vector on G.
The polygon is projected

onto the xy-plane, ifc>aandc2b,

onto the xz-plane, if b2aand b 2c,
onto the yz-plane, ifa=band a 2c.

In this way the polygon is projected onto that plane which produces the largest mapping of it.

After this projection the polygon is surrounded by an orthonormal 2D-box (rectangle). The center of
this rectangle always lies inside the polygon, since the polygon is convex. This centre 1s
transformed back into & and connected with all vertices of the polygon. The computational effort is
not much more than the intersection of a straight line with the plane o, caused by projecting the

center back into o (fig.2). Alternately, the mean value of the vertices could be used as centre.

z A

fig.2

Next, the object, which is now made up of triangles, is surrounded by an orthonormal 3D-box as
described in section 3.1. This box will be deformed as described in the previous chapter and
therewith will cause the deformation of our object.

By applying (1) to the triangles, deformed triangular patches are produced (continuous parameter
surfaces). The aim is to find a representation of the deformed object, that is made up of plane
triangles. The following concept allows an approximation of continuous parameter surfaces with
plane triangles.
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5. Adaptive Approximation of a Continuous Parameter Surface with Triangles

Let F be a continuous mapping from R2 into R3:

T
(u, v) |——> F(u,v) = (Fx(u, V) Fy(u, V) Fz(u, v))',

where we can assume u,v € [0, 1] without restricting generality. All other cases can be produced by
applying a linear transformation.

F(u, v) is the surface patch in R3 that shall be approximated with triangles.

A trivial solution would be a regular triangulation of the parameter space. The triangle vertices are
transformed by F(u, v) and connected by straight lines. In this way triangles are created that are an
approximation of the surface. It is obvious that the subdivision degree corresponds tightly to the
quality of this approximation, but also to computational expense in terms of memory and time.

(fig.3).

v

fig.3

5.1 Triangulation Algorithm

Beside computational expense, there is another reason for a better subdivision scheme. The regular
triangulation does not take into account the different complexities at different areas of the surface at
all. Large, almost plane areas are subdivided to a much too high degree, whereas parts of strong
tension are not handled in enough detail.

The following algorithm takes these facts into account and leeds to a very fine subdivision where it
is needed. First of all, a basic triangulation in parameter space is necessary, as in fig.4. Of course,
any other basic triangulation would do as well.

1

0 ) 1
fig.4

Now the vertices of the parameter space triangles are mapped into object space by F(u, v). Every
edge in parameter space has its partner in object space if the points are connected in the same way.
In the general case, the mapping of an edge will not be equivalent with its partner (fig.5).
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surface

‘\edge

fig.5

The difference between the mapping of an edge and the straight connection of the mapping of its

corners will be the basis for a measure to be defined, which classifies how good an edge is. Bad

edges will be replaced by four others in parameter space so that the resulting edges will be "better".

A sequence in which these edges shall be eliminated will be defined, so that there is always a
"worst” edge.

To describe one iteration step, during which the worst edge is replaced by four others, the following
notation is used (see also fig.6):

in otijcct space:
k ... worst edge .
1» Oy .. triangles to which k  belongs

*
... end points (corners) of k

B
C ,D ... third comers of 81, 82
P

... midpoint of k
Ny, Ny .. normal vectors on 51, 52

in parameter space:

A, B, C, D ... inverse maps of A B C D
k ... edge connecting A, B
M ... midpoint of k

and a*gain in object space:
M ... F(M) (is in general ;1ot equivalent to P !)
a ...vector fromPto M

(2) and (3) describe one iteration step of the algorithm (fig.6):

(2) in parameter space the triangle ABC is substituted by the two triangles ACM, BCM and the
triangle ABD is substituted by the two triangles ADM, BDM.

In other words, (2) replaces the ed§e k by the four new edges AM, BM, CM, DM
(3) in object space the tnangle AB C is substituted by the two tnangles A C M B C M
and the triangle A'B"D" is substituted by the two triangles A D M B D M

E * Kk * %k * ok * %k
Again, (3) replaces the edge k by the four newedgesA M ,B M ,CM ,D M.
(2) and (3) can be repeated until there are no bad edges left.
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B
k
F(u.v)
c M . uv
A
parameter space object space
approximation step
B
/ K
i D
\ M
A
parameter space object space

fig.6
5.2 A Measure for Edges
This chapter describes a measure to determine the "bad" edges. A heuristic view will tell us that an
edge is not good, if its object space representation is not close enough to the triangular surface
patch.

A trivial solution to the problem is to take lal as a measure.

Although this measure is very good in most cases, there are cases where it produces unnecessary
subdivisions. Let w be the angle between the planes of the two triangles 51, 82. Fig.7 and fig.8
indicate two cases in which the trivial measure will lead to a subdivision although it makes no sense.
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M*

a /c\
PL Kk*
\/

fig.7

w = 180° and the vector a is almost parallel to one of the triangle planes.

M
5

fig.8

w << 180° or w >> 180° and the angle between k and a is very small.

To avoid these errors, we will introduce a better measure.

Letd, be the absolute distance of M from the plane of 81, and let d, be the absolute distance of
*
M from the plane of 82 (fig.9).

The improved measure is simply d =d, + d2. It can easily be seen that the cases of fig.7 and fig.8

cause no harm anymore.
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Calculation of d:
If p;, P,, P5 are the vectors to the corners of 81, then

ny=(py-py)x (p3-py) (x=vector product)

is a normal vector on the plane of 81 (fig.10).

fig.10
Since
nj *a
cos(®) = ——— (* = dot product)
] |2
d1 can be expressed as

4) dq = lcos(a) |a|l =

ni*a
il
If the equation of the plane of 81 is given by

k1x+k2y+k3z+d=0,
a normal vector on the plane is oy = (k1 k2 k3)T.

d2 is calculated with an analogous formula to (4).

According to Shannon's Sampling Theorem, there will always be the probability to make mistakes
with any measure, because there is only a discrete set of testing points. This probability can, of
course, be reduced by increasing the set of test points. The following example will demonstrate this
(fig.11).

— surface

fig.11

Nevertheless, there is a significant tradeoff with efficiency.
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5.3 The Worst Edge

From all bad edges we still have to define which of them is the worst. It seems obvious to take the
edge with the highest measure d. But to actually ensure that the error is no more than a given eps, it
is not essential in which order the bad edges are handled, since all bad edges have to be replaced.
The quality of the visual appearance, though, seems to correlate with the shape of the triangles, such
that regular triangles increase it.

Therefore it is better to define the worst edge slightly different.
Let E be the set of all edges with d > eps for a given constant eps. Then the edge e € E is worst, if

for all f € E: lel > Ifl. In other words, the longest bad edge is the worst.

This definition leeds to about the same number of approximation steps, but ensures that long bad
=dges are replaced early. The overall visual effect increases with the regularity of the approximation,
thus with the described sequence of subdivision.

2.4 Data Structure for the Bad Edges

The iteration algorithm for the approximation requires a data structure for the bad edges, that enables
2 quick execution of the following actions:

(a) Request for the worst edge.

(b) Deletion of the worst edge.

(c) Insertion of new bad edges.

A special version of the heap, the pagoda [6] [11], is an excellent data structure for these actions. It
1s necessary to define an order for the edges, but this is simply done by the relation "worse". A heap
is a tree structure in which the key of a node has no smaller value than its successors. In pagodas
the pointers are arranged such that the computational expense for (a), (b) and (c) for n edges is as
follows:

(a) is of order O(1)

(b) is of order O(Ld(n))

(c) is of order O(1)

Especially the combination of (a) and (c) is remarkable.
5.5 Using the Approximation Algorithm for Deforming B-rep Solids

After the object has been subdivided into triangles, all vertices are mapped with (1). If two points
are connected in parameter space, they will also be connected in object space. The edges are
classified and ordered into the pagoda. The approximation algorithm (2) and (3) can be performed
just as before.

6. Results

The method described in this paper was implemented in Pascal under VMS. The resulting boundary
representation of the deformed solids can be rendered in a variety of ways. In our system we use a
ray tracer to be able to achieve shadows and to produce reflecting surfaces. The pictures were
produced with the RISS system [5] [21] on a VAXstation 3200 using an additional impuls2300
raster graphics terminal. For this the b-rep representation of the objects was transformed to a Binary
Space Partitioning Tree (BSP-Tree) [4] [13].

The amexlmaum algorithm produces about 30 triangles per second.

Fig.12°demonstrates an undeformed scene of two cubes and two prisms embedded in a 3x3x3 grid.
This scene was deformed with this control-point grid. The resulting scene consists of 4984 triangles
and is illustrated in fig.13. The resolution of these two pictures is 500x499 pixels.

The car body [7] demonstrated in fig.14 (480x388 pixels) results from the deformation of a cube
with a 13x11x3 control-point grid and consists of 4024 triangles.

* See page 545 for Figures 12, 13 and 14.
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Fig.15"(600x421 pixels) demonstrates a twisted teapot. The original teapot [3] was twisted with a
3x3x3 control-point grid. The surface of the deformed teapot consists of 5184 triangles.
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