
Page 1

 

 

Modern computer and video games rendering techniques
and how they can be used besides games in other fields

of computer graphics such as cinematic rendering.

Folker Schamel, Spinor GmbH

Talk presented at Eurographics 2006, Vienna, Austria



Page 2

 

 

Rendering in Games

Performance is very important.
Below 20 fps is not acceptable in any situation.

Static vertex / index buffers.
Skinning on the GPU.

Waving grass, plants, tree on the GPU

Good quality by simple tricks.

Many detailed textures.

No wasting of polygons.

A lot of faking.

For example shadowing.



Page 3

 

 

Rendering in Games

Static world and dynamic objects often use 
different rendering techniques.

For example regarding shadowing and 
animation.

Special effects play an important role.
For example particles (explosions, clouds).

Normal mapping

Post rendering effects.

APIs: Direct 3D and console APIs.
Open GL is basically not used anymore for 
games.



Page 4

 

 

Precalculated
Lighting and Shadowing

Runtime performance is always the same for 
any number of light sources.

Artist can use any number of lights she wants.

Typical techniques are:

Precalculated lighting in texture maps.

Precalculated radiosity as lightmap.

Precalculated specularity
For example stored in per-vertex or per-texel 
spherical harmonics



Page 5

 

 

Partial Precalculated
Lighting and Shadowing

Position-dependent precalculated lighting for 
dynamic objects.

For example storing spherical harmonics 
coefficients for different positions in the world 
and interpolate between them for rendering a 
character.

Projected textures on dynamic objects.

For example lighting of church window onto 
characters.



Page 6

 

 

Per-Object Shadowing Textures

Shadowing texture per-object,
which is projected onto the environment.
Possible rendering techniques:

Applied in main rendering pass.

Separate additive lighting pass.

Rectangle rendered in screen space.



Page 7

 

 

Per-Object Shadowing Textures

Simple dynamic soft shadows.
More efficient filtering than depth shadow maps:
Work is logarithmic instead of linear in softness.

Allows faked distance dependent softness.

Requires render-to-texture per object each 
frame.

Does not scale well with many objects.



Page 8

 

 

Shadow Volumes

Simple shadow volumes:
Dynamic objects cast shadow onto environment

No lighting computations.
Shadowed area is just darkened.

Full-scene shadow volumes:
Each object can cast shadows onto itself and 
all other objects.

Per pixel lighting possible.



Page 9

 

 

Shadow Volumes

Shadow volume extrusion with DX9:
Exact extrusion not possible on GPU in vertex 
program.

Theoretically possible on GPU by render-to-
vertex-buffer, but not used in practice.

Approximated extrusion possible on GPU in 
vertex program. But has more artifacts.

Shadow volume extrusion with DX10:
Will support exact extrusion in geometry 
shader.



Page 10

 

 

Shadow Mapping

Full-scene shadowing
Quite simple to implement.
Quite efficient.
Used in many games.
Main problem: Depth map pixel artifacts.



Page 11

 

 

HDR

Combined with post rendering effects
For example blooming

Float textures:

Problem: Blending and transparencies.

Alternative to float textures:
Non-linear mapping of color space.



Page 12

 

 

Larger Levels

Visibility techniques.
Precalculated, e.g. PVS.

Manually defined, e.g. portals.

Realtime on CPU.

GPU-based occlusion culling.

Streaming



Page 13

 

 

based award winning Dreamfall on console and PC
(captured from PC; resolution of screenshot reduced)



Page 14

 

 

Natural Future Trends

Simple, but effective: 
More polygons.

More complex pixel programs.

Higher resolution.

More and better antialiasing.



Page 15

 

 

Advanced Streaming

No stuttering
Handle all streaming in a separate background 
thread.

Requires a thorough multithreading architecture

Swapping out game states

Allows huge mutable game worlds



Page 16

 

 

Multithreaded Rendering

Main thread does no work for rendering at all.
For example, rendering thread(s) do scene 
traversal and animation evaluation.

Expensive work can be handed over to 
pooled threads.

For example, animation state evaluation for 
individual characters is a good candidate.



Page 17

 

 

Future Trend:
Better Rendering Quality

Better lighting:
Better real-time lighting and shadowing.

More dynamic light sources.



Page 18

 

 

Realistic hard and soft shadowing
from high-performance real-time area lights
(captured from Xbox 360 running in HD; resolution of screenshots reduced)



Page 19

 

 

Realistic hard and soft shadowing
from high-performance real-time area lights
(captured from Xbox 360 running in HD; resolution of screenshots reduced)



Page 20

 

 

Changes you can update live include: 
- Textures
- Sound files
- Shaders
- Vertex and pixel programs
- Lights
- Object positions
- Object geometry
- Mapping coordinates
- Animations
- Game logic objects (incl. error  handling)
- Perch scripts (incl. error handling)
- ...

Shark 3D Live Editing

Update changes inside editing tools(for 
example 3ds Max, Maya, Photoshop, 
proprietary tools) live into the running engine 
on all platforms (including consoles).



Page 21

 

 

Static trees
(BSP, static octree, ...)

- Do not work well for dynamic objects

Scene graphs

- Do not work well for dynamic objects
- Do not work well with advanced non-local rendering      

techniques
- Unnatural relation between logical object hierarchy and    

spacial relations

Generic
object space

- Works excellently for many dynamic objects
- Works excellently for advanced non-local rendering          

features
- Shaders have generic access to object space
- Decouples logical object hierarchy and spacial relations

Open Architecture
by Generic Scene Management

A generic scene management is an important foundation
for high-end rendering features and for modularity in the renderer.



Page 22

 

 

Renderable elements

Backends

Shader components

DirectX UtilitiesDRUOpenGL
Console

Hardware

Graphical Representation
Mechanism

3d State
Mechanism

Shader
Manager

Render Job
Mechanism

Instancing
Mechanism

Shader
Component

Groups

Object
Space

Database

Shader
Component

Linker

Registration

Generic
Enumeration

Vertex/Pixel
Shader Manager

Generic parameter
passing 

Generic
Static Dataflow

Mechanism

Generic Dynamic
Dataflow Mechanism

Render target
management

Batch Management

Non-local
Dynamic

Communication

Shark 3D as 
Generic Open Renderer Platform



Page 23

 

 

The main rendering code is completely independent
from particular advanced rendering features.

Shark 3D Modularity Sample:
Main Rendering Code is Generic

s3d_CEngGfxTaskArray TaskArray;
s3d_CEngGfxCycle *Cycle = CollectNewCycle(
        Run, Cam, m_Trigger, TaskArray);

s3d_CEngUtilGfxElemJobBegin::AddGfxBegin(
        m_MsgHandler, m_Info.GetChars(), Cycle, 
        m_DestProp, m_ClearParam, TaskArray, BeginMain);

s3d_CEngUtilGfxUtil::ExecTaskArray(TaskArray, 0);

Shark 3D's main rendering code:



Page 24

 

 

Examples: Different lighting techniques; multiple 
passes; rendering order; simple shadow volumes & 
shadow maps; advanced soft shadowing techniques; 
dynamic mirroring (planar, environment map etc.); post 
rendering effects; various render-to-texture techniques; 
effects requiring complex scene enumeration; PVS; ... 

Even advanced, non-local
rendering techniques 
can be implemented 
in separate modules.

Shark 3D Modularity Sample:
Rendering Features in Modules

class s3d_CEngGfxElem: public s3d_CUtilRecogEyeBase
{
public:
    s3d_CEngGfxElem();

    virtual void GfxElemExec(
            s3d_CUtilRecogBase *GfxElemCtx, 
            s3d_CUtilAtom *Trigger, 
            s3d_CDrvVarBlk_cr ParamVarBlk,
            s3d_CEngGfxTaskArray &TaskArray);
};

Generic interface for implementing rendering modules in Shark 3D:



Page 25

 

 

Shark 3D
Modular Shader System

std

redirect

rectmesh

bundle

directtexchan

drvlightcoll

drvlightenum

group

lightenter

lightenum

lightparam

projmat

regionenter

meshenter

multi

paintmesh

constvec

variants

special

filter

func

opticsdirect

opticstex

particenter

shvol

enum

occluder

user

user 2

user 3

user 4

user 4

user 5

perform

combineparam

lenparam

billboardmesh

envmap

multilight

screenparam

plain projtotex

addvec

animactu

animgen

collexec

coloralpha

constfloat

constmatduptexchan

fog

modelmesh

modeswitch

mulmat

totex

translmat

user 1

Sample of Shark 3D standard shader components:



Page 26

 

 

is used by three of the four biggest German broadcasters 
(captured from TV; resolution of screenshots reduced)



Page 27

 

 

Game Renderer Features
usually not used for non-Gaming

Large world management usually not needed
No need for example for PVS, portals

Console platform support



Page 28

 

 

Game Renderer Features
usually used also for non-Gaming

Most rendering features
Including lighting and shadowing

Performance optimizations
Runtime optimizations and tool pipeline 
optimizations



Page 29

 

 

Additional Features
required for non-Gaming

Distributed rendering.
For example, Shark 3D was used for Cave 
rendering

Linux platform support.



Page 30

 

 

Thanks for your attention!


