
Film Rendering on Game Hardware
Eric Enderton

Eurographics 2006

© NVIDIA Corporation 2006

Outline

What is film rendering?
High-quality hidden surface removal on GPU

Modified REYES algorithm
Parameter-space shading

Gelato demo
Remarks on GPU programming
Since game rendering is so fast, why is film
rendering so slow?

The “first frame” problem
Gelato relighting demo

Graphics Hardware 2005

GPU-Accelerated High-Quality
Hidden Surface Removal

Daniel Wexler, Larry Gritz,
Eric Enderton, Jonathan Rice

© NVIDIA Corporation 2006

(missing image) (not Gelato)

enterthematrixgame.com/html/scr
eenshots11.html

Game Render vs Film Render

(missing image) (not Gelato)

from Matrix Reloaded movie

www.hollywoodjesus.com/movie/
matrix_reloaded/reloaded5.jpg

© NVIDIA Corporation 2006

Game Render vs Film Render

(missing image) (not Gelato)

Narnia game screenshot of girl in
snowy woods

(missing image) (not Gelato)

Davy Jones by ILM, from Pirates of
the Caribbean: Dead Man’s Chest

© NVIDIA Corporation 2006

(missing image) (not Gelato)

Frame of CG airplane from “Returner” (Japan, 2002)

© NVIDIA Corporation 2006

High-end Rendering = ?
No distracting artifacts
Richness
High level description

© NVIDIA Corporation 2006

High-end Rendering = ?
No distracting artifacts

Space
Good filter (2 pixels wide, smooth)
Accurate silhouette → Adaptive tessellation

Time
Motion blur
No pops, no chattering

Shading
AA texture lookup
good derivatives

Order-Independent Transparency

© NVIDIA Corporation 2006

High-end Rendering = ?
Richness

GB’s of geometry

© NVIDIA Corporation 2006

Geometry : Hair

(~470,000 hairs)

© NVIDIA Corporation 2006

Geometry : Displacement Mapping

model courtesy of Todd Durant

© NVIDIA Corporation 2006

Geometry : Just complex

Ethan Summers & Shiew Yeu Loh

© NVIDIA Corporation 2006

High-end Rendering = ?
Richness

GB’s of geometry
plus displacement

TB’s of texture
disk, network

10’s - 100’s of lights
10K line shaders
Non-local effects

Ray tracing, global illumination, ambient occlusion, caustics,
subsurface scattering

© NVIDIA Corporation 2006

Stuart Little 2 © Columbia Pictures

(missing image) (not Gelato)

Close-up of diamond ring, from “Stuart Little 2”

© NVIDIA Corporation 2006

High-end Rendering = ?
High level description

NURBS, subd’s
Gelato Shading Language

separate lights
texture by file name (constructed?)
ray queries

Delayed geometry (expanded at render time)

© NVIDIA Corporation 2006

High level description

Jared Martin

© NVIDIA Corporation 2006

NVIDIA GPU Pixel Shader GFLOPS

• GPU Observed GFLOPS
• CPU Theoretical peak GFLOPS

2005 2006

© NVIDIA Corporation 2006

Hider Overview

Spatial AA: Over-sample
Two-pass downsampling for filtering

Motion & DOF: Accumulation buffer
Transparency: Enhanced depth peeling
REYES-style geometry processing

Parameter-space shading
Occlusion query for culling (two types)

© NVIDIA Corporation 2006

Micropolygons, Pixels & Samples

© NVIDIA Corporation 2006

Spatial Samples

0

50

100

150

200

250

300

350

400

0 20 40 60 80 100 120 140 160

Samples/Pixel

Se
co

nd
s

Gelato 1.1 Stochastic CPU

© NVIDIA Corporation 2006

Sampling and Filtering

© NVIDIA Corporation 2006

Temporal Samples

model courtesy of Headus

© NVIDIA Corporation 2006

Temporal Samples

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

Time Samples

Se
co

nd
s

Gelato 1.1 Stochastic CPU

© NVIDIA Corporation 2006

Parameter-Space Shading

Overshading:
How many pixels drawn per micropolygon?

64 spatial
64 temporal

x ~2 transparency
≈ 8000x

(Decouple all rates)

→ Decouple shading rate

© NVIDIA Corporation 2006

Parameter-Space Shading

Screen space
fixed positions in image
regular x,y
interpolated s,t,z

Parameter space
fixed(?) positions on surface
regular s,t
computed x,y,z

© NVIDIA Corporation 2006

Parameter-Space Shading

Derivatives
Need for texture mip level
Need for procedural AA
Estimated by differences
Win: neighborhood more regular
Win: more stable for motion, deformation
Caution: avoid pops between grids

smooth derivatives [Gritz]

© NVIDIA Corporation 2006

Parameter-Space Shading

Shade at lattice of (s,t) values

Shade once, draw many pixels × many times

Derivatives more stable during motion

© NVIDIA Corporation 2006

Transparency

© NVIDIA Corporation 2006

Dicing = Tessellation

Dicing runs the displacement shader
Displacement shader may page texture from disk
Worth doing bbox tests to avoid this

bbox expanded by max displacement

© NVIDIA Corporation 2006

REYES Algorithm

BBOX
CULL

GEOM

GRID
CULL

GRIDS

big

small

DICE +
DISPLACE

SHADE

HIDE

SPLIT

© NVIDIA Corporation 2006

Hiding Algorithm

FILTER

OUTPUT

ALL
OPAQUE

ALL
TRANSPARENT

DEPTH
PEEL

ACCUMULATE

MB/DOF

more
passes

done

done

more
layers

© NVIDIA Corporation 2006

Poor Performance Cases

Total Passes = (# Depth Peel) x (# Motion Blur)

© NVIDIA Corporation 2006

High-end Rendering = ?
No distracting artifacts

Space
Good filter (2 pixels wide, smooth)
Accurate silhouette → Adaptive tessellation

Time
Motion blur
No pops, no chattering

Shading
AA texture lookup
good derivatives

Order-Independent Transparency
Richness
High level description

© NVIDIA Corporation 2006

© NVIDIA Corporation 2006

Gelato demo

© NVIDIA Corporation 2006

Gelato = Rendering engine

GPU-accelerated off-line renders, beyond
native hardware capabilities

all the features & quality
half the calories
hide HW details

Free!
www.nvidia.com/get_gelato
Maya, 3ds max, Python, C++

Gelato Pro
multi-threaded, networked, 64-bit, support, etc
relighting (Sorbetto) (free trial)

© NVIDIA Corporation 2006

Gelato : Volume Shadows

© NVIDIA Corporation 2006

Gelato : Ambient Occlusion

© NVIDIA Corporation 2006

Gelato : Caustics

© NVIDIA Corporation 2006

Gelato : Subsurface Scattering

© NVIDIA Corporation 2006

Gelato

Ethan Summers & Shiew Yeu Loh

© NVIDIA Corporation 2006

Gelato

Frantic Films

© NVIDIA Corporation 2006

Extensions

Depth peel for average-z
Volumetric shadow maps
Stereo rendering
Multi-camera rendering

© NVIDIA Corporation 2006

GPU Challenges

32-bit floats, including textures
slow, not all features work, “temporarily”

Triangle size
At 8x8 samples, 1 shading sample / final pixel, triangle is
approx 32 pixels → medium sized
But 8x8 enlargement is “temporary”

Batch size vs culling accuracy

© NVIDIA Corporation 2006

Batch size vs Culling accuracy

BBOX
CULL

GEOM

GRID
CULL

GRIDS

big

small

DICE +
DISPLACE

SHADE

HIDE

SPLIT

© NVIDIA Corporation 2006

Batch size vs Culling accuracy

Object #1 must be diced before it can occlude object #2
Bbox test for object #2 must either

wait for object #1 to be bbox OQ’d, diced, and drawn
or don’t wait, and be less accurate → overdice

© NVIDIA Corporation 2006

GPU Challenges

32-bit floats, including textures
slow, not all features work, “temporarily”

Triangle size
At 8x8 samples, 1 shading sample / final pixel, triangle is
approx 32 pixels → medium sized
But 8x8 enlargement is “temporary”

Batch size vs culling accuracy
General problem for GPU algorithms (all parallel
algorithms?): Result of step 1 could make step 2 more
efficient, but then they are serialized.

© NVIDIA Corporation 2006

GPU Mental Model

No flow control outside a pixel
Not much flow control outside a fragment

z test, stencil test

100x faster at 1% efficiency = no gain

Small batches bad
Because of CPU time, not GPU time
Limited draw calls per second
OQ latency small for small batches

OQ latency ≈ render latency

© NVIDIA Corporation 2006

A Brief History of Coding…

Von Neumann CPU
MIMD Multithreading
SIMD Parallelism
Future: MIMD+SIMD

© NVIDIA Corporation 2006

A Brief History of Coding…

GPU’s are parallel
That’s hard to program. But,

CPU’s are parallel now, too

mCPU: task parallel, memory locality
GPU: data parallel, memory streaming

GPU programming is high-performance
programming

© NVIDIA Corporation 2006

Game Render vs Film Render

0.03 seconds versus 4 hours
Blinn’s Law: “All frames take 45 minutes.”

(missing image) (not Gelato)

enterthematrixgame.com/html/scr
eenshots11.html

(missing image) (not Gelato)

from Matrix Reloaded movie

www.hollywoodjesus.com/movie/
matrix_reloaded/reloaded5.jpg

© NVIDIA Corporation 2006

Game Render vs Film Render

GPU is designed for games
Large batches and tight inner loop
No dynamic allocation
No serialized decisions

But how long does the first frame take?

© NVIDIA Corporation 2006

Rendering the First Frame

Load Data Over Network…

© Blizzard

© NVIDIA Corporation 2006

Rendering the First Frame

Create Internal Objects…

© Blizzard

© NVIDIA Corporation 2006

Rendering the First Frame

Load
But during authoring:

Build low-res geom from high-res geom
Preprocess for visibility, displacement, …
Bake out lighting textures

© NVIDIA Corporation 2006

Every film frame is a “first frame”
Start with high-res geom
Start without pre-computed visibility,

displacement, lighting, …
(Also animation (IK, skin, …))
When these stop changing, artist stops rendering

Render once → deliver film

How can we have fewer first frames?

Game Render vs Film Render

© NVIDIA Corporation 2006

Relighting

Cache expensive computations
Texture operations (e.g. shadow maps)
Complex math (e.g. noise)
Ray queries (in shader)

Accelerate the major lighting tasks
Move a light

Recomputes depth maps
Reshades affected surfaces

Adjust shadow parameters

© NVIDIA Corporation 2006

Sorbetto = Re-rendering engine

Start with full Gelato render
Change any light parameter
Final pixels – Not an approximation!

same features (motion blur, transparency, …)
same assets (shaders, models, …)
≈10x faster full frame time
much faster Time To First Pixel

Adjust hider parameters
depth-of-field
stereo
very fast

© NVIDIA Corporation 2006

Relighting demo

© NVIDIA Corporation 2006

Conclusions

High-quality hiding on GPU
Bbox cull → less dicing
Grid cull → less shading
Small batches → better culling
Regular sampling ok at modern rates (claim)

Parameter-space shading
Better for multi-pass, over-sampled
Better for derivatives (claim)

The “first frame” problem

© NVIDIA Corporation 2006

Acknowledgements

Gelato Development Team
Larry Gritz, Dan Wexler, Eric Enderton, John Schlag, Philip

Nemec, Jonathan Rice, Eduardo Bustillo
Interns: Sharif Elcott, Jared Hoberock
NVIDIA Software, Architecture & DevTech

Fleeting Image Animation

