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(missing image) (not Gelato)

enterthematrixgame.com/html/scr
eenshots11.html

Game Render vs Film Render

(missing image) (not Gelato)

from Matrix Reloaded movie

www.hollywoodjesus.com/movie/
matrix_reloaded/reloaded5.jpg
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Game Render vs Film Render

(missing image) (not Gelato)

Narnia game screenshot of girl in 
snowy woods

(missing image) (not Gelato)

Davy Jones by ILM, from Pirates of 
the Caribbean: Dead Man’s Chest
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(missing image) (not Gelato)

Frame of CG airplane from “Returner” (Japan, 2002)
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High-end Rendering = ?
No distracting artifacts
Richness
High level description
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High-end Rendering = ?
No distracting artifacts

Space
Good filter (2 pixels wide, smooth)
Accurate silhouette → Adaptive tessellation

Time
Motion blur
No pops, no chattering

Shading
AA texture lookup
good derivatives

Order-Independent Transparency
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High-end Rendering = ?
Richness

GB’s of geometry
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Geometry : Hair

(~470,000 hairs)
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Geometry : Displacement Mapping

model courtesy of Todd Durant
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Geometry : Just complex

Ethan Summers & Shiew Yeu Loh
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High-end Rendering = ?
Richness

GB’s of geometry
plus displacement

TB’s of texture
disk, network

10’s - 100’s of lights
10K line shaders
Non-local effects

Ray tracing, global illumination, ambient occlusion, caustics, 
subsurface scattering
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Stuart Little 2 © Columbia Pictures

(missing image) (not Gelato)

Close-up of diamond ring, from “Stuart Little 2”
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High-end Rendering = ?
High level description

NURBS, subd’s
Gelato Shading Language

separate lights
texture by file name (constructed?)
ray queries

Delayed geometry (expanded at render time)
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High level description

Jared Martin
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NVIDIA GPU Pixel Shader GFLOPS

• GPU Observed GFLOPS
• CPU Theoretical peak GFLOPS

2005 2006
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Hider Overview

Spatial AA:  Over-sample
Two-pass downsampling for filtering

Motion & DOF:  Accumulation buffer
Transparency: Enhanced depth peeling
REYES-style geometry processing

Parameter-space shading
Occlusion query for culling (two types)
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Micropolygons, Pixels & Samples
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Spatial Samples
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Sampling and Filtering
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Temporal Samples

model courtesy of Headus
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Temporal Samples

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

Time Samples

Se
co

nd
s

Gelato 1.1 Stochastic CPU



© NVIDIA Corporation 2006

Parameter-Space Shading

Overshading:
How many pixels drawn per micropolygon?

64 spatial
64 temporal

x ~2 transparency
≈ 8000x

(Decouple all rates)

→ Decouple shading rate 



© NVIDIA Corporation 2006

Parameter-Space Shading

Screen space
fixed positions in image
regular x,y
interpolated s,t,z

Parameter space
fixed(?) positions on surface
regular s,t
computed x,y,z
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Parameter-Space Shading

Derivatives
Need for texture mip level
Need for procedural AA
Estimated by differences
Win: neighborhood more regular
Win: more stable for motion, deformation
Caution: avoid pops between grids

smooth derivatives [Gritz]
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Parameter-Space Shading

Shade at lattice of (s,t) values

Shade once, draw many pixels × many times

Derivatives more stable during motion
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Transparency
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Dicing = Tessellation

Dicing runs the displacement shader
Displacement shader may page texture from disk
Worth doing bbox tests to avoid this

bbox expanded by max displacement
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REYES Algorithm

BBOX
CULL

GEOM

GRID
CULL

GRIDS

big

small

DICE +
DISPLACE

SHADE
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SPLIT



© NVIDIA Corporation 2006

Hiding Algorithm

FILTER

OUTPUT
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ALL
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DEPTH
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ACCUMULATE

MB/DOF

more
passes

done

done

more
layers
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Poor Performance Cases

Total Passes = (# Depth Peel) x (# Motion Blur)
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High-end Rendering = ?
No distracting artifacts

Space
Good filter (2 pixels wide, smooth)
Accurate silhouette → Adaptive tessellation

Time
Motion blur
No pops, no chattering

Shading
AA texture lookup
good derivatives

Order-Independent Transparency
Richness
High level description
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Gelato demo
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Gelato = Rendering engine

GPU-accelerated off-line renders, beyond 
native hardware capabilities

all the features & quality
half the calories
hide HW details

Free!
www.nvidia.com/get_gelato
Maya, 3ds max, Python, C++

Gelato Pro
multi-threaded, networked, 64-bit, support, etc
relighting (Sorbetto) (free trial)
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Gelato : Volume Shadows
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Gelato : Ambient Occlusion



© NVIDIA Corporation 2006

Gelato : Caustics
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Gelato : Subsurface Scattering
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Gelato

Ethan Summers & Shiew Yeu Loh
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Gelato

Frantic Films
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Extensions

Depth peel for average-z
Volumetric shadow maps
Stereo rendering
Multi-camera rendering
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GPU Challenges

32-bit floats, including textures
slow, not all features work, “temporarily”

Triangle size
At 8x8 samples, 1 shading sample / final pixel, triangle is 
approx 32 pixels → medium sized
But 8x8 enlargement is “temporary”

Batch size vs culling accuracy
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Batch size vs Culling accuracy

BBOX
CULL

GEOM

GRID
CULL

GRIDS

big

small

DICE +
DISPLACE

SHADE

HIDE

SPLIT
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Batch size vs Culling accuracy

Object #1 must be diced before it can occlude object #2
Bbox test for object #2 must either

wait for object #1 to be bbox OQ’d, diced, and drawn
or don’t wait, and be less accurate → overdice
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GPU Challenges

32-bit floats, including textures
slow, not all features work, “temporarily”

Triangle size
At 8x8 samples, 1 shading sample / final pixel, triangle is 
approx 32 pixels → medium sized
But 8x8 enlargement is “temporary”

Batch size vs culling accuracy
General problem for GPU algorithms (all parallel 
algorithms?):  Result of step 1 could make step 2 more 
efficient, but then they are serialized.
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GPU Mental Model

No flow control outside a pixel
Not much flow control outside a fragment

z test, stencil test

100x faster at 1% efficiency = no gain

Small batches bad
Because of CPU time, not GPU time
Limited draw calls per second
OQ latency small for small batches

OQ latency ≈ render latency
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A Brief History of Coding…

Von Neumann CPU
MIMD Multithreading
SIMD Parallelism
Future: MIMD+SIMD
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A Brief History of Coding…

GPU’s are parallel
That’s hard to program.  But,

CPU’s are parallel now, too

mCPU:  task parallel, memory locality
GPU:  data parallel, memory streaming

GPU programming is high-performance 
programming
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Game Render vs Film Render

0.03 seconds versus 4 hours
Blinn’s Law:  “All frames take 45 minutes.”

(missing image) (not Gelato)

enterthematrixgame.com/html/scr
eenshots11.html

(missing image) (not Gelato)

from Matrix Reloaded movie

www.hollywoodjesus.com/movie/
matrix_reloaded/reloaded5.jpg
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Game Render vs Film Render

GPU is designed for games
Large batches and tight inner loop
No dynamic allocation
No serialized decisions

But how long does the first frame take?
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Rendering the First Frame

Load Data Over Network…

© Blizzard
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Rendering the First Frame

Create Internal Objects…

© Blizzard
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Rendering the First Frame

Load
But during authoring:

Build low-res geom from high-res geom
Preprocess for visibility, displacement, …
Bake out lighting textures
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Every film frame is a “first frame”
Start with high-res geom
Start without pre-computed visibility, 

displacement, lighting, …
(Also animation (IK, skin, …))
When these stop changing, artist stops rendering

Render once → deliver film

How can we have fewer first frames?

Game Render vs Film Render
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Relighting

Cache expensive computations
Texture operations (e.g. shadow maps)
Complex math (e.g. noise)
Ray queries (in shader)

Accelerate the major lighting tasks
Move a light

Recomputes depth maps
Reshades affected surfaces

Adjust shadow parameters
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Sorbetto = Re-rendering engine

Start with full Gelato render
Change any light parameter
Final pixels – Not an approximation!

same features (motion blur, transparency, …)
same assets (shaders, models, …)
≈10x faster full frame time
much faster Time To First Pixel

Adjust hider parameters
depth-of-field
stereo
very fast
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Relighting demo
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Conclusions

High-quality hiding on GPU
Bbox cull → less dicing
Grid cull → less shading
Small batches → better culling
Regular sampling ok at modern rates (claim)

Parameter-space shading
Better for multi-pass, over-sampled
Better for derivatives (claim)

The “first frame” problem
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