186.828 Seminar Wissenschaftliches Arbeiten
186.046 Seminar aus Visualisierung

WS 2018

Organizer: Hsiang-Yun Wu

Teaching staff: Aleksandr Amirkhanov, Tobias Klein, David Kouřil, Haichao Miao, Peter Mindek, Renata Raidou, Manuela Waldner, Christoph Heinzl, Eduard Gröller

Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria
Important

- Always check up-to-date information on institute webpage
  https://www.cg.tuwien.ac.at/courses/WissArbeiten/

- Always check up-to-date information on TUWEL page
  https://tuwel.tuwien.ac.at/course/view.php?id=16180

- Contact: wu@cg.tuwien.ac.at
Seminar

- Get an idea how scientific work is carried out (in Visualization / CG)
  - Practice to review literature and get familiar with a particular scientific topic
    - Selecting, reading and understanding
    - Summarizing and explaining (orally and written)
    - Comparing and discussing
  - Practice to give a talk
  - Active discussion participation
1. Select a topic
Students can work alone or in groups of 2

Topic abstracts are available at
http://cg.tuwien.ac.at/courses/WissArbeiten/index.html

TUWEL: https://tuwel.tuwien.ac.at/course/view.php?id=16180

Important!!
Register on TU WEL
Enrolment: 4th-10th October 2018

Topic selection start:
  20th October 2018, 08:00
Topic selection due to:
  22th October 2018, 23:59

First come first serve
Seminar - Procedure

1. Select a topic
2. Submit a literature list
Submit a Literature List

- Meeting with Supervisor
- List of papers related to the topic
- Literature List Deadline: **27.10.2018**
Seminar - Procedure

1. Select a topic
2. Submit a literature list
3. Attend 3 lectures
Attend 3 Lectures

- **07.11.2018 13:00 - 15:00 (s.t.)**
  
  *Wie schreibt man eine wissenschaftliche Arbeit*
  
  Professor Wimmer

- **21.11.2018 13:00 - 15:00 (s.t.)**
  
  *Wie halte ich einen Vortrag*
  
  Professor Purgathofer

- **22.11.2018 13:00 - 15:00 (s.t.)**
  
  *Forschung und wie sie funktioniert*
  
  Professor Gröller
Seminar - Procedure

1. Select a topic
2. Submit a literature list
3. Attend 3 lectures
4. Write a report
Write a Report

- State-of-the-Art Report
- Final Report: 6-8 pages (12-16 pages / group)
- In English
- Format as for a scientific paper
  - LaTeX (Template on the webpage)
- Regular Meetings with Supervisor

Deadline Final Version Report: **11.01.2019**
Seminar - Procedure

1. Select a topic
2. Submit a literature list
3. Attend 3 lectures
4. Write a report
5. Give a presentation
Give a Presentation

- Use institute’s PowerPoint template for presentations (template is on the webpage)
- In English
- 15 + 3 minutes
- Active discussion participation

Presentation Day: **20.12.2018**

In case of too many students, an additional presentation day will be announced and/or the length of the presentation will be adjusted. This will be communicated in advance.
Seminar - Procedure

1. Select a topic
2. Submit a literature list
3. Attend 3 lectures
4. Write a report
5. Give a presentation
Two parts

1\textsuperscript{st} (central) part: 17\% of the grade
2\textsuperscript{nd} part: 83\% of the grade

It is necessary to attend the 3 lectures to get a positive grade!

Grading criteria:
50\% written report
40\% presentation
5\% attendance during the presentations
5\% active discussion after the presentations
Report Grading

- Grading criteria:
  - Structure, figures,...
  - Language
  - Content
  - References

- Points will be deducted for:
  - Delayed submission
  - Page number below 6 (12)

- Plagiarism check!
“plagiarism involves the use of another person's work without full and clear referencing and acknowledgement”
http://www.usq.edu.au/library/referencing/what-is-plagiarism
Presentation Grading

- Grading Criteria
  - Content Expertise
  - Didactic / Preparation
  - Presentation Technique
  - Overtime
Important Dates

- **20.10.2018**: Select your topic
- **27.10.2018**: Submit your literature list
- Attend 3 lectures (in ICGA seminar room):
  - **07.11.2018, 13:00 (s.t.)**: Wie schreibt man eine wissenschaftliche Arbeit
  - **21.11.2018, 13:00 (s.t.)**: Wie halte ich einen Vortrag
  - **22.11.2018, 13:00 (s.t.)**: Forschung und wie sie funktioniert
- **07.12.2018**: Submit draft report
- **20.12.2018**: Talks (in seminar room)
- **11.01.2019**: Submit final report

All submissions are done on TUWEL [https://tuwel.tuwien.ac.at/course/view.php?id=16180](https://tuwel.tuwien.ac.at/course/view.php?id=16180)
Topics 2018/2019
Research the approaches to designing rendering systems used in i.e. video games.
Research and summarize various approaches that have been suggested to solve transparency in real-time rendering systems.
Problem of occlusion of objects in 3D environments

Different methods and strategies to manage occlusion

Multiple views, transparency, explosion, cutaway view etc.
DSLs in Visualization

- DSL = Domain-specific language
- How to incorporate domain knowledge in a language

```
void updateRendering(float x) {
    // use slang renderer
    using renderer;
    focus = value > x;
    using;
}
//assign trigger
float x -> updateRendering(x);
```

The diagram illustrates the flow of information from source code and libraries to expert programmers, highlighting the flexibility required for different levels of experience: expert programmer, expert user, intermediate, and novice.
Overview of Screen Space Effects

Screen Space Reflection

Screen Space Ambient Occlusion
Title: Network Visualization for Biological Pathways

Challenge:

1) Layout simplification and arrangement
2) Scalability, complexity, and usability
Title: Style transfer techniques and their Complexity

Challenge:

1) Semantics beyond fonts and images
2) Computational time and limitation
Explore InfoVis toolkits and techniques using GPU processing or rendering of abstract data

- Shaders for fast rendering
- GPGPU for efficient data processing
Visualization of High-Dimensional Data

Visualization of abstract data with hundreds and thousands of dimensions

http://projector.tensorflow.org/

[Krause et al., 2007]
Evaluation methods in Medical Visualization

How to evaluate medical visualizations on the example of 3D aneurysm surfaces

[Glasser et al. 2016]
Visualizing Time-Varying Medical Data

Visualization and Exploration of Time-Varying Medical Image Data Sets

[Zhe Fang et al. 2007]

Figure 8: Screen-capture of the TVMID visualization and exploration application. The GUI includes panes for volume rendering (3), viewing TACs (4), 1D histograms and specifying a 1D transfer function (6), 2D histograms and a 2D transfer function (under a different tab (7)), MDS layout (7), choice of TAC dissimilarity metric (5) and more. The left half part is for loading a TVMID, specifying a transfer function and performing volume rendering and the right half is where the user can choose one of the different methods which can be used to analyze data sets.

Figure 10: Simulated dynamic PET data set (based on PET-SORTEO): (a-top) The TAC of a voxel in the striatum (green) and the template TAC in the brain area (red). (a-bottom) The histogram (based on the red template TAC) and the transfer function used to render the image in (c). (b) The MDS layout using a similarity distance proportional to $0.5d_1 + 0.5d_E$. (c) Volume rendering based on the transfer function in (a-bottom) using a template TAC in the brain and the $d_1$ distance. (d) The position (yellow dot) of the template TAC.
Patient Development at a Glance: An Evaluation of a Medical Data Visualization [Pohl et al. 2011]

CareVis: Integrated visualization of computerized protocols and temporal patient data [Aigner et al. 2006]
Vol2velle: Printable Interactive Volume Visualization

[Stoppel et al. 2017]
RGB-D cameras such as Kinect or RealSense allow capturing 3D models of objects.

Explore methods to track motions of captured by RGB-D cameras.

1. Input color image
2. Input depth image
3. Reconstruction
Explore state-of-the-art approaches of realistic teeth modeling and rendering
Blockchain visualization

**FIG. 7.** Blocks #364133, #364618: Initial “parasitic worm” transaction rate attack.

**FIG. 8.** Blocks #364281, #364292: Initial algorithmic responses to spam, the lower block showing the largest possible transaction.
Visualization of neural networks

Hsiang-Yun Wu
Modern Particle Systems
Parallel coordinates is a data visualization technique designed for multivariate data. To display the data for an n-dimensional space, the technique utilizes n-parallel lines, usually vertical. Each point of the data is represented as a polyline running though the lines. The problem using parallel coordinates on big data is that many polylines are overlapping each other and result in visual clutter, which makes the parallel coordinates hard to read.

One modification of parallel coordinates is edge bundling. This method merges similar polylines into bundles, which makes the parallel coordinates look much clearer without losing displayed information.
Scientists as well as practitioners often need to compare multiple polygonal datasets, for example results of image segmentation algorithms. Your task is to provide an overview over the state-of-art in methods for comparing multiple polygonal datasets.
Transfer Function Design for Multi-modal Data

In domains like medicine and industrial inspection, imaging methods have been developed for inspecting objects non-destructively, for example PET, MR and CT. Each modality has its distinct advantages and disadvantages, for example MRI can resolve soft tissue very well, while CT is good in resolving bone structures. Therefore, techniques have been developed for a meaningful combined visualization of multiple imaging modalities. Your task is to provide an overview over the state-of-the-art in designing transfer functions to visualize multi-modal data.
Dimensionality Reduction Methods in Visualization

When analyzing multi-dimensional data (>= 3 dimensions), a typical approach is to project the data into lower dimensions (for example 2D), to be able to visualize the data directly. Many methods exist for this projection, e.g. Principal Component Analysis (PCA), Multi-Dimensional Scaling (MDS), or T-distributed Stochastic Neighbor Embedding (t-SNE). Your task is to provide an overview over the available dimensionality reduction methods, how they are used in visualization and their individual advantages and disadvantages.
<table>
<thead>
<tr>
<th>No.</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Rendering Systems Architectures</td>
</tr>
<tr>
<td>2.</td>
<td>Real-time Transparency</td>
</tr>
<tr>
<td>3.</td>
<td>Occlusion Management in 3D Environments</td>
</tr>
<tr>
<td>4.</td>
<td>DSLs in Visualization</td>
</tr>
<tr>
<td>5.</td>
<td>Overview of Screen Space Effects</td>
</tr>
<tr>
<td>6.</td>
<td>Network Visualization for Biological Pathways</td>
</tr>
<tr>
<td>7.</td>
<td>Style transfer techniques and their Complexity</td>
</tr>
<tr>
<td>8.</td>
<td>GPU-Accelerated Information Visualization</td>
</tr>
<tr>
<td>9.</td>
<td>Visualization of High-Dimensional Data</td>
</tr>
<tr>
<td>10.</td>
<td>Evaluation methods in Medical Visualization</td>
</tr>
<tr>
<td>11.</td>
<td>Visualizing Time-Varying Medical Data</td>
</tr>
<tr>
<td>12.</td>
<td>Medical Health Record Visualizations</td>
</tr>
<tr>
<td>13.</td>
<td>Alternative Methods for Medical Visualization</td>
</tr>
<tr>
<td>14.</td>
<td>Motion tracking and geometry reconstruction</td>
</tr>
<tr>
<td>15.</td>
<td>Realistic teeth rendering</td>
</tr>
<tr>
<td>16.</td>
<td>Blockchain visualization</td>
</tr>
<tr>
<td>17.</td>
<td>Visualization of neural networks</td>
</tr>
<tr>
<td>18.</td>
<td>Modern Particle Systems</td>
</tr>
<tr>
<td>19.</td>
<td>Special Effects in Computer Graphics</td>
</tr>
<tr>
<td>20.</td>
<td>Edge Bundling Method for Parallel Coordinates</td>
</tr>
<tr>
<td>21.</td>
<td>Comparative Visualization for Polygonal Dataset</td>
</tr>
<tr>
<td>22.</td>
<td>Transfer Function Design for Multi-modal Data</td>
</tr>
<tr>
<td>23.</td>
<td>Dimensionality Reduction Methods in Visualization</td>
</tr>
</tbody>
</table>

Hsiang-Yun Wu
LaTeX
A very short introduction to LaTeX

- Document markup language
  - „programming“ a text document
- Similarities to HTML
- No WYSIWYG
- Most convenient to use a LaTeX distribution and a LaTeX IDE (integrated development environment)
A very short introduction to LaTeX

- First install a LaTeX Distribution
  - MiKTeX (for Windows)

- Then a LaTeX IDE
  - TeXnicCenter
  - Texmaker
  - LEd
A very short introduction to TEXnicCenter

- Extract the archive \textit{acmsiggraph.zip}
- In TeXnicCenter open \textit{template.tex}
  1. Select LaTeX=>DVI=>PDF output profile
  2. Select LaTeX=>PS output profile
     - Convert PS to PDF using Adobe Distiller
  3. Select LaTeX=>PDF output profile (pdflatex)
     - For eps images use \texttt{\usepackage{epstopdf}}
Work with 2 files:

- A `.tex` file for the text
- A `.bib` file for the bibliography which is used by the citations command `\cite`
Questions?

Always check up-to-date information on institute webpage
https://www.cg.tuwien.ac.at/courses/WissArbeiten/

Always check up-to-date information on TUWEL page
https://tuwel.tuwien.ac.at/course/view.php?id=16180