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Efficient visualization of vascular structures is essential for therapy planning and medical education.
Existing techniques achieve high-quality visualization of vascular surfaces at the cost of low rendering
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speed and large size of resulting surface. In this paper, we present an approach for visualizing vascular
structures by exploiting the local curvature information of a given surface. To handle complex topology of
loop and multiple parents and/or multiple children, bidirectional adaptive sampling and modified normal
calculations at joints are proposed. The proposed method has been applied to cerebral vascular trees, liver
vessel trees, and aortic vessel trees. The experimental results show that it can obtain a high-quality surface

polyg

enterline
idirectional sampling
urvature-dependent subdivision

visualization with fewer

. Introduction

Three-dimensional (3D) visualization of vascular structures can
rovide straightforward information of the morphology of vessels,
patial relations among these vessels and other relevant anatomic
tructures, intuitive depiction of curvature, and depth relations.
hus it can help surgeons to better understand the branching pat-
ern and complex topology of vascular structures for better and
uick decision making during surgery and is of vital importance in
herapy planning and medical education.

The vascular structures can be visualized by volume rendering
r surface rendering. In surface rendering, there are two kinds of
ethods [1]: model-based and model-free. The former assumes

hat the cross-section of vessels is circular, while the latter makes
o shape assumption of vessel cross-section. Model-based surface
isualization methods require centerline extraction and radius esti-
ation from segmented vessels [2–4]. Based on the centerline tree,

eometric primitives such as cylinders [5] and truncated cones [6]
re used to generate vessel surface for visualization. These model-

ased methods suffer from the low quality of the reconstruction
urface and coarse transitions at vessel branching. To overcome the
rawbacks, B-Spline surfaces [7], simplex meshes [8], convolution
urfaces [9,10], and subdivision surfaces [11,12] are explored.
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The most common model-free technique is Marching Cubes
(MC) [13]. Unfortunately, MC has two major limitations: the gen-
erated surface depends highly on the chosen isovalue and a slight
change in value may result in great change in geometric and even
topological features of the produced surface, and the visual quality
may be very low because the yielded surface may have aliasing arti-
facts inappropriate for computational fluid dynamics simulations.
Recently, Schumann [14,15] presented a model-free technique
which can produce high-quality surface from segmented vessels.
The technique, which was originally proposed to reconstruct sur-
face from 3D point cloud, is based on multi-level partition unity
implicits [16].

Although the above-mentioned methods like subdivision sur-
face and convolution surface can generate smooth surface, the
rendering speed is slow especially when the size of the recon-
structed surface is large. Let us take subdivision surface based
method, the most advanced technique of model-based visualiza-
tion of vascular structures [17], for example. Felkel et al. [12]
applied Catmull–Clark scheme to the initial mesh for the subdivi-
sion surface, which is defined as the limit of a sequence of successive
refinements [18]. Unfortunately, the number of polygons grows
exponentially with the iteration of subdivision, e.g. an initial ves-
sel surface with 7834 triangles can reach 2,005,504 triangles after
only four iterations (each iteration will yield a 3 times increase in
polygon). Such a huge number of polygons will not only affect the
rendering speed but the post processing, e.g. collision detection as
well as real-time vessel deformation simulation.
To achieve a better balance among vascular structure visualiza-
tion, size of the reconstructed surface, and the rendering speed, this
paper presents an approach of curvature-dependent surface visu-
alization of vascular structure. The goal is to obtain a high-quality
topologically preserved two-manifold surface with as few polygons
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Fig. 1. Flow chart of curvature-depe

s possible. To handle complex topology of loop and multiple par-
nts and/or multiple children, bidirectional adaptive sampling and
odified normal calculations at joints are proposed.
This paper is organized as follows. Details of the method are

escribed in Section 2. Results and discussion are given in Section
. Finally, concluding remarks are presented in Section 4.

. Methodology

The schematic flow chart of the proposed method is illustrated
n Fig. 1. The centerline tree from segmented vessels is sampled by
he proposed bidirectional sampling technique to improve the sur-
ace quality at joints with branches. Then, the quadrilateral mesh
s tiled through a recursive branching-construction procedure as
escribed in [11,19] and is converted to triangular mesh. The curva-
ures of the triangular mesh are estimated for adaptive subdivision.

Though our method bears resemblance to existing method
escribed in [11,19], there are three major differences: (1) the
roposed bidirectional sampling versus existing unidirectional
ampling, (2) determination of up-vector and normal at joint to han-
le vessels with complex topology in tiling the base quadrilateral
esh, and (3) the proposed adaptive subdivision versus existing

niform subdivision.

.1. Centerline tree

The input to reconstruct adaptive subdivision surface is vessel
enterline tree [11] which is obtained from segmented vessels. The
ree (Fig. 2) consists of root (vessel start), joint (vessel branching),
arent segment and children segments. Each vessel cross-section

s defined by a center vertex with an estimated radius. The center
ertices of the cross-sections lie on the centerline and the cross-

ections are perpendicular to the centerline. In Fig. 2, the vessel
egment X is the parent segment of vessel segments Y and Z. In a
enterline tree, a child segment may have multiple parents when
he vessel tree has a loop.

ig. 2. Vessel centerline tree and its representation (left is the geometry of vessel
ross-section and right is vessel tree geometry and segments).
visualization of vascular structures.

2.2. Bidirectional sampling

To avoid generating a non-manifold initial base mesh, the cen-
terline tree needs to be down-sampled. We propose bidirectional
sampling to sample the centerline. The technique samples the
centerline from both the first and last vessel cross-section simulta-
neously using Eq. (1) [19] with the first and last vessel cross-section
being kept:

xi+1 − xi = g(yi+1) + g(yi) i ∈ [0, N − 1] (1)

where g(yi) = ˛ri/(1 + ˇ�i), xi is the center of the cross-section, ri
and �i are the corresponding radius and Gaussian curvature respec-
tively. Generally, ˛ is a positive scalar value, �i is obtained according
to the way described in [20] and ˇ is a positive weight on curvature
influence.

Take the vessel segment illustrated in Fig. 3 for example, the
proposed bidirectional sampling procedure works in this way: sup-
pose that the sampling is currently from left to right and the xi

has been kept to check if xi+1 should be kept. If the Euclidean
distances meet d(xi+1, xi) ≥ g(yi+1) + g(yi), vertex xi+1 is kept; oth-
erwise, the smallest j with xi+j satisfying d(xi+j , xi) ≥ g(yi+j) + g(yi)
(j ≥ 2) is found, and the average of xi+j and xi+j−1 will be taken as
the next new vertex. Similarly, the sampling procedure proceeds
simultaneously from right to left and stops when they meet at the
same sample point. If they do not meet at the same sample point,
we check the distance between them. If the distance satisfies d(xl,
xr) ≤ g(yl) + g(yr), where xl (xr) is the second last sampling point
from left to right (right to left), the procedure ends. Otherwise, the
average of xl and xr is taken as the last sampling point, while the
procedure ends.

2.3. Base quadrilateral mesh generation

Once the centerline has been down-sampled, a base mesh is gen-
erated with quadrilateral patch along the centerline by a recursive
procedure. For the completeness of the paper, we briefly intro-
duce the main procedure. More details can be found from Refs.
[11,12,21]. The procedure consists of two parts:

(1) Preprocessing steps, including computation of the directions

and normals of segments, classification of segments to forward
or backward, joining of normals at branches and determination
of up-vectors.

(2) Tiling the vessel tree. This part generates the base mesh
recursively according to the tree structure (i.e. branching and

Fig. 3. Bidirectional sampling example (bottom is the centerline to be sampled and
top is the sampled result).
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be split into two triangles (Fig. 6 (left)). For a triangle with two
neighboring subdivided triangles, it will be split by two triangle
edges (Fig. 6 (middle)). When the triangle has three neighbors
to be subdivided, it will be subdivided with regular refinement
(Fig. 6 (right)).
ig. 4. Definition of up-vector (�0 is in the direction of the up-vector which defines
he four quadrants in the circular cross-section).

non-branching) for a given level of the tree. For the non-
branching vessel tree, the surface is tiled from the second
cross-section to the second last cross-section, based on the
assumption that the first cross-section has been handled. For
the branching part, the surface region is generated by patching
the end cross-section and the first cross-sections of the other
branches which share the joint.

.3.1. Determination of up-vector and normals at joints
Determination of normals at joints and up-vectors is of

aramount importance during tiling of the base mesh, because
ncorrect up-vectors will result in a twisted surface [11], particu-
arly at the joint of branchings. Up-vector is defined as the first of the
our vectors which equally dissect the square-shape cross-section
Fig. 4) and is propagated along the segments. When dealing with
omplex topology of vascular structures (e.g. a branch has multi-
le parents or multiple children), we propose a simple method to
alculate the normal vector at the joint as the average of normal
ectors of the last cross-section of all incoming parent segments,
nd the normal vectors of the last cross-sections of these parent
ranches are replaced by the computed normal vector at the joint.
hen, the up-vector is projected to the normal plane (defined by the
ormal and center of the cross-section) along the trunk branch. For
ther cases such as a branch with only one parent or one child, the
ormal vector at joint and the up-vector are handled as described

n [11].

.4. Curvature estimation

Before estimating the curvature of each vertex, the generated
uadrilateral meshes are converted to triangular meshes by bisect-

ng the diagonal of every quad, because we use Loop subdivision
cheme [18] which is a face-split scheme for triangular meshes to
onstruct the vessel surface. There are many references about cur-
ature estimation on triangular meshes [22]. In this work, we use a
olynomial fitting method which fits a 2-ring neighborhood around
vertex, as this method has a good performance on accuracy and is

obust to noise [22]. The 2-ring neighborhood is constructed from
he 1-ring (the star of a vertex) by adding all of the vertices of any
ace containing a vertex of the 1-ring neighborhood. Generally, the
olynomial is a second-order polynomial with six coefficients in
ach coordinate direction.

.5. Adaptive subdivision
Subdivision surfaces have been widely used in the field of
omputer graphics as it is easy to generate a smooth surface
rom arbitrary topology of complex geometric models without
rimming/patching, and to deal with multi-resolution analysis of
Fig. 5. Color-coded visualization of Gaussian curvature (circle region with high
curvature and rectangle region with low curvature).

complex geometry [18]. Therefore, vessel surfaces reconstructed by
subdivision surface can be easily tuned to multi-scale visualization
and other applications.

In surface sampling and mesh generation, there is a principle
that highly curved regions should be densely sampled [23] or tri-
angulated [24] and vice versa. Therefore, to derive a subdivision
surface, there is no need to refine the whole model, instead, only
areas with high curvature (e.g. blue encircled region shown in Fig. 5)
need to be subdivided. In addition, refining a relatively flat surface
(e.g. red rectangular region shown in Fig. 5) still generates a flat
surface without improving the surface quality. We thus propose
to subdivide the generated base mesh depending on curvature to
obtain the smooth vessel surface in four steps:

(1) If the converted triangular mesh is coarse, it is subdivided by
one level of uniform refinement to attain a reasonable resolu-
tion in order to estimate curvature more accurately.

(2) Estimate the curvature for each vertex and the curvatures are
processed by histogram equalization after scaling the curvature
ranging between 0 and 1.

(3) For every triangle, if the curvatures of all its three vertices lie
below a user-specified threshold �, then this triangle is tagged
and will not be subdivided at the next level of subdivision.

(4) Remove cracks [25]. During a subdivision process, if a triangle
is to be subdivided but its neighboring triangles are not to be
subdivided, a crack is generated which should be removed. A
triangle with one neighboring triangle to be subdivided will
Fig. 6. From left to right, cases of subdivided triangle (grey color) with one, two,
and three subdivided neighbors and the corresponding subdivision refinement (blue
color). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of the article.)
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ig. 7. (a) Bidirectional sampling result of a cerebral tree, (b) the generated surfa
ectangle region in (b).

. Results and discussion

We applied the proposed approach to visualize cerebral tree
Fig. 7), liver tree (Fig. 8 (left)) and aorta tree (Fig. 8 (right)). The
enerated surface offers a good balance between surface smooth-
ess and surface size. A close check near branchings shows that

ransition at the branching is geometrically continuous and nat-
rally smooth (Fig. 8). Fig. 7a shows a cerebral centerline tree,
own-sampled by our bidirectional sampling strategy and pro-
essed with one level of curvature-dependent subdivision after one
evel of uniform subdivision. As shown in Fig. 7c, the regions with

Fig. 8. Visualization of liver tree (left) and
ng adaptive curvature-dependent subdivision, and (c) the zoom region of the red

high curvature are approximated with more faces while those areas
with relatively low curvatures are not. With our method, the recon-
structed vessel surface can have fewer polygons while keeping
comparable quality to that of the uniform subdivision.
3.1. Comparison between bidirectional sampling and
unidirectional sampling

In the work of Felkel et al. [11,12], the centerline is down-
sampled to a lower resolution such that the distance of the

aorta tree (right) with our method.



J. Wu et al. / Computerized Medical Imagin

F
b

n
t
o
F
o
c
o
m
m
c

F
s

ig. 9. For vessel segment with a large radius and curvature (left), or with small
ranching angle and large radius (right), the generated surface can be non-manifold.

eighboring segments is comparable to the vessel diameter. This
echnique is simple but neglects the significant change in curvature
f the centerline which can yield non-manifold base mesh (Fig. 9).
urthermore, evenly sampling can not characterize the geometry
f the vessel correctly. Therefore, Luboz et al. [19] used Eq. (1) to

onstruct a non-linear equation and solved the equation by means
f Broydn’s method [26] to obtain new vertices. Unfortunately, this
ethod may not get correct vertices, because the Broydn’s method
ay not be convergent when a vertex in the centerline has a high

urvature while its two adjacent vertices have a low curvature.

ig. 10. Sampling centerline using unidirectional sampling (a), the proposed bidirectional
urface from bidirectional sampling (d).
g and Graphics 34 (2010) 651–658 655

Furthermore, solving the non-linear equation is time consuming
especially when the input dataset is large.

Both [11] and [19] adopted unidirectional sample along the cen-
terline, resulting in the first two (or the last two) vertices being
too close (or far), as shown in Fig. 10a, and consequently the dis-
tance between the two vertices cannot meet the requirement of
sampling. Therefore, the generated base mesh of this vessel seg-
ment can be very thin to make the transition at vessel joints coarse
(Fig. 10c).

Our bidirectional sampling method can yield a better resolution
(Fig. 10b) and guarantee that the distance between the first and last
two segments is not too small (or large). Accordingly, the produced
surface at branching is naturally smooth (Fig. 10d) without a flat
twist (Fig. 10c) to avoid misinterpretation of vessel narrowing (false
stenosis).

3.2. Determination of up-vectors

When a branch has multiple parents, Wu et al. [21] projected

all the up-vectors of the parent branches onto the plane defined
by the joint location and the normal of outgoing child segment,
and then took the average of these projected up-vectors as the new
up-vector. The drawback of this approach is that the produced up-
vector may be singular [21]. When this happened, the up-vector

sampling (b), generated surface based on unidirectional sampling (c), and generated
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Table 1
Comparison of surface size produced by uniform subdivision, dihedral angle-based
and curvature-based adaptive subdivision on three vascular structures (˛ and �
mean the threshold of dihedral angle and curvature respectively).

Data set Polygon Level Uniform Dihedral angle Curvature

Polygon Polygon ˛ Polygon �

Cerebral
tree

7834
1 31,336 31,024 120 22,346 0.90
2 125,344 108,952 144 86,450 0.95
3 501,376 309,230 160 248,826 0.925
Fig. 11. Vessel segments with one loop and the enhanced visualization.

eeds to be re-computed by choosing randomly a vector which is
erpendicular to the first normal of the outgoing vessel segment.

n our method, we only use the “positive” normals of all incom-
ng parents to compute the normal at joint, and thus the computed
ormal will not be singular because the “negative” normals are not
sed for averaging (the normals whose included angle to the nor-
al of incoming segment is larger than 90◦ are defined as negative,

he remaining as positive [11,12]). Another advantage is that our
ethod needs neither to compute the average of the up-vectors

rojected by each parent branch, nor to propagate the up-vector of
ther parent branch, instead, only the up-vector of the trunk par-
nt branch needs to be calculated and propagated. The enhanced
isualization by our proposed methods of vessel segments with one
oop and multiple parents and children is given in Fig. 11.

.3. Comparison of surface size

We now compare costs of uniform subdivision and adaptive sub-
ivision in more detail. As mentioned previously, the numbers of
olygons after one subdivision step is four times those of original
olygons. Taking the cerebral tree for example once again, the ini-
ial mesh has 7834 triangles. A second level of uniform subdivision
eaches 125,344 triangles as opposed to 86,450 triangles generated
y our Gaussian curvature-dependent subdivision at the threshold
(see below for explanation) of 0.95 which saves more than 30% in

he size of derived surface. Continuing with uniform Loop refine-
ent results in 501,376 triangles at the third level while 331,346

riangles produced by our adaptive method. The more the adaptive
ubdividing process is done, the more the reduction ratio in surface
ize will increase.

In our work, the adaptive process is controlled by a user-specific
urvature threshold � and only those regions whose curvature is
arger than � will be subdivided. If � is zero, it means uniform sub-
ivision, i.e. the whole model will be refined. In our experience, we
ound that � between 0.90 and 0.95 can achieve a good trade-off
etween surface size and surface quality.

Table 1 shows the surface size produced by uniform subdivision,
ihedral-based [25] and curvature-based adaptive subdivision. It
an be seen that by using curvature-based refinement, there is
lways about 30–50% of saving in the surface size in compari-
on with those from the uniform subdivision scheme. For vessel
ree with many highly curved branches, such as the cerebral tree,
urvature-based adaptive subdivision outperforms dihedral angle-
ased subdivision in achieving trade-off between surface size and
urface quality (see Section 3.4 for reason).
.4. Comparison of surface quality

The smoothness of reconstructed surface can be measured by
alculating the distribution of curvature on the surface. Here we
Liver tree
(in blue) 2256

1 9024 6968 140 6112 0.90
2 360,96 20,384 155 19,598 0.93

Aorta tree 1845
1 7380 5078 160 4772 0.90
2 29,520 18,545 170 19,644 0.95

compute Root Mean Square (RMS) curvature of both the minimal
k1 and the maximal k2 principal curvatures of the produced sur-
face respectively and RMS is defined by

√
(k2

1 + k2
2)/2. It can be

seen (Fig. 12) that the vessel surface quality is greatly improved by
performing subdivision, and the surface produced by our adaptive
subdivision (Fig. 12d), with a fewer approximation, has the same
surface quality as the surface generated by the uniform subdivision.
The reason for that is in subdivision surface, subdividing a flat sur-
face (e.g. the region with RMS curvature being zero, as illustrated in
Fig. 12) will not increase the smoothness of the surface but increase
the size of the surface.

We also use radii-radio measure to evaluate the triangle qual-
ity of a given surface. The measure is defined as � = R/r (R and r
are the circumscribed and the inscribed circles of a given trian-
gle respectively) [27]. It is found that the quality of triangles of
our method is the same as those produced by the uniform subdi-
vision, except for those triangles which are to be subdivided at the
next level, but whose neighbors are not, since these triangles are
always degenerated. Unfortunately, in adaptive refinement these
triangles can not be avoided because they are created to remove
cracks. Therefore, it is better to further optimize these triangles by
the way like edge-swap since these triangles may cause numeri-
cal problem if the produced surface is used for computational fluid
dynamics simulations.

We also compare curvature-dependent subdivision to dihedral
angle-based subdivision [25]. The comparison demonstrates that
curvature-based measure can more accurately characterize the
geometry of vessel surface than angle-based measure, as shown
in Fig. 12. The reason is that dihedral angle method, which uses
the angles between normals of a triangle with adjoining triangle
normals, is a simple measure to identify which regions of sur-
face are flat, but not a good measure for identifying highly curved
regions. Another disadvantage of dihedral scheme is that it can not
be applied in succession for a surface, as pointed out in [25].

3.5. Analysis of complexity and efficiency

Let n be the number of processed segments and S be the number
of the input sections, namely the sum of sections of the individ-
ual input segments. The complexity of the proposed bidirectional
sampling process is O(S). Since n is generally much less than S,
the complexity of generating base quadrilateral mesh process is
O(S + n) = O(S). The maximum number of the generated quadrilat-
erals is 4S and the number of vertices is 4S + 4, thus the complexities
of triangulation process and curvature estimation process are O(4S)
and O(4S + 4) respectively. After triangulation, the number of trian-
gles is 8S and therefore the complexity of our adaptive subdivision

process is less than O(8S), while the uniform subdivision is O(8S).

Table 2 shows the timing performance of constructing uniform
and adaptive subdivision surfaces from several vascular center-
line trees. The algorithm is implemented in Visual C++ 2005 and
tested on Pentium D processor at 2.80 GHz with a 3.00 GB memory.
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Fig. 12. Color-coded visualization of RMS curvature distribution for the vessel surface. (a
surface, (c) the result of two levels of adaptive subdivision based on dihedral angle with
subdivision based on Gaussian curvature with threshold 0.95 on the initial surface.

Table 2
Timing performance for each process of generating subdivision surface on three
vascular trees.

Data set Data size Method Run time (s)

n S Sam MeGen TriEst Sub

Cerebral
tree

61 1523
Uni 0.001 4.425 – 0.397
Ang 0.001 4.367 0.030 0.309
Cur 0.001 4.367 0.115 0.306

Liver tree 131 3107
Uni 0.003 7.875 – 1.186
Ang 0.003 7.545 0.109 1.034
Cur 0.003 7.545 0.324 1.029

Phantom
tree

52 2832
Uni 0.002 6.717 – 0.787
Ang 0.002 6.538 0.093 0.640
Cur 0.002 6.538 0.279 0.636

Uni: one level of uniform subdivision; Ang: one level of subdivision based on dihe-
dral angle with threshold 165◦; Cur: one level of subdivision based on based on
Gaussian curvature with threshold 0.90; Sam: unidirectional sampling for Uni and
bidirectional sampling for Ada; MeGen: base quadrilateral mesh generating process;
TriEst: for Ang, TriEst means triangulation and dihedral angle estimation process; for
Cur, TriEst means triangulation and curvature estimation process; Sub: subdivision
process.
) The initial surface, (b) the result of two levels of uniform subdivision on the initial
threshold 165◦ on the initial surface, and (d) the result of two levels of adaptive

It is clearly seen that the most time-consuming process is generat-
ing the base quadrilateral mesh because the process is a recursive
procedure whose complexity depends on the input vascular tree
structure. Compared to the uniform subdivision-based method
[11,19], our method needs additional processes of triangulation and
curvature estimation; fortunately, these two processes need a little
time and help to achieve curvature-dependent adaptive subdivi-
sion which saves a great deal of memory complexities (discussed
in Section 3.3). In contrast to dihedral angle-based subdivision, our
method is a bit slower as the curvature estimation is a bit more
complicated than dihedral angle computation.

4. Conclusion

In this paper, we have presented a method for visualizing vas-
cular structures defined by its centerline and radius. To achieve

a smooth transition at branches, we proposed a bidirectional
sampling strategy; by means of that, the centerline can be down-
sampled to generate a topologically-correct base mesh. To deal
with complex topology of vascular structures, we devised a way
to determinate normals and up-vector at joint branchings. Finally,
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o reach a better trade-off between the surface quality and the sur-
ace size, we exploited the differential geometric property of a given
urface and used curvature-dependent subdivision to generate the
urface for visualization. Experimental tests on a variety of vascu-
ar structures demonstrate our method can achieve a high-quality
urface visualization with fewer polygons in the approximation
hile keeping the same smoothness as the uniform subdivision.
ur method can not only reduce the size of resulted surface in stor-
ge space but reduce the computational load especially at higher
evels of subdivision, thus the speed of rendering and interaction
an be drastically improved. In the future, we will develop more
nteractive facilities (e.g. annotation and angle qualification) for
eometric analysis [28] of vascular structures, and for exploring
asculature in our interventional neuroradiology simulator system
hich aims to provide a virtual environment for physicians to learn

nd practice without putting patients at risk [29].
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