
Creating Evenly-Spaced Streamlinesof Arbitrary Density?Bruno Jobard and Wilfrid LeferLaboratoire d'Informatique du Littoral, Calais, Francefjobard,leferg@lil.univ-littoral.frAbstract. This paper presents a new evenly-spaced streamlines place-ment algorithm to visualize 2D steady 
ows. The main technical con-tribution of this work is to propose a single method to compute a widevariety of 
ow �eld images, ranging from texture-like to hand-drawingstyles. Indeed the control of the density of the �eld is very easy since theuser only needs to set the separating distance between adjacent stream-lines, which is related to the overall density of the image. We show thatour method produces images of a quality at least as good as other meth-ods but that it is computationally less expensive and o�ers a bettercontrol on the rendering process.IntroductionThe problem of visualizing vector �elds has been widely addressed in the pastyears because it has numerous applications. The main issue is to visualize prop-erly the direction and magnitude of the 
ow. Spatial resolution techniques suchas arrow plots, streamlines or particles traces su�er from their spatial resolu-tion that limits drastically their usefulness, in particular in the presence of aturbulent 
ow. Moreover the e�ectiveness of the streamline and particle meth-ods depends critically on the placement of the forming seed points. Texture-likemethods, such as Spot Noise [10] and LIC [1] produce dense �eld images show-ing the 
ow features in �ne-grain detail. Another issue is to compute sparse 
ow�elds, laying stress on the visual appearance of the �eld, which produces hand-drawing style images. Recently, Turk and Banks presented an imaged-guidedstreamline placement to compute hand-drawing style representations of a 
ow�eld [9]. This paper presents another e�ective algorithm for the placement ofevenly-spaced streamlines. The main technical contribution of this work is topropose a single method to compute a wide variety of 
ow �eld images, rangingfrom texture-like to hand-drawing styles. Indeed the control of the density of the�eld is very easy since the user only needs to set the separating distance betweenadjacent streamlines, which is related to the overall density of the image.? This work was supported by the council of the Nord-Pas-de-Calais region.



1 Related workVisualizing a vector �eld in a general manner requires high spatial resolutiontechniques to properly render �ne-grain details. Such methods generally yielddense �eld representations. However there are situations where a sparse densityimage is needed, by instance to produce an illustration similar to those used toenhance the purpose of text �elds in a book. Methods proposed to visualize a
ow �eld falls into these two categories: dense �eld representations and hand-drawing style.The �rst method for representing a 
ow �eld with high spatial resolution hasbeen proposed by van Wijk [10]. The spot noise method creates a directionaltexture by superimposing many 
ow-oriented ellipses. Each ellipse is generatedby projecting a spherical spot onto a surface and by advecting the spot withthe direction and magnitude of the vector �eld at the projection point. Thisamounts to the 
ow �eld-controlled generation of a band-limited noise. Initiallystraight, the spots are now bent along short streamlines to follow the curvatureof the vector �eld [2]. An important feature of this method is the local controlon the generated image. More spots gives rise to more accuracy. With spot noisethe generation time depends on the number of spots used to generate the tex-ture. Consequently, by setting the number of spots a trade-o� can be obtainedbetween image quality and rendering time.Another interesting method is the line integral convolution (LIC) proposedby Cabral and Leedom [1] [4] [8]. A LIC texture is generated by convoluting aninput texture with a streamline-oriented one dimensional �lter kernel. The im-ages obtained with this technique are very e�ectives, showing more details thanthe previously enumerated one. But this is obtained at the expense of compu-tation. This computation cost is mainly due to the number of streamlines thathave to be computed, and let us notice that even with the fastLIC method [8],several streamlines cover each single pixel of the resulting texture, giving rise tofrequent recomputations.The image-guided streamline placement method proposed in [9] uses a stochas-tic mechanism to iterately re�ne the placement of the streamlines. First an initialset of randomly placed streamlines is created. Then this set of streamlines is up-dated using three valid operations: (1) changing the position and/or length ofa streamline, (2) joining streamlines that nearly abut, and (3) creating a newstreamline to �ll a gap. At each step of the re�nement process a small change, i.e.a combination of the three operations mentioned above, is randomly performed.An energy function consults a low-pass-�ltered (blurred) version of the imageto measure the variation of energy between the current and the updated im-ages and the modi�cation is only accepted if the variation of energy if negative.This method produces high quality images but the convergence is very slow andobtaining a good visual appearance often requires several minutes for each im-age to be computed. Moreover this method is not suitable for dense �eld imagesbecause of the combinatorial explosion of the possible modi�cations at each step.



The remainder of this paper is organized as follows. In section 2 we presenta method for e�ective user-controlled evenly-spaced streamlines placement. Sec-tion 3 describes the use of the method to produce hand-drawing style imagesand we compare our approach with the image-guided streamline placement fromTurk and Banks. In section 4 we show how texture-like images can be obtainedand we discuss the advantages and drawbacks of this method compared to LIC.We conclude and o�er directions for future research in section 5.
Fig. 1. (a) Long streamlines with seed points placed on a regular grid (left); (b) Same
ow �eld computed using our streamline placement method (right)2 Algorithm overviewThe goal of this work is to produce long and evenly spaced streamlines in a singlepass. The basic principle of our algorithm is similar to a method presented byMax et al. in [6]. The goal of their work was to cover a 3D surface (not necessarytangential to the �eld) with a set of streamlines. Once a seed point has beenselected in the �eld, they make a streamline growing beyond that point back-ward and forward. The growing process is stopped when the streamline reachesan edge of the surface, a singularity in the �eld (source or sink) or becomes tooclose to another streamline. The streamline is then divided into a set of smallsegments of contrasting color and projected onto the surface. Although Max'smethod was intended to visualize a 
ow on a 3D surface, it can be generalizedto all kinds of steady 2D �eld.We extend this work in the following manner. First we give a number of pre-cisions concerning the implementation of the algorithm together with a coupleof optimizations. Second we show how the algorithm can be controlled by theuser to produce a wide range of 
ow �elds images, ranging from hand-drawing



to LIC-like style.An important feature of the algorithm is that it processes in a single pass(as compared to Turk's progressive re�nement approach). To compute an image,a number of streamlines are calculated until a user-�xed density level has beenobtained. Computing a new streamline is achieved in the following manner. Anew seed point is chosen at a minimal distance apart from all existing stream-lines. Then a new streamline is integrated beyond the seed point backward andforward until either it goes too close from another streamlines or it leaves the 2Ddomain over which the computation takes place. The algorithm ends when nomore valid seed point can be found. Figure 1b shows an image obtained with ouralgorithm and �gure 1a shows the same 
ow �eld visualized using a distributionof the seed points over a regular grid. The three following sections detail threeimportant points of the algorithm: the control of the distance between adjacentstreamlines, seed points selection and streamline integration.2.1 Control of the separating distanceDensity is a global feature of the �eld. However we need to express it as a localfeature in order to have a local control on the texture generation. We expressthe density as the distance between two adjacent streamlines. Let dsep be thisdistance. Hence the control of the density of the �eld is achieved by control-ling that there is not any pair of streamlines apart from a distance lower thandsep. This control occurs during the construction of each streamline. During theconstruction, a new sample point is valid only if it is at a separating distancegreater than dsep. If it is not the case, the streamline is stopped in this direc-tion (during construction streamlines grow in both directions independently). Inorder to make the computation of the separating distance faster, rather thancomputing the exact distance from the new seed point location to the stream-line, we compute the distance from the seed point to the sample points alongthe streamline. To make this approximation acceptable, the sample points ona streamline must be evenly spaced and the distance between them must besmaller than dsep. Thus, a new sample point is valid if the distance betweenit and all the existing sample points is greater than the separating distance.Since this test has to be computed for all the sample points, it must be as fastas possible. To accelerate the computation of the distance, we use a cartesiangrid superposed to the vector �eld domain, the width and height of a cell beingexactly dsep. Each cell contains a list of pointers to the sample points locatedwithin the cell. Thus, given a new seed point location, the cell containing thelocation is easily determined. Let us call this cell the local cell. The distance hasto be computed only for the sample points located either within the local cell orwithin the eight cells surrounding the local cell. In practice, we have noticed thatan average of 5-7 distance computations is necessary to determine if a new sam-ple point is valid or not. The denser is the grid, the less comparisons are required.



remark: Practically, we consider two important distances, dsep and dtest.dsep is the separating distance given by the user. It represents the minimaldistance between seed points and streamlines. dtest is a percentage of dsep. Itcorresponds to the minimal distance under which the integration of the stream-line will be stopped in the current direction. We found dtest = 0:5� dsep givesgood visual result by producing long streamlines. For instance, images of Figure2 have been calculated with two di�erent values of dtest.
Fig. 2. increasing di�erence between dsep and dtest lengthen streamlines;(left) d1test = 0:9� dsep; (right) d2test = 0:5� dsep2.2 Seed points selectionWhen using streamlines for vector �eld visualization, a common problem is toselect proper seed points for path tracking. Dovey proposed two approaches toresample non-uniformly spaced grids in order to achieve an uniform density ofvector glyphs [3]. A vector �eld is represented with short segments oriented bythe 
ow. In case of short streamlines or hedgehogs, the resulting image mainlydepends on the distribution and density of the seed points over the domain. Incase of long streamlines a constant density of seed points do not ensure a gooddistribution of the streamlines.In order to obtain a good visual appearance of the 
ow �eld, an accurate seedpoint selection has to be perform. The principle of our algorithm is to derive allthe seed points possible to �nd from an existing streamline before trying withanother existing one. The proposed seed points are chosen at a distance d = dsepfrom the sample points of each streamline. Our algorithm uses a queue to storethe newly created streamlines which are processed from the older one to themore recently created one. The algorithm is given below.



Compute an initial streamline and put it into the queueLet this initial streamline be the current streamlineFinished := FalseRepeatRepeatSelect a candidate seedpoint at d = dsep apart from the current streamlineUntil the candidate is valid or there is no more available candidateIf a valid candidate has been selected ThenCompute a new streamline and put it into the queueElseIf there is no more available streamline in the queue ThenFinished := TrueElseLet the next streamline in the queue be the current streamlineEndIfEndIfUntil Finished=TrueFigure 3 shows all the streamlines the algorithm has been able to derive fromthe �rst streamline for a given vector �eld.
d

d

d d

d

d

Fig. 3. streamlines are derived from the �rst (thick) one by choosing seed points (cir-cles) at a distance d = dsep from it



Fig. 4. Two seed points selection method with the same density of streamlines: (left)random selection, (right) our selection methodFor sparse illustrations choosing to start streamlines close to existing onesgives better visual results than selecting seed points in a random fashion (see�gure 4) but is more time-consuming. For dense texture generation, the qualityof images produced with various seed point selection methods is quite similar.2.3 Streamline integrationIn order to measure a consistent separating distance between a point and astreamline, sample points along a streamline must be evenly spaced (see sec-tion 2.1). Many integrators are able to produce such evenly spaced sequences ofsample points. They can be classi�ed into three categories:{ �xed step size integrators such as Euler, Midpoint or Runge-Kutta methodswith normalized vector �elds,{ non constant or adaptive step size integrators with a post interpolation phasesuch as cubic Hermite-interpolation, which deal with large distances betweenneighboring sample points and curvature of the streamlines [8],{ continuous integration methods such as DOPRI5, which is a �fth orderRunge-Kutta integrator with adaptive step size monitoring and fourth ordererror estimation and produces a dense output directly by using informationsgathered at each step of the integration [5].At present we use the Midpoint integrator but future investigations will concernthe choice of a better integration method. In particular using an adaptive stepsize integrator will decrease the number of integrations required, reducing overallcomputation time.



a b
c d
e fFig. 5. Image comparisons for separating distances of 6%, 3% and 1.5% of image width;left column: Image-guided placement; right column: Our streamline placement.



3 Hand-drawing styleSparse illustrations of 
ows �elds are the more interesting application of ourmethod. Turk et al. proposed a method to compute such a representation in[9]. The method computes an initial set of streamlines which is then iteratelyre�ned until the global energy of the image falls below a �xed threshold or theuser stops the process. The images obtained with this method are of great qualitybut the convergence of the iterative process is very slow and becomes much slowerwhen desired density increases. Moreover the energy function used to measurethe quality of the result is not directly related to the visual appearance of theimage, requiring the appreciation of the user to stop the process.The advantage of our method as compared to Turk's one is that it processes ina single pass, computing the �nal image directly. Figure 5 shows the same 
ow�eld computed by Turk's method with various re�nement degrees and by ourmethod and table 1 gives computation times necessary to produce the di�erentimages. We see that our method produces images of the same quality as Turk'sones but is less time-consuming.separating distance Image-guided placement Our placement algorithm6% image width Fig 5a: stopped at 2 mn Fig 5b: 4 seconds3% image width Fig 5c: stopped at 4 mn Fig 5d: 9 seconds1.5% image width Fig 5e: stopped at 10 mn Fig 5f: 17 secondsTable 1. Computation times on a MIPS R4600 Processor, 132Mhz with 32Mo. Image-guided placement images and computation times were obtained with the Greg Turk'soriginal publicly available algorithm.
Fig. 6. Hand-drawing style images computed without and with the tapering e�ect



Tapering e�ect. As stated in section 2.1 the actual distance between stream-lines is not constant. Since the density is related to the distance between stream-lines, disparities of density may appear in the resulting image. To reduce thisvisual artifact, Turk suggested to taper the ends of the streamlines by decreasingthe thickness of the lines as they go closer to another one. In case of Turk'salgorithm, this is achieved in a post-processing step. Our implementation allowsto directly include the tapering optimization during the growing process of eachstreamline. The width of the streamline is computed using the following formula:thicknessCoef = (1:0 8d � dsepd� dtestdsep � dtest 8d < dsep ; thicknessCoef 2 [0; 1]where d is the distance to the closer streamline (see section 2.1 for the de�-nition of the di�erent distances).Fig 6 shows the same image computed without and with the tapering e�ect.Glyph mapping. Once the streamline placement has been computed, thestreamlines can be viewed as skeletons on which directional glyphs can be mapped.Figure 7 shows an image obtained by mapping such kind of icons onto the com-puted streamlines. This enables to add a directional information in the �eld.
Fig. 7. examples of illustrations with glyph mapping



4 Texture generationBy decreasing the separating distance dsep, the coverage of the streamlines be-comes dense over the �eld. To depict the tangential component of the 
ow ina dense representation we have to di�erentiate close streamlines to be able tofollow them over the �eld. This is achieved by mapping a periodic intensityfunction onto the streamline. Let us consider f(x) a function which associatesan intensity to every sample point on a streamline where x is the rank of thesample point within the streamline. f will give the shape of the intensity waveon the streamline. For instance, one may associate the two functions f1 and f2given below: f1(x) = 12(1 + sin(2�xN )) and f2(x) = x mod NN � 1where N is the length of the period as a number of sample points.f1 will give a smooth continuously increasing and decreasing intensity whilethe modulo function f2 will produce discontinuous segments of increasing inten-sity in order to remove ambiguities about the orientation of the 
ow. Figures 8and 9 show an image obtained using this pair of functions.
Fig. 8. textures generated with the f1 function for intensity e�ects; (left) short and(right) long period of f1The images obtained with our method look like LIC images. In fact ouralgorithm is somehow a dual version of LIC. With LIC, for each pixel p of theoutput image, one integrates a particle path centered on p forward and backwardand then averages intensities of the input texture pixels to get the intensity of thepixel being calculated. In our method, we �nd an optimal dense coverage of the



�eld which minimizes the number of integrated streamlines and then associatean intensity to each pixel of all the streamlines.
Fig. 9. textures generated with the f2 function for intensity e�ects; (left) short and(right) long period of f2Now let us point on the advantages of our method over LIC. The �rst advan-tage is that our method does not require an input texture to process. With LIC aproblem arises when one want to change the length of the apparent streamlines.In case of LIC, it is necessary to change the length of the convolution �lter,which gives rise to a computation overhead. It is stated in [1] that doubling thelength increases the computation time by a factor of four. Okada and Lane haveproposed another solution, which consists in executing the LIC algorithm twice,the resulting image of the �rst execution being used as the input of the secondexecution [7]. This method results in lines which are more easily distinguishablebut it concentrates the pixels values in a narrow range of intensity, which de-creases the global contrast. This e�ect can be removed by applying post-�ltersto the �nal image, but this is done at the expense of a computation overhead(approximately by a factor of two).With our approach we are able to change the length of the apparent streamlineson demand by simply changing the length of the period of the function as de-scribed above, without recomputation of any streamline.In the traditional LIC algorithm, a streamline integration and a line convo-lution are computed for each individual pixels, so most of the time is spent inconvolution and integration operations. Decreasing the number of streamlinescomputed would greatly bene�t the LIC algorithm. Stalling and Hege proposedthe FastLIC algorithm which reduces the overall number of streamline compu-tations by sharing the line integral convolution information of each streamlinewith all the pixels it goes through [8].



With our approach, we compute the minimum number of streamlines necessaryto cover entirely the 2D area over which the �eld is studied.For instance, the computation of textures images of size 512� 512 (such as �g-ures 8 and 9) takes about 25 seconds on a R5000SC-64Mo based system. Theseresults have been obtained using a random seed points selection method anda separating distance of 0:3%. As far as dense texture images are concerned, adrawback of our method is the aliasing e�ect due to the drawing of adjacentline segments of di�erent colors. To remove this artifact we can smooth the �nalimage by simply applying a blur �lter.5 ConclusionWe have presented an e�ective method to place long evenly-spaced streamlineswith an accurate control on the density of the �nal image. By changing theseparating distance between streamlines we are able to produce from sparse todense representations of 
ow �elds. We show that our method produces imagesof a quality at least as good as other methods but that it is computationally lessexpensive and o�ers a better control on the rendering process. Future investi-gations will concern a more e�cient integrator, generalization to unsteady 
owsand real time animation.References1. Brian Cabral and L. Leedom. Imaging vector �elds using line integral convolution.Computer Graphics, 27:263{272, jul 1993.2. W. C. de Leeuv and Jarke J. van Wijk. Enhanced spot noise for vector �eld visu-alization. In Proc. of Visualization '95, pages 233{239. IEEE Press, Los Alamitos,CA, oct 1995.3. Don Dovey. Vector plots for irregular grids. In Proc. of Visualization '95, pages233{239. IEEE Press, Los Alamitos, CA, oct 1995.4. Lisa K. Forsell. Visualizing 
ow over curvilinear grid surfaces using line integralconvolution. In Proc. of Visualization '94, pages 240{247. IEEE Press, Los Alami-tos, CA, oct 1994.5. E. Hairer, S. P. N�rsett, and G. Wanner. Solving Ordinary Di�erential EquationsI - Nonsti� Problems. Springer-Verlag, 1993.6. Nelson Max, Roger Craw�ls, and Charles Grant. Visualizing 3D velocity �eldsnear contour surfaces. In Proc. of Visualization '94, pages 248{255. IEEE Press,Los Alamitos, CA, oct 1994.7. A. Okada and D. Lane. Enhanced line integral convolution with 
ow featuredetection. Technical Report NAS-96-007, NAS, jun 1996.8. D. Stalling and H-C. Hege. Fast and resolution independent line integral convolu-tion. Computer Graphics, 29:249{256, jul 1995.9. Greg Turk and David Banks. Image-guided streamline placement. ComputerGraphics, 30:453{460, jul 1996.10. Jarke J. van Wijk. Spot noise: Texture synthesis for data visualization. ComputerGraphics, 25(4):309{318, jul 1991.


