Flow Visualization

Overview: Flow Visualization (1)

= Introduction, overview
2 Flow data
4 Simulation vs. measurement vs. modelling
@ 2D vs. surfaces vs. 3D
¢ Steady vs time-dependent flow
¢ Direct vs. indirect flow visualization
= Experimental flow visualization
% Basic possibilities
¢ PIV (Particle Image Velocimetry) + Example
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Overview: Flow Visualization (2)

= Visualization of models
= Flow visualization with arrows
» Numerical integration

# Euler-integration

+ Runge-Kutta-integration
= Streamlines

+In2D

+ Particle paths

+ In 3D, sweeps

+ llluminated streamlines
= Streamline placement
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Overview: Flow Visualization (3)

= Flow visualization with integral objects
# Streamribbons,
4 Streamsurfaces, stream arrows
m Line integral convolution
¢ Algorithm
4 Examples, alternatives
= Glyphs & icons, flow topology
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Flow Visualization

= Introduction:
# FlowVis = visualization of flows
1 Visualization of change information
u Typically: more than 3 data dimensions
= General overview: even more difficult
¢ Flow data:

= NnDxnD data, 1D2/2D%/nD? (models), 2D2/3D?2
(simulations, measurements)

= Vector data (nD) in nD data space
+ User goals:
n Overview vs. details (with context)
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Flow Data

= Where do the data come from:

¢ Flow simulation:
u Airplane- / ship- / car-design
= Weather simulation (air-, sea-flows)
= Medicine (blood flows, etc.)

¢ Flow measurements:
= Wind tunnel, fluid tunnel
m Schlieren-, shadow-technique

¢ Flow models:

= Differential equation systems (ODE)
(dynamical systems)
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Data Source — Examples 1/2

Data Source — Examples 2/2

Comparison with Reality

Simulation §
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2D vs. Surfaces vs. 3D

= 2D-Flow visualization

4 2Dx2D-Flows

4 Models, slice flows (2D out of 3D)
= Visualization of surface flows

4 3D-flows around “obstacles”

¢ Boundary flows on surfaces (2D)
= 3D-Flow visualization

¢ 3Dx3D-flows

¢ Simulations, 3D-models
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2D/Surfaces/3D — Examples

Surface
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Steady vs. Time-Dependent Flows

= Steady (time-independent) flows:
¢ Flow static over time
¢ v(x): R">R", e.g., laminar flows
4 Simpler interrelationship
= Time-dependent (unsteady) flows:
¢ Flow itself changes over time
@ v(x,t): R"xR'->R", e.g., turbulent flows
+ More complex interrelationship
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Time-Dependent vs. Steady Flow
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Direct vs. Indirect Flow Visualization

= Direct flow visualization:

# Overview on current flow state

4 Visualization of vectors

@ Arrow plots, smearing techniques
= Indirect flow visualization:

¢ Usage of intermediate representation:
vector-field integration over time

4 Visualization of temporal evolution
@ Streamlines, streamsurfaces
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Direct vs. Indirect Flow Vis. — Example

Experimental
Flow Visualization

Optical Methods, etc.

With Smoke rsp. Color Injection

= |njection
of color,
smoke,
particles
= Optical
methods:
¢ Schlieren,
shadows
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Example: Car-Design

» Ferrari-model,
so-called five-
hole probe (no
back flows)
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PIV: Particle Image Velocimetry PIV - Measurements
= Laser + correlation analysis: = Setup and typical result:
# Real flow, e.g., in wind tunnel R B .
4 Injection of particles (as uniform as possible) - L
# At interesting locations: b o S
2-times fast illumination with laser-slice p— el st i
# Image capture (high-speed camera),
then correlation analysis of particles - faser
# Vector calculation / reconstruction, e e
typically only 2D-vectors

Example: Wing-Tip Vortex

= Problem: Air behind airplanes is turbulent

Visualization of Models

Dynamical Systems

Dynamical Systems Visualization

= Differences:
# Flow analytically def.:
dx/dt = v(x)
# Navier-Stokes equations
¢+ E.G.: Lorenz-system:
dx/dt = o(y-x)
dy/dt = rx-y-xz
dz/dt = xy-bz
¢ Larger variety in data:
= 2D, 3D, nD

= Sometimes no natural constraints like non-

Visualization of Models

= Sketchy,
“hand drawn”

compressibility or similar A

!
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Visualization of 3D Models

Flow Visualization
with Arrows

Hedgehog plots, etc.

Flow Visualization with Arrows

Arrows in 2D

. i
s = Scaled arrows vs. color-coded arrows
P e e e e
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= Aspects:

# Direct Flow Visualization

# Normalized arrows vs.
scaling with velocity

4 2D: quite usable,
3D: often problematic

# Sometimes limited
expressivity (temporal
component missing)

# Often used!
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Arrows in 3D Arrows in 3D
= Following problems: = Compromise:
& Ambiguity . Arrows only in slices
4 Perspective
Shortening * Vector arrows
+ 1D-objects in 3D: /Y
difficult spatial
perception

¢ Visual clutter
= Improvement:
¢ 3D-arrows (help to a certain extent)
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Arrows in 3D

= Well integrable within “real” 3D:

11-Jul- 1896 - 14:00(; )
Surface Heat Index & Winds

Hisat Indemx (0 ke T3
5 B B B ® B
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Integration of Streamlines

Numerical Integration

Streamlines — Theory

@ Correlations:
m flow data v: derivative information
& dx/dt = v(x);
spatial points xeR", time teR, flow vectors veR"

@ streamline s: integration over time,
also called trajectory, solution, curve

® S(t) = 5o + [ v(S(U) du;
seed point s, integration variable u

& difficulty: result s also in the integral = analytical
solution usually impossible!
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Streamlines — Practice

& Basic approach:
® theory: s(t) = so + [o«V(S(u))du
® practice: numerical integration

® idea:
(very) locally, the solution is (approx.) linear

@ Euler integration:
follow the current flow vector v(s;) from the current
streamline point s, for a very small time (dt) and
therefore distance

® Eulerintegration: s,; = s; + dt- v(s)),
integration of small steps (dt very small)
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Euler Integration — Example

Euler Integration — Example

@ 2D model data: v, = dx/dt = -y
v, = dy/dt = x/2
@ Sample arrows:
< 2 X
A
— 7y
@ True 0
solution: L N % A
ellipses! L 4 >

'
v
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@ Seed point s, = (0-1)T;
current flow vector v(s,) = (1]0)T;
dt=1/2

A
>
>

'
v
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Euler Integration — Example

& New point s, = sy + v(S)-dt = (1/2]-1)T;
current flow vector v(s,) = (1]1/4)T;

a
>
>

Euler Integration — Example

® New point s, = s, +v(s,)-dt=(1]-7/8)T;
current flow vector v(s,) = (7/8]1/2)T;

a
>
>
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Euler Integration — Example

| s, =(23/16]-5/8)T =~(1.44]-0.63)T;
v(s;) =(5/8]23/32)T =~ (0.63]0.72)T;
< : X
2
“— 7y
\ 4 o5
Y »
X

Euler Integration — Example
(7/4]-17/64)T =~ (1.75]-0.27)T;

es, = ~
v(s,) =(17/64|7/8)T ~(0.27]0.88)T;
< d X
“— 7y
. 0 1 fz
v .é/',‘
\ 4 >
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Euler Integration — Example

| s, ~(0.20]1.69)T;
v(sg)  ~(-1.69]0.10)T;

a1

Euler Integration — Example

@S, ~ (-3.22]-0.10)T;
v(ss)  ~(0.10]-1.61)T;
T T
LA [
// b IS
h 4 P
\ 4 ‘ N
X
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Euler Integration — Example u Euler Integration — Example

® Gary: iarge mtegration amox 4t 150 argel TR AT
19 steps @ 36 steps
T X 2 < : X 2
//"' . 1‘\-\ | P |
— / ol L2 11 f/ o S S W -
(- L
b > * N \?__»:

Euler Example — Error Table

Comparison Euler, Step Sizes

Euler . dt #steps error
is getting
Btreétpecgr_ . 12 19 ~200%
t|ona||y a 1/4 36 ~75%
to dt 3 - 1/10 89 ~25%
| :
o | 1/1000 8889 ~02% Vv

Better than Euler Integr.: RK ; RK-2 Integration — One Step
@ Runge-Kutta Approach: @ Seed pc;lint So = (OI-% )T); 2[0y
) _ current flow vector v(s,) = ;
& theory: s(t) =80+ focuaV(s(u))du preview vector v(so+v(oso)-dt/2) =(2|0.5)T;
a Euler: S;  =Sg+ XoV(S,)-dt dt=1
& Runge-Kutta integration: < 2 X n

midea: cut short the curve arc

a RK-2 (second order RK):
1.: do half a Euler step .
2.: evaluate flow vector there ° i z A ¢
3.: use it in the origin v R

8 RK-2 (two evaluations of v per step):

Sisq = S; + V(Sitv(s;)-dt/2)-dt Y N ,/ ~

1
<
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RK-2 — One more step
® Seed points, = (2|-1.5)T;

current flow vector v(s,) = (1.5]1)T;
preview vector v(s+v(s,)-dt/2)~ (1|1.4)T;
dt=1
< = L
A
< . 3
v N yal
v />(
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RK-2 — A Quick Round

& RK-2: even with dt=1 (9 steps)
better
than Euler
with dt=1/8
(72 steps)
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Integration, Conclusions

@ Summary:

a analytic determination of streamlines
usually not possible

a hence: numerical integration

a several methods available
(Euler, Runge-Kutta, etc.)

@ Euler: simple, imprecise, esp. with small dt
a RK: more accurate in higher orders

a furthermore: adaptive methods, implicit methods,
etc.
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Streamlines in 2D

@ Adequate
for overview

Flow Visualization
with Streamlines

Streamlines,
Particle Paths, etc.

Visualization with Particles

@ Particle paths =

streamlines
(steady flows)

@ Variants (time-
dependent data):

@ streak lines:
steadily new
particles

@ path lines:
ong-term path
of one particle
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Streamlines in 3D

llluminated Streamlines

@ llluminated

Helwig Hauser

Color
coding:
Speed
Selective
Placement

3D curves =
better 3D
perception!

Problem: Choice of Seed Points

@ Streamline placement:

a [f regular grid used: very irregular result

3D Streamlines with Sweeps

& Sweeps:
better spatial 3D
perception

Streamline Placement

Overview of Algorithm

a Idea: streamlines should not get too close to
each other
& Approach:

8 choose a seed point with distance d,, from an
already existing streamline

a forward- and backward-integration until distance
diest Is reached (or ...).

® two parameters:
8d,, ... startdistance
#d, ... minimum distance
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Algorithm — Pseudocode

@ Compute initial streamline, put it into a queue

m |nitial streamline becomes current streamline
® WHILE not finished DO:

TRY: get new seed point which is d,, away from

sep .
current streamline

IF successful THEN compute new streamline
and put to queue

ELSE IF no more streamline in queue
THEN exit loop
ELSE next streamline in queue becomes
current streamline
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Streamline Termination

& When to stop streamline integration:
= when dist. to neighboring streamline < d;
8 when streamline leaves flow domain
= when streamline runs into fixed point (v=0)
# when streamline gets too near to itself
2 after a certain amount of maximal steps
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New Streamlines

Different Streamline Densities

@ Variations of d
6%

sep

in rel. to image width:

3% 1.5%
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Tapering and Glyphs

& Thickness in rel.
to dist.

1.0 Vd > dap
d— dies

dscp - dtcst vd < d”p J

& Directional
glyphs:
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Integral Objects in 3D 1/3

& Streamribbons

Flow Visualization
with Integral Objects

Streamribbons,
Streamsurfaces,
etc.
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Integral Objects in 3D 2/3 : Stream Arrows

@ Streamsurfaces

Integral Objects in 3D 3/3 Relation to Seed Objects
@ Flow volumes ... a IntegralObj. Dim. SeedObj. Dim.
Streamline,... 1D Point oD
Streamribbon 1D++  Point+pt. 0D+0D
® vS. streamtubes Streamtube 1D++ Pt.+cont. 0oD+1D
(similar to streamribbon)
Streamsurface 2D Curve 1D

Flow volume 3D Patch 2D
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Line Integral Convolution

Flow Visualization
in 2D or on surfaces

LIC — Introduction

& Aspects:
® goal: general overview of flow
@ Approach: usage of textures
e [dea: flow < visual correlation
8 Example:
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LIC — Approach

@ LIC idea:
a for every texel: let the texture value...
m ... correlate with neighboring texture values
along the flow (in flow direction)
® ... not correlate with neighboring texture values
across the flow (normal to flow dir.)
a result:
along streamlines the texture values are
correlated = visually coherent!
& approach: “smudge” white noise (no a priori
correlations) along flow
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LIC — Steps

a Calculation of a
texture value:

# look at streamline
through point

a filter white noise
along streamline

= Convol
with
White Noisés: ==+~~~

e . i lresults
| I A
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LIC — Convolution with Noise

@ Calculation of LIC texture:
& input 1: flow data v(x): R"—>R",
analytically or interpolated

& input 2: white noise n(x): R"—>R!,
normally precomputed as texture

a streamline s,(u) through x: R'—>R",
Sy(U) = X + sgn(U) - [oegy V(Sk(sgN(U)-1)) dt

a input 3: filter h(t): R">R", e.g., Gauss

a result: texture value lic(x): R"—R?,
lic(x) = lic(s,(0)) = [ n(s(u))-h(-u)du
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More Explanation

s So:
& LIC —lic(x) — is a convolution of
@ white noise n (or ...)
@ and a smoothing filter h (e.g. a Gaussian)

# The noise texture values are picked
up along streamlines s, through x
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LIC — Example in 2D

quite laminar flow

quite turbulent flow

Arrows vs. StrLines vs. Textures

@ Streamlines: selective
o Arrows: well.. e

e e e
e e e e £ £ e £
P e

P T

Liicccramennaany
P '
e E e RN T T 1

' Ter:
2D-filling

Lt LI
Siasiheaannad

LIC — Examples on

Alternatives to LIC

& Similar approaches: SPOLADISE SN

®& spot noise

a vector kernel
® line bundles/splats
® textured splats

& particle systems
& flow volumes

& texture advection

flow volume

Flow Visualization
dependent on local props.

Visualization of Vv

Glyphs resp. Icons

® Local /
topological
properties




Icons in 2D

Icons & Glyphs in 3D

Flow Topology

@ Topology:
m abstract /
structure \
of a flow
a different N\ // \ //

elements, e.g.:
® checkpoints, defined through v(x)=0
mcycles, defined through s, (t+T)=s,(t)
@ connecting structures (separatrices, etc.)
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Flow Topology in 3D

& Topology on
surfaces:

8 fixed
points

a separa-
trices

Helwig Hauser

Flow Topology in 3D

® Lorenz
system:

@ 1 saddle

e 2 saddle
foci

a 1 chaotic
attractor
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Timesurfaces

& |dea:
a start surface, e.g. part of a plane
a8 move whole surface along flow over time
8 time surface: surface at one point in time
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