Volume Visualization

Part 2 (out of 3)
Review: Slices

Scalar-clipping, combination with 3D
Slices vs. Iso-Surfaces vs. Volume Rendering

- Comparison ozon-data over Antarctica:
 - Slices: selective (z), 2D, color coding
 - Iso-surface: selective (f_0), covers 3D
 - Vol. rendering: transfer function dependent, “(too) sparse – (too) dense”
Optical Models for Volume Rendering

Display of Semi-Transparent Media
Modelling of Natural Phenomena

- Various models (Examples):
 - Emission only (light particles)
 - Absorption only (dark fog)
 - Emission & absorption (clouds)
 - Single scattering, w/o shadows
 - Multiple scattering

- Two approaches:
 - Analytical model (via differentials)
 - Numerical approximation (via differences)
Continous emission model:

- **Question**: how much light (I like intensity) is added along an infinitely short ray segment in the volume
- **Differential** \(\frac{dI}{dt} = g(t) \) …
 volume emits light (corresponding to thickness)
- **Glow factor** \(g(t) \)
- **Integration** results in: \(I(s) = I_0 + \int_{t \in [0,s]} g(t) \, dt \)
- **Overall emission contrib.**: \(G(0,s) = \int_{t \in [0,s]} g(t) \, dt \)
- **Unrealistic**, because no absorption
Emission, Numerical Approximation

- **Discrete emission model:**

 - **Question:** how much light (C like color) is added within a small, but finite volume extent

 - C_i … contribution of vol. extent i (thickness 1)

 \[\Rightarrow \text{adding emission of extent } i \text{ results in} \]

 \[\text{Out}_i = \text{In}_i + C_i \iff \text{Out}_i = \text{Out}_{i-1} + C_i \]

 - **Accumulation:**

 \[\text{Out}_i = \text{In}_j + C_j + \ldots + C_{i-1} + C_i \]

 \[\text{Out}_i = \text{In}_j + \sum_{j \leq k \leq i} C_k \]

 - **Example:**

 \[\text{pixel value} = \text{background} + \sum_{k \in N} C(\text{ray}(k)) \]
Differential model:
\[I(s) = I_0 + \int_{t \in [0,s]} g(t)dt \]

Discrete approximation:
\[\text{Out}_s = \text{In}_0 + \sum_{s \geq k \in \mathbb{N}} C_k \]

Example:
Absorption, Differential Model

Continuous absorption model:

- **Question**: how much light (in % of I_0) remains after traversal of ray segment through the volume

- **Differential** $\frac{dI}{dt} = -\tau(t)I(t)$ …
 light (I) is partially absorbed (τ)

- **Extinction coefficient** $\tau(t)$, e.g., 30%

- **Integration** results in: $I(s) = I_0 \cdot \exp(-\int_{t \in [0,s]} \tau(t)dt)$

- **Total transparency**: $T(0,s) = \exp(-\int_{t \in [0,s]} \tau(t)dt)$

- **Total absorption**: $\alpha(0,s) = 1 - T(0,s)$
Absorption, Numerical Approximation

- **Discrete approximation model:**
 - **Question:** how much light (in % of I_0) remains after traversal of small, but finite volume extent
 - α_i ... opacity of volume extent i (per unit)
 - \Rightarrow result after traversal of extent i
 \[
 \text{Out}_i = \text{In}_i \cdot (1 - \alpha_i) \iff \text{Out}_i = \text{Out}_{i-1} \cdot (1 - \alpha_i)
 \]
 - **Akkumulation:** $\text{Out}_i = \text{In}_j \cdot (1 - \alpha_j) \cdot \ldots \cdot (1 - \alpha_i)$
 \[
 \text{Out}_i = \text{In}_j \cdot \prod_{j \leq k \leq i} (1 - \alpha_k)
 \]
 - **Unit sampling:** unit distance between α_i samples!!
Absorption Only

- **Differential model:**
 \[I(s) = I_0 \cdot \exp\left(-\int_{t \in [0,s]} \tau(t)dt\right) \]

- **Discrete approximation:**
 \[\text{Out}_s = \ln I_0 \cdot \prod_{s \geq k \in \mathbb{N}} (1 - \alpha_k) \]

- **Example:**

Eduard Gröller, Helwig Hauser
Emission and Absorption

Continuous model (no scattering):

- At each position is given:
 - Emission $g(t)$
 - Extinction coefficient $\tau(t)$

- Differential $\frac{dI}{dt} = g(t) - \tau(t)I(t)$

- Emission $g(t)$ attenuated by $T(t,s)$

- Only Emission: $I_0 + \int_{t \in [0,s]} g(t) \, dt$

- With Absorption: $I_0 \cdot T(0,s) + \int_{t \in [0,s]} g(t) \cdot T(t,s) \, dt$

- Emission und Absorption:

 $I_0 \cdot \exp\left(-\int_{u \in [0,s]} \tau(u) \, du\right) + \int_{t \in [0,s]} g(t) \cdot \exp\left(-\int_{u \in [t,s]} \tau(u) \, du\right) \, dt$
Numerical Approximation

- **Discrete model (compositing):**

 - For each *volume extent* i:
 - Contribution C_i
 - Opacity α_i, transparency $1 - \alpha_i$

 - $\text{Out}_i = \text{In}_i \cdot (1 - \alpha_i) + C_i \cdot \alpha_i$ (Std.-compositing)

 - Convex combination from background and own contribution

 - $\text{Out}_s = \text{In}_0 \cdot \prod_{s \geq k \in N} (1 - \alpha_k)$

 $$+ \sum_{s \geq k \in N} C_k \cdot \alpha_k \cdot \prod_{s \geq l > k} (1 - \alpha_l)$$

 - Opacity-weighted colors: $C_i \cdot \alpha_i$ instead of C_i
Emission and Absorption

- Differential model:
 - \(I(s) = I_0 \cdot T(0, s) + \int_{t \in [0, s]} g(t) \cdot T(t, s) \, dt \)
 - \(I(s) = I_0 \cdot \exp(-\int_{u \in [0, s]} \tau(u) \, du) \)
 \[+ \int_{t \in [0, s]} g(t) \cdot \exp(-\int_{u \in [t, s]} \tau(u) \, du) \, dt \]

- Discrete Approximation:
 - \(\text{Out}_i = \text{In}_i \cdot (1 - \alpha_i) + C_i \cdot \alpha_i \) (Compositing)
 - \(\text{Out}_s = \text{In}_0 \cdot \prod_{s \geq k \in N} (1 - \alpha_k) \)
 \[+ \sum_{s \geq k \in N} C_k \cdot \alpha_k \cdot \prod_{s \geq l > k} (1 - \alpha_l) \]
Emission or/and Absorption

- Emission only
- Absorption only
- Emission and Absorption only
Scattering

- **Scattering**: particles deviate light at a position
 - BRDF (bidirectional reflectance distribution function)
 - Single scattering
 - Too little light in the interior
 - Single scattering with shadows
 - Multiple Scattering
 - Radiosity techniques
 - Very realistic, very costly
Paper (more details):

Ray Casting / Compositing

Classical Image-Order Methods
Ray Tracing vs. Ray Casting

- **Ray Tracing**: method from image generation
- In volume rendering: *only viewing rays*
 ⇒ therefore Ray Casting
- Classical **image-order** method
- **Ray Tracing**: ray – object intersection
 Ray Casting: no objects, density values in 3D
- **In theory**: take all density values into account!
 In practice: traverse volume step by step
- **Interpolation** necessary for each step!
Context:

- **Volume data:** 1D value defined in 3D –
 \[f(\mathbf{x}) \in \mathbb{R}^1, \mathbf{x} \in \mathbb{R}^3 \]
- **Ray** defined as half-line:
 \[\mathbf{r}(t) \in \mathbb{R}^3, t \in \mathbb{R}^1 > 0 \]
- **Values along Ray:**
 \[f(\mathbf{r}(t)) \in \mathbb{R}^1, t \in \mathbb{R}^1 > 0 \]
 (intensity profile)
Standard Ray Casting

- Levoy ’88:
 1. C(i), α(i) (from TF)
 2. Ray casting, interpolation
 3. Compositing
1. Shading, Classification

1. Step:

- Shading, \(f(i) \rightarrow C(i) \):
 - Apply transfer function
 - diffuse illumination (Phong), gradient \(\approx \) normal

- Classification, \(f(i) \rightarrow \alpha(i) \):
 - Levoy ’88, gradient enhanced
 - Emphasizes transitions
2. Ray Traversal – Three Approaches

- Regular sampling
- Scan conversion
- Voxel intersections

- Equidistant samples
- All voxels used once
- Samples weighted by lengths of ray segments
2. Ray Traversal, Interpolation

- Voxel-based vs. cell-based traversal
- Tri-linear (interpolation within a cell) vs. bi-linear (interpolation within a cell face)
- Tri-linear:
 - first 4* in z-direction (interpolated square),
 - then 2* in y-direction (interpolated line),
 - then 1* in x-direction (interpolated value)
- Unit sampling vs. variable sample distances – compositing different!!
Compositing: F2B vs. B2F

Back-to-Front (B2F):
- \(\text{Out}_i = \text{In}_i \cdot (1 - \alpha_i) + C_i \cdot \alpha_i, \ \text{In}_{i+1} = \text{Out}_i \ldots \)
- Depending on local transparency \((1 - \alpha_i) \Rightarrow\) convex combination of old \(\text{In}_i\) & new \(C_i\)
- Example:
 - Voxel i: \(C_i = \text{red}, \ \alpha_i = 30\%; \ \text{so far: In}_i = \text{white}\)
 - Result of compositing: 70% white + 30% red

Front-to-Back (F2B):
- \(\text{Col} = \text{Col} + (1 - \alpha_{akk}) \cdot C_i \cdot \alpha_i \ldots\) accumulated color
- \(\alpha_{akk} = \alpha_{akk} + (1 - \alpha_{akk}) \cdot \alpha_i \ldots\) accumulated opacity
Interpolation Kernels

volumetric compositing

object \text{ (color, opacity) }

06.11.00

R. Crawford, Ohio State Univ.
Ray Casting – Examples

- CT scan of human hand (244x124x257, 16 bit)
Ray Casting – Further Examples

- Tornado Visualization:
Ray Casting – Further Examples

- Molecular data:
Acceleration - Progressive Refinement

- First render every $2^n \times 2^n$-th pixel, then render the $2^{n-1} \times 2^{n-1}$-th pixel inbetween, aso. (until interruption or completion)
Paper (more details):

Acknowledgement

For material for this lecture unit:

- Nelson Max (LLNL), Marc Levoy (Stanford)
- Hans-Georg Pagendarm (DLR, Göttingen)
- Lloyd Treinish (IBM)
- Roberto Scopigno,
 Claudio Montani (CNR, Pisa)
- Roger Crawfis (Ohio State Univ.)
- Michael Meißner (GRIS, Tübingen)
- Torsten Möller
- etc.