Volume Visualization

Part 2 (out of 3)

Review: Slices

Slices vs. Iso-Surfaces. vs. Volume Rendering

- Comparison ozon-data over Antarctica:
 - Slices: selective (z), 2D, color coding
 - ◆ Iso-surface: selective (f₀), covers 3D
 - Vol. rendering: transfer function dependent,
 "(too) sparse (too) dense"

Optical Models for Volume Rendering

Display of Semi-Transparent Media

Modelling of Natural Phenomena

- Various models (Examples):
 - Emission only (light particles)
 - Absorption only (dark fog)
 - Emission & absorption (clouds)
 - Single scattering, w/o shadows
 - Multiple scattering
- Two approaches:
 - Analytical model (via differentials)
 - Numerical approximation (via differences)

Emission, Differential Model

- Continuous emission model:
 - Question: how much light (I like intensity) is added along an infinitely short ray segment in the volume
 - Differential dI/dt = g(t) ...
 volume emits light (corresponding to thickness)
 - Glow factor g(t)
 - Integration results in: $I(s) = I_0 + \int_{t \in [0,s]} g(t) dt$
 - Overall emission contrib.: $G(0,s) = \int_{t \in [0,s]} g(t) dt$
 - Unrealistic, because no absorption

Emission, Numerical Approximation

- Discrete emission model:
 - Question: how much light (C like color) is added within a small, but finite volume extent
 - C_i ... contribution of vol. extent i (thickness 1) ⇒ adding emission of extent i results in $Out_i = In_i + C_i \Leftrightarrow Out_i = Out_{i-1} + C_i$
 - Accumulation:

$$Out_i = In_j + C_j + ... + C_{i-1} + C_i$$

$$Out_i = In_j + \sum_{j \le k \le i} C_k$$

Example:

pixel value = background + $\Sigma_{k \in \mathbb{N}} C(\mathbf{ray}(k))$

Emission Only

Differential model:

Discrete approximation:

• Out_s =
$$In_0 + \Sigma_{s \ge k \in N} C_k$$

Example:

Absorption, Differential Model

- Continuous absorption model:
 - Question: how much light (in % of I₀) remains after traversal of ray segment through the volume
 - Differential dI/dt=-τ(t)I(t) ...
 light (I) is partially absorbed (τ)
 - Extinction coefficient τ(t), e.g., 30%
 - ◆ Integration results in: $I(s) = I_0 \cdot exp(-\int_{t \in [0,s]} \tau(t) dt)$
 - ◆ Total transparency: $T(0,s) = \exp(-\int_{t \in [0,s]} \tau(t) dt)$
 - ♦ Total absorption: $\alpha(0,s) = 1 T(0,s)$

Absorption, Numerical Approximation

- Discrete approximation model:
 - Question: how much light (in % of I₀) remains after traversal of small, but finite volume extent
 - α_i ... opacity of volume extent i (per unit) ⇒ result after traversal of extent i Out_i = In_i · (1- α_i) ⇔ Out_i = Out_{i-1} · (1- α_i)
 - Akkumulation: $Out_i = In_j \cdot (1-\alpha_j) \cdot \dots \cdot (1-\alpha_i)$ $Out_i = In_j \cdot \Pi_{j \le k \le i} (1-\alpha_k)$
 - Unit sampling: unit distance between α_i samples!!

Absorption Only

Differential model:

•
$$\mathbf{I}(s) = \mathbf{I}_0 \cdot \exp(-\int_{t \in [0,s]} \tau(t) dt)$$

- Discrete approximation:
 - Out_s = $\ln_0 \cdot \prod_{s \ge k \in \mathbb{N}} (1 \alpha_k)$
- Example:

Emission and Absorption

- Continuous model (no scattering):
 - At each position is given:
 - Emission g(t)
 - Extinction coefficient τ(t)
 - Differential $dI/dt = g(t) \tau(t)I(t)$
 - Emission g(t) attenuated by T(t,s)
 - Only Emission: $I_0 + \int_{t \in [0,s]} g(t) dt$
 - With Absorption: I_0 -T(0,s)+ $\int_{t\in[0,s]}g(t)$ -T(t,s) dt
 - Emission und Absorption:

$$\mathbf{I}_{0} \cdot \exp(-\int_{u \in [0,s]} \tau(u) du) + \int_{t \in [0,s]} g(t) \cdot \exp(-\int_{u \in [t,s]} \tau(u) du) dt$$

Numerical Approximation

- Discrete model (compositing):
 - For each volume extent i:
 - Contribution C_i
 - Opacity α_i , transparency $1-\alpha_i$
 - Out_i = In_i· $(1-\alpha_i)$ + C_i· α_i (Std.-compositing)
 - Convex combination from background and own contribution
 - $\bullet \text{ Out}_{s} = \text{In}_{0} \cdot \Pi_{s \geq k \in N} (1 \alpha_{k})$ $+ \Sigma_{s \geq k \in N} C_{k} \cdot \alpha_{k} \cdot \Pi_{s \geq l > k} (1 \alpha_{l})$
 - Opacity-weighted colors: C_i·α_i instead of C_i

Emission and Absorption

Differential model:

•
$$I(s) = I_0 \cdot T(0,s) + \int_{t \in [0,s]} g(t) \cdot T(t,s) dt$$

$$\mathbf{I}(s) = \mathbf{I}_0 \cdot \exp(-\int_{u \in [0,s]} \tau(u) du)$$

$$+ \int_{t \in [0,s]} \mathbf{g}(t) \cdot \exp(-\int_{u \in [t,s]} \tau(u) du) dt$$

Discrete Approximation:

• Out_i = In_i·
$$(1-\alpha_i)$$
 + C_i· α_i (Compositing)

$$\bullet \text{ Out}_{s} = \text{In}_{0} \cdot \Pi_{s \geq k \in N} (1 - \alpha_{k})$$

$$+ \Sigma_{s \geq k \in N} C_{k} \cdot \alpha_{k} \cdot \Pi_{s \geq l > k} (1 - \alpha_{l})$$

Emission or/and Absorption

Emission only

Emission and Absorption

Absorption only

Eduard Gröller, Helwi

Scattering

Scattering: particles deviate light at a position

BRDF (bidirectional reflectance distribution function)

function)

- Single scattering
 - Too little light in the interior
- Single scattering with shadows
- Multiple Scattering
 - Radiosity techniques
 - Very realistic, very costly

16

Literature

- Paper (more details):
 - Nelson Max: "Optical Models for Direct Volume Rendering" in IEEE Transactions on Visualization and Computer Graphics, Vol. 1, No. 2, June 1995

Ray Casting / Compositing

Classical Image-Order Methods

Ray Tracing vs. Ray Casting

- Ray Tracing: method from image generation
- In volume rendering: only viewing rays
 - ⇒ therefore Ray Casting
- Classical image-order method
- Ray Tracing: ray object intersection
 Ray Casting: no objects, density values in 3D
- In theory: take all density values into account!
 In practice: traverse volume step by step
- Interpolation necessary for each step!

Ray Traversal through Volume Data

Context:

Volume data: 1D value defined in 3D –

 $f(x) \in R^1, x \in R^3$

- Ray defined as half-line:
 r(t)∈R³, t∈R¹>0
- Values along
 Ray:
 f(r(t))∈R¹, t∈R¹>0
 (intensity profile)

Standard Ray Casting

- Levoy '88:
- 1. C(i), α(i)(from TF)
- 2. Ray casting, interpolation
- 3. Compositing

1. Shading, Classification

- 1. Step:
 - ♦ Shading, $f(i) \rightarrow C(i)$:
 - Apply transfer function
 - diffuse illumination (Phong), gradient ≈ normal
 - ♦ Classification, $f(i)\rightarrow\alpha(i)$:
 - Levoy '88, gradient enhanced
 - Emphasizes transitions

2. Ray Traversal – Three Approaches

2. Ray Traversal, Interpolation

- Voxel-based vs. cell-based traversal
- Tri-linear (interpolation within a cell)
 vs. bi-linear (interpolation within a cell face)
- Tri-linear:
 - first 4* in z-direction (interpolated square),
 - then 2* in y-direction (interpolated line),
 - then 1* in x-direction (interpolated value)
- Unit sampling vs. variable sample distances compositing different!!

Compositing: F2B vs. B2F

- Back-to-Front (B2F):
 - Out_i = In_{i} · $(1-\alpha_{i})$ + C_{i} · α_{i} , In_{i+1} = Out_i ...
 - Depending on local transparency $(1-\alpha_i) \Rightarrow$ convex combination of old In_i & new C_i
 - Example:
 - Voxel i: C_i = red, α_i =30%; so far: In_i = white
 - Result of compositing: 70% white + 30% red
- Front-to-Back (F2B):
 - Col = Col + $(1-\alpha_{akk})$ · C_i · α_l ... accumulated color
 - $\alpha_{akk} = \alpha_{akk} + (1 \alpha_{akk}) \alpha_i$... accumulated opacity

Front-to-Back Compositing

Interpolation Kernels

volumetric compositing

4

Ray Casting – Examples

CT scan of human hand (244x124x257, 16 bit)

Ray Casting – Examples

Ray Casting – Further Examples

Tornado Visualization:

Ray Casting – Further Examples

Molecular data:

Acceleration - Progressive Refinement

■ First render every 2ⁿ×2ⁿ-th pixel, then render the 2ⁿ⁻¹×2ⁿ⁻¹-th pixel inbetween, aso. (until interruption or completion)

Literature

- Paper (more details):
 - Marc Levoy: "Display of Surfaces from Volume Data" in IEEE Computer Graphics & Applications, Vol. 8, No. 3, June 1988

Acknowledgement

- For material for this lecture unit:
 - Nelson Max (LLNL), Marc Levoy (Stanford)
 - Hans-Georg Pagendarm (DLR, Göttingen)
 - Lloyd Treinish (IBM)
 - Roberto Scopigno,
 Claudio Montani (CNR, Pisa)
 - Roger Crawfis (Ohio State Univ.)
 - Michael Meißner (GRIS, Tübingen)
 - Torsten Möller
 - etc.

