Volume Visualization

Part 1 (out of 3)

Overview: Volume Visualization

- Introduction to volume visualization
 - On volume data
 - Surface vs. volume rendering
 - Overview: Techniques
- Simple methods
 - Slicing, cuberille
- Direct volume visualization
 - Introduction, types of combinations
 - Transfer functions

Volume Data

- Where do the data come from?
 - Medical Application
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MR)
 - Materials testing
 - Industrial-CT
 - Simulation
 - Finite element methods (FEM)
 - Computational fluid dynamics (CFD)
 - etc.

3D Data Space

- How are volume data organized?
 - Cartesian resp. regular grid:
 - CT/MR: often \(dx=dy<dz \), e.g. 135 slices (z) \(\cong 512^2 \) values (as x & y pixels in a slice)
 - Data enhancement: iso-stack-calculation
 - Interpolation of additional slices, so that \(dx=dy=dz \Rightarrow 512^3 \) Voxel
 - Data: Cells (cuboid), Corner: Voxel
 - Curvi-linear grid resp. unstructured:
 - Data organized as tetrahedra or hexahedra
 - Often: conversion to tetrahedra

Volume Visualization

- Introduction:
 - VolVis = visualization of volume data
 - Mapping 3D \(\rightarrow \) 2D
 - Projection (e.g., MIP), slicing, vol. rendering, …
 - Volume data =
 - 3D \(\times \) 1D data
 - Scalar data, 3D data space, space filling
 - User goals:
 - Gain insight in 3D data
 - Structures of special interest + context

VolVis – Challenges

- Rendering projection, so much information and so few pixels!
- Large data sizes, e.g. \(512 \times 512 \times 1024 \) voxel \(\cong 16 \) bit = 512 Mbytes
- Speed,
 - Interaction is very important, >10 fps!
Voxels vs. Cells

- Two ways to interpret the data:
 - Data: set of voxel
 - voxel = abbreviation for volume element (cf. pixel = "picture elem.")
 - voxel = point sample in 3D
 - Not necessarily interpolated
 - Data: set of cells
 - cell = cube primitive (3D)
 - Corners: 8 voxel (see above)
 - Values in cell: interpolation used

Gradients as Normal Vector Replacement

- Gradient \(\nabla f = (\partial f/\partial x, \partial f/\partial y, \partial f/\partial z) \)
- \(\nabla f(x_0) \) normal vector to iso-surface \(f(x_0)=f_0 \)
- Central difference in \(x-, y- \& z \)-direction (in voxel):
 \[
 \nabla f(x,y,z) = \frac{1}{2} \left(\frac{f(y+1)-f(y-1)}{2} \right) \left(\frac{f(z+1)-f(z-1)}{2} \right)
 \]
- Then tri-linear interpolation within a cell

Interpolation

\[
\nabla f(x,y,z) = S(m(x), m(y), m(z))
\]

Nearest Neighbor

Trilinear

Concepts and Terms

- Sampled data (measurement)
- Analytical data (modelling)
- Voxel space (discrete)
- Geometric surfaces (analytic)
- Pixel space (discrete)
- Surface rendering

Example 1:
- CT measurement
- Iso-stack-conversion
- Iso-surface-calculation (marching cubes)
- Surface rendering (OpenGL)
Concepts and Terms

Example 2:
- **MR measurement**
- **Iso-stack-conversion**
- **MIP** (maximum intensity projection)
- **Image:** blood-vessels in hand

Example 3:
- **Potential function** \(\rho(x,y,z) \)
- **Iso-surface** \(\rho(x,y,z) = \rho_0 \)
- **Surface:** ray tracing

Surfaces vs. Volume Rendering

Surface rendering:
- **Indirect** volume visualization
- Intermediate representation: iso-surface, “3D”
- **Pros:** Shading→Shape!, HW-rendering

Volume rendering:
- **Direct** volume visualization
- Usage of transfer functions
- **Pros:** Illustrate the interior, semi-transparency

VolVis-Techniques – Overview

Simple methods:
- Slicing, MPR (multi-planar reconstruction)
- **Direct volume visualization:**
 - Ray casting
 - Shear-warp factorization
 - Splatting
 - 3D texture mapping
 - Fourier volume rendering
- **Surface-fitting methods:**
 - Marching cubes (marching tetrahedra)
Image-Order vs. Object-Order

- **Image-order:**
 - FOR every pixel DO: …
 - Cost, complexity \(\approx\) image size
 - Example: ray casting (tracing viewing rays)

- **Object-order:**
 - FOR every object (voxel) DO: …
 - Cost, complexity \(\approx\) object size (# of voxels)
 - Examples: splatting ("throwing snow balls")

Image-Order Approach

Image-Order Approach: Traverse the image pixel-by-pixel and sample the volume.

Ray Casting

Object-order approach

Object-Order Approach: Traverse the volume, and project to the image plane.

Splatting cell-by-cell

Texture Mapping plane-by-plane

Simple Methods

Slicing, etc.

Simple Methods

Slicing:
- Axes-parallel slices
- regular grids: simple
- without transfer function no color
- Windowing:
 - adjust contrast

Windowing:
- white
- black
- data values

Simple Methods

Slicing:
Slicing

- Not so simple:
 - Slicing through general grid
 - Interpolation necessary
- Slicing:
 - well combinable with 3D-visualization
- Multi-planar reformation (MPR):
 - arbitrary axes, 3D

Direct Volume Visualization

- Overview:
 - No intermediate representation
 - "real 3D"
 - Integration of so much information difficult
 - Object-order vs. image-order rendering
 - Various techniques (ray casting, splatting, shear-warp, texture mapping, Fourier volume rendering, etc.)
 - Various types of combinations (compositing, MIP, first-hit, average, etc.)

Types of Combinations

- Overview:
 - MIP
 - Compositing
 - X-Ray
 - First hit

First Hit: Iso-Surface Extraction

- First: Extracts iso-surfaces (again!), done by Tuy&Tuy '84
Average: as X-Ray Images

- Average: Produces basically an X-ray picture

Types of Combination

- Possibilities:
 - \(\alpha \)-compositing
 - Shaded surface display
 - Maximum-intensity projection
 - X-ray simulation
 - Contour rendering

MIP: Maximum-Intensity Projection

- Max: Maximum Intensity Projection used for Magnetic Resonance Angiograms, for example

Classification

- Assignment data \(\Rightarrow \) semantics:
 - Assignment to objects, e.g., bone, skin, muscle, etc.
 - Usage of data values, gradient, curvature
 - Goal: segmentation
 - Often: semi-automatic resp. manual
 - Automatic approximation: transfer functions (TF)

Compositing: Semi-Transparency

- Accumulate: Make transparent layers visible!
 - Levoy '88

Transfer Functions (TF)

- Mapping data \(\rightarrow \) "renderable quantities":
 1.) data \(\rightarrow \) color
 2.) data \(\rightarrow \) opacity (non-transparency)
Different Transfer Functions

- Image results:
 - Strong dependence on transfer functions
 - Non-trivial specification
 - Limited segmentation possibilities

Gradient-Based Transfer Functions

- 2D-Transfer function:
 - Levoy ‘88
 - Specific opacity at certain threshold
 - but: close-by variation according gradient magnitude
 - highlights transitions (large gradients)
 - dampens homogeneous areas

Lobster – Different Transfer Functions

- Three objects: media, shell, flesh

Inclusion of the Gradient

- Emphasis of changes:
 - Special interest often in transitional areas
 - Gradients: measure degree of change (like surface normal)
 - Larger gradient magnitude ⇒ larger opacity

Multi-Dimensional Transfer Functions (1)

- \(f, f', f'' \) histograms to depict material boundaries

Multi-Dimensional Transfer Functions (2)

- Direct manipulation widgets [Kniss et al. 2002]
Acknowledgments

- For material for this lecture unit
- Roberto Scopigno, Claudio Montani (CNR, Pisa)
- Hans-Georg Pagendarm (DLR, Göttingen)
- Michael Meißner (GRIS, Tübingen)
- Torsten Möller
- Gordon Kindlmann
- Joe Kniss
- etc.