Flow Visualization

Part 2 (of 3)

Retrospect: Flow Visualization, Part 1
- introduction, overview
 - simulation vs. measurement vs. modelling
 - 2D vs. surfaces vs. 3D
 - steady vs time-dependent
 - direct vs. indirect FlowVis
- experimental FlowVis
 - general possibilities
 - PIV + example
- visualization of models
- flow visualization with arrows

Overview: Flow Visualization, Part 2
- numerical integration
 - Euler-integration
 - Runge-Kutta-integration
- streamlines
 - in 2D
 - particle paths
 - in 3D, sweeps
 - illuminated streamlines
- streamline placement
Integration of Streamlines

Numerical Integration

Streamlines – Theory

- Correlations:
 - flow data v: derivative information
 - $\frac{dx}{dt} = v(x)$: spatial points $x \in \mathbb{R}^n$, time $t \in \mathbb{R}$, flow vectors $v \in \mathbb{R}^n$
 - streamline s: integration over time, also called trajectory, solution, curve
 - $s(t) = s_0 + \int_{0}^{t} v(s(u)) \, du$; seed point s_0, integration variable u
 - difficulty: result s also in the integral \Rightarrow analytical solution usually impossible!

Streamlines – Practice

- Basic approach:
 - theory: $s(t) = s_0 + \int_{0}^{t} v(s(u)) \, du$
 - practice: numerical integration
 - idea: (very) locally, the solution is (approx.) linear
 - Euler integration:
 - follow the current flow vector $v(s)$ from the current streamline point s, for a very small time (dt) and therefore distance
 - Euler integration: $s_{i+1} = s_i + dt \cdot v(s_i)$, integration of small steps (dt very small)
Euler Integration – Example

2D model data:

\[v_x = \frac{dx}{dt} = -y \]
\[v_y = \frac{dy}{dt} = \frac{x}{2} \]

Sample arrows:

True solution: ellipses!

Euler Integration – Example

Seed point \(s_0 = (0\cdot-1) \); current flow vector \(v(s_0) = (1\cdot0) \); \(\Delta t = 1/2 \)

Euler Integration – Example

New point \(s_1 = s_0 + v(s_0) \cdot \Delta t = (1/2\cdot1) \); current flow vector \(v(s_1) = (1\cdot1/4) \);
Euler Integration – Example

- New point \(s_2 = s_1 + v(s_1) \cdot dt = (1|-7/8)^T \);
 current flow vector \(v(s_2) = (7/8|1/2)^T \);

Euler Integration – Example

- \(s_3 = (23/16|-5/8)^T \approx (1.44|-0.63)^T \);
 \(v(s_3) = (5/8|23/32)^T \approx (0.63|0.72)^T \);

Euler Integration – Example

- \(s_4 = (7/4|-17/64)^T \approx (1.75|-0.27)^T \);
 \(v(s_4) = (17/64|7/8)^T \approx (0.27|0.88)^T \);
Euler Integration – Example

\[s_9 \approx (0.20|1.69)^T; \]
\[v(s_9) \approx (-1.69|0.10)^T; \]

clearly: large integration error, \(dt \) too large!
19 steps
Euler Integration – Example

- dt smaller (1/4): more steps, more exact!
 \(s_{36} \approx (0.04|\ -1.74)^T; v(s_{36}) \approx (1.74|\ 0.02)^T; \)
- 36 steps

Comparison Euler, Step Sizes

Euler is getting better proportionally to \(dt \)

Euler Example – Error Table

<table>
<thead>
<tr>
<th>(dt)</th>
<th>#steps</th>
<th>error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>19</td>
<td>~200%</td>
</tr>
<tr>
<td>1/4</td>
<td>36</td>
<td>~75%</td>
</tr>
<tr>
<td>1/10</td>
<td>89</td>
<td>~25%</td>
</tr>
<tr>
<td>1/100</td>
<td>889</td>
<td>~2%</td>
</tr>
</tbody>
</table>
| 1/1000 | 8889 | ~0.2% | ✔️
Better than Euler Integr.: RK

Runge-Kutta Approach:
- theory: \(s(t) = s_0 + \int_{0}^{t} v(s(u)) \, du \)
- Euler: \(s_i = s_0 + \sum_{0}^{i} v(s_u) \cdot \Delta t \)
- Runge-Kutta integration:
 - idea: cut short the curve arc
- RK-2 (second order RK):
 1: do half a Euler step
 2: evaluate flow vector there
 3: use it in the origin
- RK-2 (two evaluations of \(v \) per step):
 \(s_{i+1} = s_i + v(s_i) d\tau / 2 \cdot d\tau \)

RK-2 Integration – One Step

Seed point \(s_0 = (0| -2) \ T; \)
current flow vector \(v(s_0) = (2|0) \ T; \)
preview vector \(v(s_0 + v(s_0) d\tau / 2) = (2|0.5) \ T; \)
\(d\tau = 1 \)

RK-2 – One more step

Seed point \(s_1 = (2| -1.5) \ T; \)
current flow vector \(v(s_1) = (1.5|1) \ T; \)
preview vector \(v(s_1 + v(s_1) d\tau / 2) = (1|1.4) \ T; \)
\(d\tau = 1 \)
RK-2 – A Quick Round

- RK-2: even with $dt=1$ (9 steps) better than Euler with $dt=1/8$ (72 steps)

Euler vs. Runge-Kutta

- RK-4: pays off only with complex flows
- Here approx. like RK-2

RK-4 vs. Euler, RK-2

- Even better: fourth order RK:
 - four vectors a, b, c, d
 - one step is a convex combination:
 $$ s_{i+1} = s_i + \frac{(a + 2 \cdot b + 2 \cdot c + d)}{6} $$
 - vectors:
 - $a = dt \cdot v(s_i)$... original vector
 - $b = dt \cdot v(s_i + a/2)$... RK-2 vector
 - $c = dt \cdot v(s_i + b/2)$... use RK-2 ...
 - $d = dt \cdot v(s_i + c)$... and again!

Helwig Hauser 22

Helwig Hauser 23

Helwig Hauser 24
Integration, Conclusions

Summary:
- analytic determination of streamlines usually not possible
- hence: numerical integration
- several methods available (Euler, Runge-Kutta, etc.)
- Euler: simple, imprecise, esp. with small dt
- RK: more accurate in higher orders
- furthermore: adaptive methods, implicit methods, etc.

Flow Visualization with Streamlines

Streamlines, Particle Paths, etc.

Streamlines in 2D

Adequate for overview
Visualization with Particles

- Particle paths = streamlines (steady flows)
- Variants (time-dependent data):
 - streak lines: steadily new particles
 - path lines: long-term path of one particle

Streamlines in 3D

- Color coding: Speed
- Selective Placement

3D Streamlines with Sweeps

- Sweeps: better spatial 3D perception
Streamline Placement

in 2D

Problem: Choice of Seed Points

- Streamline placement:
 - If regular grid used: very irregular result
Overview of Algorithm
- Idea: streamlines should not get too near to each other
- Approach:
 - choose a seed point with distance \(d_{\text{sep}} \) from an already existing streamline
 - forward- and backward-integration until distance \(d_{\text{test}} \) is reached (or ...).
 - two parameters:
 - \(d_{\text{sep}} \) ... start distance
 - \(d_{\text{test}} \) ... minimum distance

Algorithm – Pseudocode
- Compute initial streamline, put it into a queue
- Initial streamline becomes current streamline
- WHILE not finished DO:
 - TRY: get new seed point which is \(d_{\text{sep}} \) away from current streamline
 - IF successful THEN compute new streamline and put to queue
 - ELSE IF no more streamline in queue THEN exit loop
 - ELSE next streamline in queue becomes current streamline

Streamline Termination
- When to stop streamline integration:
 - when dist. to neighboring streamline \(\leq d_{\text{test}} \)
 - when streamline leaves flow domain
 - when streamline runs into fixed point (v=0)
 - when streamline gets too near to itself
 - after a certain amount of maximal steps
New Streamlines

Different Streamline Densities

- Variations of d_{sep} in rel. to image width:
 - 6%
 - 3%
 - 1.5%

d_{sep} vs. d_{test}

- $d_{\text{test}} = 0.9 \cdot d_{\text{sep}}$
- $d_{\text{test}} = 0.5 \cdot d_{\text{sep}}$
Tapering and Glyphs

- Thickness in rel. to dist.

\[
\frac{d - d_{sep}}{d_{sep}}: \forall d \geq d_{sep}\]
\[
\frac{d_{sep} - d_{sep}}{d_{sep}}: \forall d < d_{sep}
\]

- Directional glyphs:

Literature

- Paper (more details):

Acknowledgements

- For material used in this lecture:
 - Bruno Jobard
 - Malte Zöckler
 - Georg Fischel
 - Frits Post
 - Roger Crawfis
 - myself... ;-) (i.e., Helwig Hauser)
 - etc.