Flow Visualization Part 1 (out of 3) Overview: Flow Visualization, Part 1 TU Introduction, overview Flow data Simulation vs. measurement vs. modelling • 2D vs. surfaces vs. 3D Steady vs time-dependent flow Direct vs. indirect flow visualization Experimental flow visualization Basic possibilities PIV + Example Eduard Gröller, Helwig Hauser **Flow Visualization** Introduction, Overview

Flow Visualization Introduction: FlowVis = visualization of flows Visualization of change information Typically: more than 3 data dimensions General overview: even more difficult Flow data: nD×nD data, 1D²/2D²/nD² (models), 2D²/3D² (simulations, measurements) Vector data (nD) in nD data space User goals: Overview vs. details (with context)

Flow Data Where do the data come from: Flow simulation: Airplane- / ship- / car-design Weather simulation (air-, sea-flows) Medicine (blood flows, etc.) Flow measurements: Wind tunnel, fluid tunnel Schlieren-, shadow-technique Flow models: Differential equation systems (ODE) (dynamical systems)

Flow Data Specification Simulation: Flow: set of samples (n dimensions of data), e.g. given on curvilinear grid Most important primitive: tetrahedron (cell) Measurement: Flow-vectors: reconstruction out of correlations, often calculated on regular grids Modelling: Flow: analytic formula, can be evaluated "everywhere"

Simulation vs. Measurement vs. Modelling Simulation: Flow space modelled with grid FEM (finite elements method), CfD (computational fluid dynamics) Measurements: Optical methods + pattern recognition, e.g.: PIV (particle image velocimetry) Models: Differential equation systems dx/dt

Eduard Gröller, Helwig Hauser

2D vs. Surfaces vs. 3D 2D-Flow visualization 2D×2D-Flows Models, slice flows (2D out of 3D) Visualization of surface flows 3D-flows around "obstacles" Boundary flows on surfaces (2D) 3D-Flow visualization 3D×3D-flows Simulations, 3D-models

Steady vs. Time-Dependent Flows

TU

- Steady (time-independent) flows:
 - Flow static over time
 - v(x): Rⁿ→Rⁿ, e.g., laminar flows
 - Simpler interrelationship
- Time-dependent (unsteady) flows:
 - Flow itself changes over time
 - $\mathbf{v}(\mathbf{x},t)$: $R^n \times R^1 \rightarrow R^n$, e.g., turbulent flows
 - More complex interrelationship

Eduard Gröller, Helwig Hause

- 1

Time-Independent (Steady) Flow Data

TU

Data size in the course of time:

Data set name and year	Number of vertices	Size (MB)
McDonnell Douglas MD-80 '89	230,000	13
McDonnell Douglas F/A-18 '91	900,000	32
Space shuttle launch vehicle '90	1,000,000	34
Space shuttle launch vehicle '93	6,000,000	216
Space shuttle launch vehicle '96	30,000,000	1,080
Advanced subsonic transport '98	60,000,000	2,160
Army UH-60 Blackhawk '99	100,000,000	~4,000

Eduard Gröller, Helwig Hauser

-

Time-Dependent (U	nsteady)	Data	TU
Historical developme	ent:		
Data set name and year	# vertices	# time steps	size (MB)
Tapered Cylinder '90 McDonnell Douglas F/A-18 '92 Descending Delta Wing '93 Bell-Boeing V-22 tiltrotor '93 Bell-Boeing V-22 tiltrotor '98	131,000 1,200,000 900,000 1,300,000 10,000,000	400 400 1,800 1,450 1,450	1,050 12,800 64,800 140,000 600,000
Eduard Gröller, Helwig Hauser	17		*

Direct vs. Indirect Flow Visualization

F

- Direct flow visualization:
 - Overview on current flow state
 - Visualization of vectors
 - Arrow plots, smearing techniques
- Indirect flow visualization:
 - Usage of intermediate representation: vector-field integration over time
 - Visualization of temporal evolution
 - Streamlines, streamsurfaces

Eduard Gröller Helwig Hause

.

Experimental Flow Visualization

Optical Methods, etc.

PIV: Particle Image Velocimetry Laser + correlation analysis: Real flow, e.g., in wind tunnel Injection of particles (as uniform as possible) At interesting locations: 2-times fast illumination with laser-slice Image capture (high-speed camera), then correlation analysis of particles Vector calculation / reconstruction, typically only 2D-vectors

Visualization of Models Dynamical Systems

Flow Visualization with Arrows

Hedgehog plots, etc.

Flow Visualization with Arrows Aspects: Direct Flow Visualization Normalized arrows vs. scaling with velocity 2D: quite usable, 3D: often problematic Sometimes limited expressivity (temporal component missing) Often used!

Acknowledgments	TU
For material for this lecture unit	
Hans-Georg PagendarmRoger Crawfis	
Lloyd Treinish	
David Kenwright	
Terry Hewitt	
• etc.	
Eduard Gröller, Helwig Hauser 43	*