Visualisierung – Aktuelle Themen und Trends

Eduard Gröller

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Outline

- Vis-group at Vienna University of Technology
- Brief Comments on Visualization
- Challenges in Visualization

The vis-group
Outline

- Vis-group at Vienna University of Technology
- Brief comments on Visualization
- Challenges in Visualization

Scientific Visualization - Information Visualization

“The use of computer-supported, interactive, visual representations of (abstract) data to amplify cognition”

- computer-based - new medium
- interactive - direct manipulation & animation
- visual representations - use human perception
- data - task specific
- amplify cognition - helping people to think

Visualization – Three Major Areas

- Three major areas
 - Volume Visualization
 - Flow Visualization
 - Information Visualization

Scientific Visualization

Inherent spatial reference

3D

nD

Usually no spatial reference
Visualization Examples

VolVis

FlowVis

InfoVis

InfoViz vs. SciViz

- Abstract data
- n-dimensional

- Very important:
 - Visual metaphor
 - User interaction
 - Exploration, Analysis, Presentation

- Concrete Data
- 2- oder 3-dimensional, time related?

- Very important:
 - 3D-rendering
 - Fast rendering
 - Analysis, Exploration, Presentation

Outline

- Vis-group at Vienna University of Technology
- Brief comments on Visualization
- Challenges in Visualization
Challenges in Visualization

Scientific Visualization ↔ Information Visualization

New Data Sources - Novel Imaging Modalities

Visual Analytics - Visual Computing –

Knowledge Assisted Visualization

Scalability

Visualization Yes ! – Interaction No ?

Interaction Yes ! – BUT User centric !

Eduard Gröller

SimVis: Interactive Visual Analysis of Large & Complex Simulation Data

Dr. Helmut Doleisch
VRVis Research Center

http://www.VRVis.at/

The Beginning: CFD Data

computational fluid dynamics simulation
data resulting from CFD:
 * grid-based geometry
 * scalar and vector data per grid element (cell or vertex)
 * time-dependent results
 * time-varying grid geometries
data characteristics:
 * multi-dimensional data
 * large data sets (#cells * #timesteps * #dim.)
 * data ranges differ by many magnitudes

SimVis: Interactive Visual Analysis of Large & Complex Simulation Data
Motivation

- large data sets from simulation
- **goal**: support **exploration** and **analysis** of results
 - analyze n-dim. data interactively
 - use 3D visualization
 - overview, zoom and filter, detail on demand (Shneiderman's information seeking mantra)
- challenge:
 - occlusion
 - interactive data handling

SimVis: Interactive Visual Analysis of Large & Complex Simulation Data

Interactive Data Handling

- sample data set size:
 - 540 million data items
 - currently working to expand to billions

```
<table>
<thead>
<tr>
<th>cells</th>
<th>timesteps</th>
<th>attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>704,900</td>
<td>20</td>
<td>16</td>
</tr>
<tr>
<td>150,124</td>
<td>600</td>
<td>6</td>
</tr>
<tr>
<td>7,680,000</td>
<td>288</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

SimVis

- VRVis' solution for these challenges
- Feature-based visualization framework

SimVis key features:
- Multiple, linked views
- Interactive feature specification
- Focus+Context visualization
- Smooth feature boundaries
- Explicit feature representation
- On-the-fly attribute derivation
SimVis: Multiple Views

- Scatterplots, histogram, 3D(4D) view, etc.

Brushing

- Move/alter/extend brush interactively
- Update linked F+C views in real-time

Brushing extensions: smooth brushing

- Simulation data is often rather smoothly distributed
- We use smooth brushing, resulting in continuous mapping to the [0,1] range
Brushing extensions: smooth brushing

Challenges in Visualization

- Scientific Visualization ↔ Information Visualization
- New Data Sources - Novel Imaging Modalities
 - Very large (abstract) data sets
 - High-dimensional, multi-valued, multi-modal, heterogeneous
 - Time varying
 - Spatially sparse/dense, temporally sparse/dense
 - Need for registration
 - Need for feature extraction
- Examples
 - Web 2.0
 - Dual energy CT

New Data Sources - Novel Imaging Modalities

Visualization Technique
New Data Sources – Web 2.0

- Social networks, wikis, blogs, data warehouses

Examples
- MySpace
- LinkedIn
- Flickr
- YouTube

Novel Imaging Modalities – Dual Energy CT

- Micro CT – Industrial CT
- Two X-ray sources
- Metrology and dimensional measurement
- Multi-materials
- Res: 508x523x61
- Voxel size (μm) 200
- Data have complimentary strengths and weaknesses

Challenges in Visualization

- Scientific Visualization ↔ Information Visualization
- New Data Sources - Novel Imaging Modalities
- Visual Analytics - Visual Computing – Knowledge Assisted Visualization
"Visual Analytics is the science of analytical reasoning facilitated by interactive visual interfaces."

What do we have?
- Automatic Knowledge Discovery & Information Mining
- Interactive Visual Data-Exploration

What do we need?
Tight Integration of Visual and Automatic Data Analysis Methods with Database Technology for a Scalable Interactive Decision Support

Visual Analytics – The Event Tunnel (1)
Interactive Visualization of Complex Event Streams for Business Process Pattern Analysis

Stair pattern
Process with several idle times

Non-interfering chain
Process with regular steps

Parallel chain
Fast process without idle times

Acceleration worm
Process execution accelerated continuously

Deceleration worm
Process execution decelerated continuously

Rattlesnake
Process with one extreme idle time
Challenges in Visualization

- Scientific Visualization ↔ Information Visualization
- New Data Sources - Novel Imaging Modalities
- Visual Analytics - Visual Computing – Knowledge Assisted Visualization

Visual Computing - Computational Sciences

- Data Acquisition
 - Scientific visualization
 - Computer vision
 - Human computer interaction
4D sonar data
- Cones with res: 25x20x1319
- Ping rate 1 Hz
- 2 GB/ping
- Time steps overlapping
- Highly anisotropic
- Noisy
- Signal strength reduced with spreading and absorption

Fish school monitoring
- Size of school
- Center of gravity
- Shape parameters
- Motion characteristics

Challenges in Visualization
- Scientific Visualization ↔ Information Visualization
- New Data Sources - Novel Imaging Modalities
- Visual Analytics - Visual Computing – Knowledge Assisted Visualization

[Balabanian et al. 2007]
Knowledge Assisted Visualization (KAV)

"Utilize knowledge and information derived from the process of scientific visualization or from abstract data analysis"

Challenges
- Metadata visualization
- Visualization enabled by
 - topological information of the data
 - statistical information of the data
 - semantic information of the data
- Visualization via learning
- Visualization via shared knowledge in a collaborative setting
- Knowledge representation for visualization

Example
- Automatic viewpoint selection
- Automatic reporting

KAV - Importance-Driven Focus of Attention (1)

Guided navigation between characteristic views

[Viola et al. 2006]

KAV - Importance-Driven Focus of Attention (2)
Challenges in Visualization

- Scientific Visualization ↔ Information Visualization
- New Data Sources - Novel Imaging Modalities
- Visual Analytics - Visual Computing – Knowledge Assisted Visualization
- Scalability

Scalability

- Challenges [Keim, Thomas 2007]
 - amount of data and dimensionality
 - numbers of data sources and heterogeneity
 - data quality and data resolution
 - dynamicity and novelty
 - data representation and visual resolution

- Examples
 - Focus+Context
 - Aggregation
 - Abstraction and Illustration

Scalability - Focus+Context Principle

Basic idea of Focus+Context Visualization:
- Important regions in great detail (focus)
- Global view with reduced detail (context)
- Dynamic integration

Rationale
- Zooming hides the context
- Two separate displays split attention
- Human vision has both fovea and retina
Scalability - Process Visualization (1)

- Improving singular instruments
 - History encoding
 - Multi-instruments
 - Levels of detail (LOD)
- Improving the monitoring system
 - Focus+Context (F+C) rendering
 - Collision avoidance

[Marković et al. 2002]

Scalability - Process Visualization (2)

- Various instruments can be used to construct Levels of Detail (LODs)

Scalability - Illustration

- An illustration is a picture with a communicative intent
- Conveys complex structures or procedures in an easily understandable way
- Uses abstraction to prevent visual overload – allows to focus on the essential parts
- Abstraction is visualized through distinct stylistic choices

[Bruckner et al. 2004]
Scalability - Abstraction

- Fundamental for creating an expressive illustration
- Introduces a distortion between visualization and underlying model
- Different degrees of abstraction introduced at different levels
- Task of an illustrator: find the necessary abstraction for the intent of the illustration

“As detailed as necessary - as simple as possible”

Scalability – Illustration Examples

- Hierarchical Edge Bundles [Holten 2006]
- Illustrative Parallel Coordinates [McDonnell, Mueller 2008]

Scalability – Smart Visibility (1)

- Importance-driven feature enhancement [Viola et al. 2004, 2005]
Scalability – Smart Visibility (2)

[Viola et al. ’04 ’05]

Importance specification → Importance compositing → Levels of sparseness

Importance-driven feature enhancement

Scalability – Smart Visibility (3)

Challenges [Keim Thomas 2007]
- Amount of data and dimensionality
- Numbers of data sources and heterogeneity
- Data quality and data resolution
- Dynamicity and novelty

Examples
- Focus+Context
- Aggregation
- Abstraction and Illustration

Do not fight complexity with complexity
Challenges in Visualization
- Scientific Visualization ↔ Information Visualization
- New Data Sources - Novel Imaging Modalities
- Visual Analytics - Visual Computing – Knowledge Assisted Visualization
- Scalability
- Visualization Yes ! – Interaction No ?

Visualization Yes ! – Interaction No ?
- Problems
 - Interaction is very time-consuming
 - Interaction prevents comparisons
 - Interaction hampers reporting
- Challenges
 - Provide standardized views
 - Algorithms highly parameterized – provide sensible default settings
 - Support automatic parameter tuning
 - Provide navigational aids
- Examples
 - Automatic view point selection
 - Focus of attention
 - Automatic light placement (inconsistent lighting)
 - Automatic reporting
 - Dynamic poster - automatic storytelling

Context-Preserving Rendering (1)
- Integrate various focus+context approaches with only few parameters
Context-Preserving Rendering (2)

Eduard Gröller

S. Bruckner and E. Gröller

Visualization Yes! – Interaction No?

Interaction is very time-consuming
Interaction prevents comparisons
Interaction hampers reporting

Challenges
Provide standardized views
Algorithms highly parameterized – provide sensible default settings
Support automatic parameter tuning
Provide navigational aids

Examples
Automatic view point selection
Focus of attention
Automatic light placement (inconsistent lighting)
Automatic reporting
Dynamic poster – automatic storytelling

Challenges in Visualization
Scientific Visualization ↔ Information Visualization
New Data Sources - Novel Imaging Modalities
Visual Analytics - Visual Computing – Knowledge Assisted Visualization
Scalability
Visualization Yes! – Interaction No?
Interaction Yes! – BUT User centric!
Interaction Yes! – BUT User Centric!

Problems
- Medical doctors do not (want to) know transfer functions
- Complex 3D interaction is complex

Challenges
- Include user model (novice, experienced, expert)
- Include motifs
- Include user preferences
- 2D+ navigation (instead of 3D navigation)

Examples
- Semantic layers for illustrative volume rendering
- Knowledge-based navigation

Semantic Layers for Illustrative Volume Rendering (1)

- Mapping volumetric attributes to visual styles
- Use natural language of domain expert (rules)
- Rules evaluated with fuzzy logic arithmetics

Semantic Layers for Illustrative Volume Rendering (2)

Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt

[Ludwig Wittgenstein]
Knowledge-Based Navigation

- Interaction with 2D slices
- Automatic generation of expressive 3D views

[Image: Kohlmann et al. 2007]

Challenges in Visualization

- Scientific Visualization ↔ Information Visualization
- New Data Sources - Novel Imaging Modalities
- Visual Analytics - Visual Computing – Knowledge Assisted Visualization
- Scalability
- Visualization Yes ! – Interaction No ?
- Interaction Yes ! – BUT User centric !

Bring visualization into the workflow of users!!

Thank You for Your Attention

Questions ?
Comments?

Acknowledgments
Jean-Paul Balabanian
Stefan Bruckner
Helmut Doleisch
Helwig Hauser
Christoph Heinzl
Krešimir Matković
Hannes Obweger
Peter Rautek
Martin Suntinger,
Ivan Viola

[Image: Eduard Gröller 58]