Critical Points and Visualization

- **Topological analysis** of vector fields
 - searching critical points x^* (1a.): $\mathbf{v}(x^*)=0$
 - analyzing flow behavior near x^* (1b.)

Bsp.:

$$x_1^* = A \quad x_2^* = B \quad x_3^* = C$$

- Linearization around x^*:
 $$\mathbf{v}(x^* + \Delta x) = \sum_{i=0}^{\infty} (\Delta x \cdot \nabla) v \bigg|_{x^*} \cdot \Delta x + \Delta x \cdot \nabla \mathbf{v} \bigg|_{x^*}$$
 (Taylor series of \mathbf{v} near x^*, Δx small, $\mathbf{v}(x^*)=0$)

- Jacobi matrix $\nabla \mathbf{v} \bigg|_{x^*}$ governs the behavior near x^*
- Eigenvalue analysis yields classification
- negative λ \Rightarrow local attraction
- positive λ \Rightarrow local repulsion
- complex λ \Rightarrow rotation around x^*

Critical Points and Visualization

- **Topological analysis** of vector fields
 - searching critical points x^* (1a.): $\mathbf{v}(x^*)=0$
 - analyzing flow behavior near x^* (1b.)

Bsp.:

- A: saddle
- B: repellor
- C: saddle

Critical Points and Visualization

- **Topological analysis** of vector fields
 - treating critical points x^* (3)...
 - searching higher order critical structures (2a.)
 - cycles c^* through x^{**}: $s^{**}(x^{**}, T) = x^{**}$ (period $T>0$)
 - invariant tori t^* (nD with $n\geq 3$ only)
 - etc.
Critical Points and Visualization

- **Topological analysis** of vector fields
 - treating critical points x^* (1.)...
 - searching higher order critical structures (2a.)
 - characterizing higher order crit. structs. (2b.)
 - 2D:
 - attracting or repelling cycles (1D)
 - 3D:
 - attracting, repelling, or saddle cycles (1D)
 - attracting or repelling tori (2D)
 - nD:
 - k-dim. critical structures with $k \leq n-2$: attr., rep., saddle
 - $(n-1)$-dim. critical structures: attr., rep. only
 - etc. (more research needed)

- **Bsp.**:
 - attracting cycle D

- **Topological analysis** of vector fields
 - treating critical points x^* (1.)...
 - connecting crit. points x^*: separatrices Σ^* (3.)
 - following $(n-1)$-dim. eigen spaces $\{e_i,...\}$
 - yields (characteristic) stream lines in 2D
 - yields (characteristic) stream surfaces in 3D
 - etc.

- **Topological analysis** of vector fields
 - critical points x^* (1.)...
 - + higher order crit. structs. (2.)
 - + separatrices Σ^* (3.)

- **Topological skeleton** of vector field v
 - crit. pts. A, B, C + cycle D + separatrices

- **Selected direct visualization** (e.g., streamlets)
 - topology-based vis.