Critical Points and Visualization

- **Topological analysis** of vector fields
 - searching **critical points** x^* (1a.): $v(x^*) = 0$
 - analyzing **flow behavior** near x^* (1b.)
 - Linearization around x^*:
 $$ v(x^* + \Delta x) = \sum_{i=0}^{\infty} (\Delta x \cdot \nabla v) \bigg|_{x^*} \approx v(x^*) + \Delta x \cdot \nabla v \bigg|_{x^*} $$
 (Taylor series of v near $x^*, \Delta x$ small, $v(x^*) = 0$)
 - Jacobi matrix $\nabla v \bigg|_{x^*}$ governs the behavior near x^*
 - Eigenvalue analysis yields classification
 - negative $\lambda_i \Rightarrow$ local attraction
 - positive $\lambda_i \Rightarrow$ local repulsion
 - complex $\lambda_i \Rightarrow$ rotation around x^*
Critical Points and Visualization

- **Topological analysis** of vector fields
 - searching **critical points** x^* (1a): $v(x^*) = 0$
 - analyzing **flow behavior** near x^* (1b)

Bsp.:

- A: saddle
- B: repellor
- C: saddle

$\lambda_1, \lambda_2 > 0$

Helwig Hauser: Topology-based FlowVis

Critical Points and Visualization

- **Topological analysis** of vector fields
 - treating critical points x^* (1a)...
 - searching **higher order critical structures** (2a)
 - cycles s^* through x^*: $s^*(x^*, T) = x^*$ (period $T > 0$)
 - invariant tori t^* (nD with $n \geq 3$ only)
 - etc.

Helwig Hauser: Topology-based FlowVis

Critical Points and Visualization

- **Topological analysis** of vector fields
 - treating critical points x^* (1a)...
 - searching **higher order critical structures** (2a)

Bsp.:

D: cycle

Helwig Hauser: Topology-based FlowVis
Critical Points and Visualization

- **Topological analysis** of vector fields
 - treating critical points x^* (1)
 - searching higher order critical structures (2a)
 - characterizing higher order crit. structs. (2b)
 - 2D: attracting or repelling cycles (1D)
 - 3D: attracting, repelling, or saddle cycles (1D)
 - attracting or repelling tori (2D)
 - nD: k-dim. critical structures with $k \leq n-2$: attr., rep., saddle
 - $(n-1)$-dim. critical structures: attr., rep. only
 - etc. (more research needed)

Bsp.: D: attracting cycle

- connecting crit. points x^*: **separatrices** Σ^* (3)
 - following $(n-1)$-dim. eigen spaces $\{e_i,\ldots\}$ from x^* per integration
 - yields (characteristic) stream lines in 2D
 - yields (characteristic) stream surfaces in 3D
 - etc.
Critical Points and Visualization

- **Topological analysis** of vector fields
 - treating critical points x^* (1.)...
 - treating higher order crit. structs. (2.)
 - connecting crit. points x^*: separatrices Σ^* (3.)

- **topological skeleton** of vector field v
 - critical pts. A, B, C
 - + cycle D
 - + separatrices

- **selected direct visualization** (e.g., streamlets)

Critical Points and Visualization

- **Topological analysis** of vector fields
 - critical points x^* (1.)...
 - + higher order crit. structs. (2.)
 - + separatrices Σ^* (3.)

- **topology-based vis.**

Critical Points and Visualization

- **Topological analysis** of vector fields
 - critical points x^* (1.)...
 - + higher order crit. structs. (2.)
 - + separatrices Σ^* (3.)

- **selected direct visualization** (e.g., streamlets)

Critical Points and Visualization

- **Topological analysis** of vector fields
 - critical points x^* (1.)...
 - + higher order crit. structs. (2.)
 - + separatrices Σ^* (3.)

- **topology-based vis.**