Topological analysis of vector fields searching critical points x* (1a.): v(x*)=0 #### Topological analysis of vector fields - searching critical points x* (1a.): v(x*)=0 - analyzing flow behavior near x* (1b.) - Linearization around x*: =0 $$\mathbf{v}(\mathbf{x}^* + \Delta \mathbf{x}) = \sum_{i \geq 0} (\Delta \mathbf{x} \cdot \nabla)^i \mathbf{v} \Big|_{\mathbf{x}^*} \approx \mathbf{v}(\mathbf{x}^*) + \Delta \mathbf{x} \cdot \nabla \mathbf{v} \Big|_{\mathbf{x}^*}$$ (Taylor series of v near x^* , Δx small, $v(x^*)=0$) #### Topological analysis of vector fields - searching critical points x* (1a.): v(x*)=0 - analyzing flow behavior near x* (1b.) - Linearization around x*: $$\mathbf{v}(\mathbf{x}^* + \Delta \mathbf{x}) = \sum_{i \geq 0} (\Delta \mathbf{x} \cdot \nabla)^i \mathbf{v} \Big|_{\mathbf{x}^*} \approx \mathbf{v}(\mathbf{x}^*) + \Delta \mathbf{x} \cdot \nabla \mathbf{v} \Big|_{\mathbf{x}^*}$$ (Taylor series of v near x^* , Δx small, $v(x^*)=0$) - Jacobi matrix ∇v x* governs the behavior near x* - Eigenvalue analysis yields classification - negative $\lambda_i \Rightarrow$ local attraction - positive $\lambda_i \Rightarrow$ local repulsion - complex $\lambda_i \Rightarrow$ rotation around \mathbf{x}^* #### Topological analysis of vector fields - searching critical points x* (1a.): v(x*)=0 - analyzing flow behavior near x* (1b.) #### Bsp.: A: saddle B: repellor C: saddle #### Topological analysis of vector fields - treating critical points x* (1.)... - searching higher order critical structures (2a.) - cycles s^* through x^{**} : $s^*(x^{**}, T) = x^{**}$ (period T > 0) - invariant tori t* (nD with n≥3 only) - etc. #### Topological analysis of vector fields - treating critical points x* (1.)... - searching higher order critical structures (2a.) ### Topological analysis of vector fields - treating critical points x* (1.)... - searching higher order critical structures (2a.) - characterizing higher order crit. structs. (2b.) - **2**D: - attracting or repelling cycles (1D) - **3D**: - attracting, repelling, or saddle cycles (1D) - attracting or repelling tori (2D) - *n*D: - k-dim. critical structures with $k \le n$ –2: attr., rep., saddle - (n-1)-dim. critical structures: attr., rep. only - **etc.** (more research needed) - Topological analysis of vector fields - treating critical points x* (1.)... - searching higher order critical structures (2a.) - characterizing higher order crit. structs. (2b.) #### Bsp.: D: attracting cycle ### Topological analysis of vector fields - treating critical points x* (1.)... - treating higher order crit. structs. (2.) - connecting crit. points x*: separatrices Σ* (3.) - following (n-1)-dim. eigen spaces $\{e_i, ...\}$ from \mathbf{x}^* per integration - yields (characteristic) stream lines in 2D - yields (characteristic) stream surfaces in 3D - etc. - Topological analysis of vector fields - treating critical points x* (1.)... - treating higher order crit. structs. (2.) - connecting crit. points x*: separatrices Σ* (3.) - Topological analysis of vector fields - critical points x* (1.)... - + higher order crit. structs. (2.) - + separatrices Σ* (3.) - topological skeleton of vector field v - Topological analysis of vector fields - critical points x* (1.)... - + higher order crit. structs. (2.) - + separatrices Σ* (3.) - + selected direct visualization (e.g., streamlets) - topology-based vis.