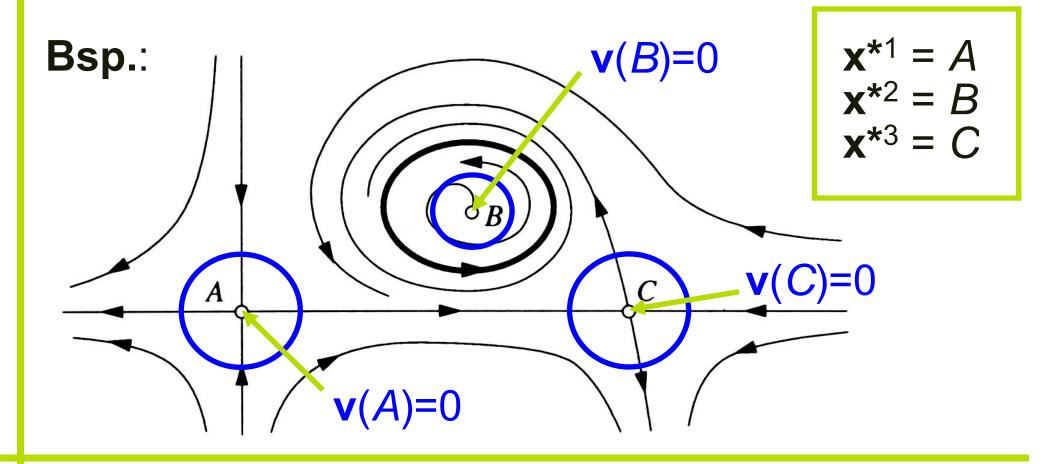
Topological analysis of vector fields

searching critical points x* (1a.): v(x*)=0



Topological analysis of vector fields

- searching critical points x* (1a.): v(x*)=0
- analyzing flow behavior near x* (1b.)
 - Linearization around x*:
 =0

$$\mathbf{v}(\mathbf{x}^* + \Delta \mathbf{x}) = \sum_{i \geq 0} (\Delta \mathbf{x} \cdot \nabla)^i \mathbf{v} \Big|_{\mathbf{x}^*} \approx \mathbf{v}(\mathbf{x}^*) + \Delta \mathbf{x} \cdot \nabla \mathbf{v} \Big|_{\mathbf{x}^*}$$

(Taylor series of v near x^* , Δx small, $v(x^*)=0$)

Topological analysis of vector fields

- searching critical points x* (1a.): v(x*)=0
- analyzing flow behavior near x* (1b.)
 - Linearization around x*:

$$\mathbf{v}(\mathbf{x}^* + \Delta \mathbf{x}) = \sum_{i \geq 0} (\Delta \mathbf{x} \cdot \nabla)^i \mathbf{v} \Big|_{\mathbf{x}^*} \approx \mathbf{v}(\mathbf{x}^*) + \Delta \mathbf{x} \cdot \nabla \mathbf{v} \Big|_{\mathbf{x}^*}$$

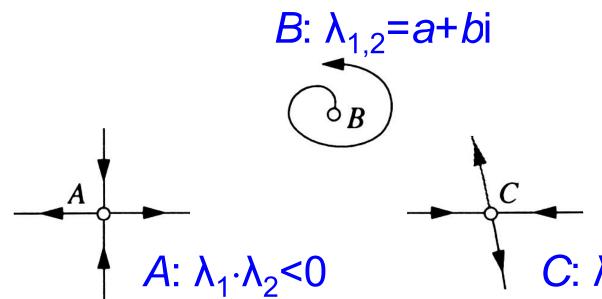
(Taylor series of v near x^* , Δx small, $v(x^*)=0$)

- Jacobi matrix ∇v x* governs the behavior near x*
- Eigenvalue analysis yields classification
 - negative $\lambda_i \Rightarrow$ local attraction
 - positive $\lambda_i \Rightarrow$ local repulsion
 - complex $\lambda_i \Rightarrow$ rotation around \mathbf{x}^*

Topological analysis of vector fields

- searching critical points x* (1a.): v(x*)=0
- analyzing flow behavior near x* (1b.)

Bsp.:



A: saddle

B: repellor

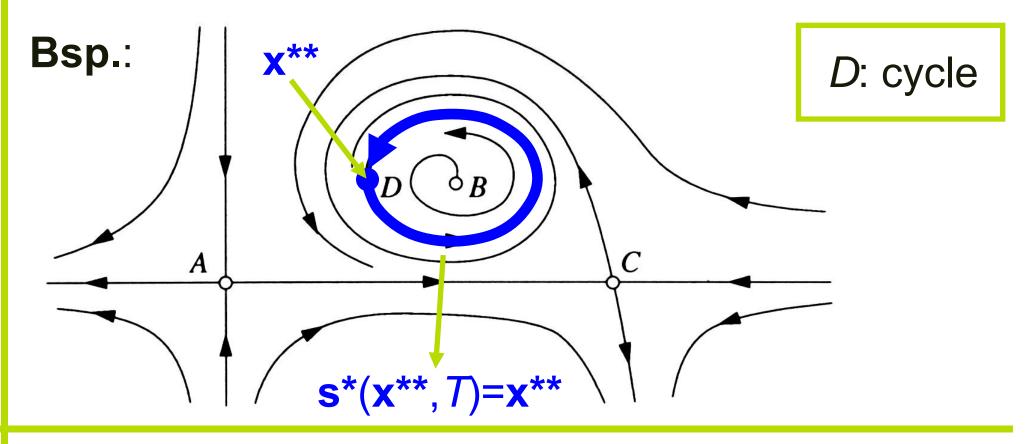
C: saddle

Topological analysis of vector fields

- treating critical points x* (1.)...
- searching higher order critical structures (2a.)
 - cycles s^* through x^{**} : $s^*(x^{**}, T) = x^{**}$ (period T > 0)
 - invariant tori t* (nD with n≥3 only)
 - etc.

Topological analysis of vector fields

- treating critical points x* (1.)...
- searching higher order critical structures (2a.)

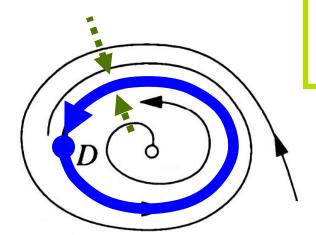


Topological analysis of vector fields

- treating critical points x* (1.)...
- searching higher order critical structures (2a.)
- characterizing higher order crit. structs. (2b.)
 - **2**D:
 - attracting or repelling cycles (1D)
 - **3D**:
 - attracting, repelling, or saddle cycles (1D)
 - attracting or repelling tori (2D)
 - *n*D:
 - k-dim. critical structures with $k \le n$ –2: attr., rep., saddle
 - (n-1)-dim. critical structures: attr., rep. only
 - **etc.** (more research needed)

- Topological analysis of vector fields
 - treating critical points x* (1.)...
 - searching higher order critical structures (2a.)
 - characterizing higher order crit. structs. (2b.)

Bsp.:

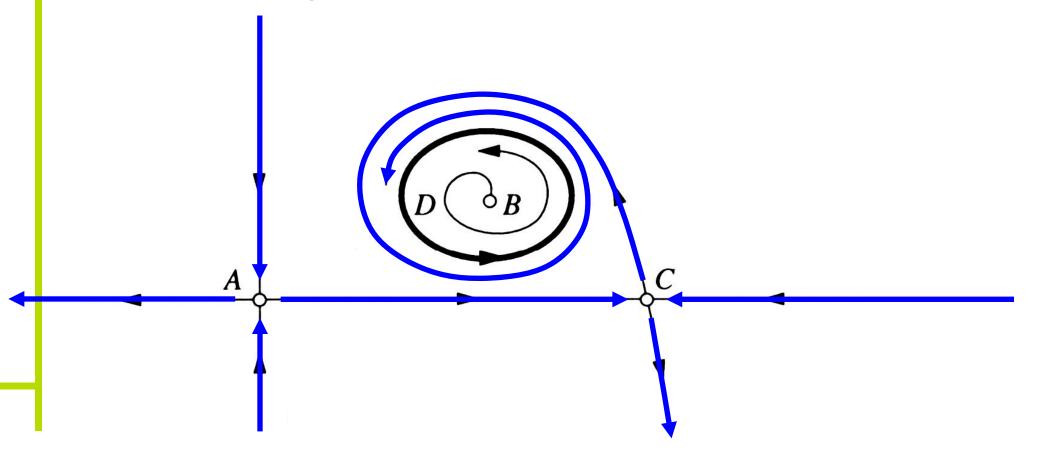


D: attracting cycle

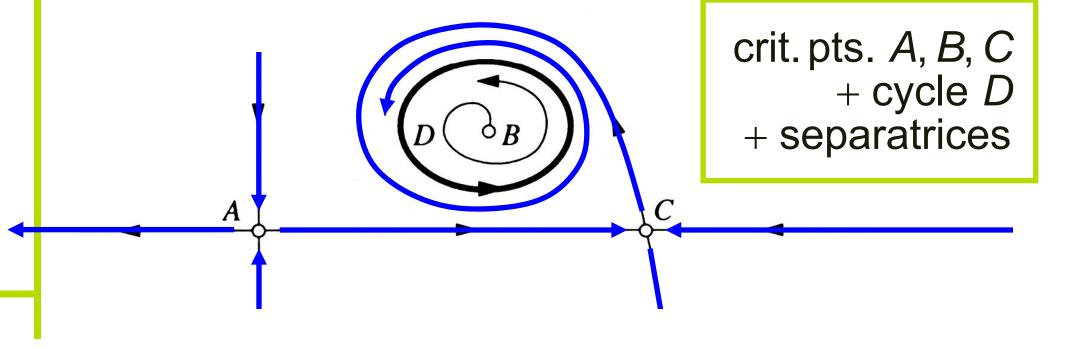
Topological analysis of vector fields

- treating critical points x* (1.)...
- treating higher order crit. structs. (2.)
- connecting crit. points x*: separatrices Σ* (3.)
 - following (n-1)-dim. eigen spaces $\{e_i, ...\}$ from \mathbf{x}^* per integration
 - yields (characteristic) stream lines in 2D
 - yields (characteristic) stream surfaces in 3D
 - etc.

- Topological analysis of vector fields
 - treating critical points x* (1.)...
 - treating higher order crit. structs. (2.)
 - connecting crit. points x*: separatrices Σ* (3.)



- Topological analysis of vector fields
 - critical points x* (1.)...
 - + higher order crit. structs. (2.)
 - + separatrices Σ* (3.)
 - topological skeleton of vector field v



- Topological analysis of vector fields
 - critical points x* (1.)...
 - + higher order crit. structs. (2.)
 - + separatrices Σ* (3.)
 - + selected direct visualization (e.g., streamlets)
 - topology-based vis.

