Introduction to Visualisation

VU Visual Data Science
Johanna Schmidt

WS 2018/19
Definition

- Visualisation enables **insight into data**
- **Visual information** for humans
 - Easier to interpret
 - Allows faster analysis of the data

The purpose of computing is insight, not numbers.

[R. Hamming, 1962]
Definition

• Visualisation rather old discipline
• Comprises intuitive illustrations (e.g., pie/bar charts, scatter plots),
• But nowadays also more complex applications for data analysis
Visualisation disciplines

• Depending on the type of data that should be visualised
 • **Spatial data** -> Scientific Visualisation
 • **Abstract data** -> Information Visualisation
Visualisation disciplines

- Depending on the type of data that should be visualised:
 - Spatial data - Scientific Visualisation
 - Abstract data - Information Visualisation
Visualisation disciplines

• Depending on the type of data that should be visualised:
 • **Spatial data** -> Scientific Visualisation
 • **Abstract data** -> Information Visualisation
Visualisation disciplines

• **Scientific Visualisation**
 • Volume visualisation
 • Flow visualisation

• **Information visualisation**

3D

nD
Visualisation disciplines

• Nowadays, borders are **not that well defined** any more
 • Information visualisation may also comprise spatial data (e.g., geographic data)
 • Need for integration of abstract data in spatial data
Visualisation as a dynamic field

• Visualisation always driven by **data and tasks**
 • Many different domains (medicine, biology, archeology, astronomy, business analysis, ...)
 • Different types of datasets

• Uses knowledge from **different fields**
 • Human perception
 • Color theory
 • Geometry, morphology
Visualisation in computer science

• Area of **computer graphics**
 • Generation of visual representations from data
 • Usage of rendering techniques

• Strong need for **data analysis**
 • Computer-generated or -supported analysis

• **Data management**
 • Storage
 • Processing
Why Visualisation?

• **Human vision** provides high bandwidth which can be used
• Data getting increasingly **complex** (size / parameters)
• **Statistical analysis** alone may not transport the full picture
Why Visualisation?

• **Anscombe’s Quartet**
 • Developed in 1973 by the statistician Francis Anscombe
 • Demonstration to show strength of **visual data representation**

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th></th>
<th>II</th>
<th></th>
<th>III</th>
<th></th>
<th>IV</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>10,0</td>
<td>y</td>
<td>8,04</td>
<td></td>
<td>10,0</td>
<td>y</td>
<td>7,46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,0</td>
<td></td>
<td>6,95</td>
<td></td>
<td>8,0</td>
<td></td>
<td>6,77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13,0</td>
<td></td>
<td>7,58</td>
<td></td>
<td>13,0</td>
<td></td>
<td>12,74</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9,0</td>
<td></td>
<td>8,81</td>
<td></td>
<td>9,0</td>
<td></td>
<td>7,11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11,0</td>
<td></td>
<td>8,33</td>
<td></td>
<td>11,0</td>
<td></td>
<td>7,81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14,0</td>
<td></td>
<td>9,96</td>
<td></td>
<td>14,0</td>
<td></td>
<td>8,84</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6,0</td>
<td></td>
<td>7,24</td>
<td></td>
<td>6,0</td>
<td></td>
<td>5,08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,0</td>
<td></td>
<td>4,26</td>
<td></td>
<td>4,0</td>
<td></td>
<td>5,30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12,0</td>
<td></td>
<td>10,84</td>
<td></td>
<td>12,0</td>
<td></td>
<td>8,15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7,0</td>
<td></td>
<td>4,82</td>
<td></td>
<td>7,0</td>
<td></td>
<td>6,42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,0</td>
<td></td>
<td>5,58</td>
<td></td>
<td>5,0</td>
<td></td>
<td>5,73</td>
<td></td>
</tr>
</tbody>
</table>

[6]
Why Visualisation?

- **Anscombe’s Quartet**
 - Four groups of numbers have identical statistical parameters

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean of x</td>
<td>9</td>
<td>exact</td>
</tr>
<tr>
<td>Sample variance of x</td>
<td>11</td>
<td>exact</td>
</tr>
<tr>
<td>Mean of y</td>
<td>7.50</td>
<td>to 2 decimal places</td>
</tr>
<tr>
<td>Sample variance of y</td>
<td>4.125</td>
<td>±0.003</td>
</tr>
<tr>
<td>Correlation between x and y</td>
<td>0.816</td>
<td>to 3 decimal places</td>
</tr>
<tr>
<td>Linear regression line</td>
<td>$y = 3.00 + 0.500x$</td>
<td>to 2 and 3 decimal places, respectively</td>
</tr>
<tr>
<td>Coefficient of determination of the linear regression</td>
<td>0.67</td>
<td>to 2 decimal places</td>
</tr>
</tbody>
</table>

Anscombe’s Quartet Data

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>y</td>
<td>8.04</td>
<td>8.04</td>
<td>7.46</td>
<td>8.0</td>
</tr>
<tr>
<td>x</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>y</td>
<td>6.95</td>
<td>6.95</td>
<td>6.77</td>
<td>6.58</td>
</tr>
<tr>
<td>x</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
<td>13.0</td>
</tr>
<tr>
<td>y</td>
<td>7.58</td>
<td>7.58</td>
<td>12.74</td>
<td>7.71</td>
</tr>
<tr>
<td>x</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>y</td>
<td>8.81</td>
<td>8.81</td>
<td>7.11</td>
<td>8.84</td>
</tr>
<tr>
<td>x</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
<tr>
<td>y</td>
<td>8.33</td>
<td>8.33</td>
<td>7.81</td>
<td>8.47</td>
</tr>
<tr>
<td>x</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
<td>14.0</td>
</tr>
<tr>
<td>y</td>
<td>9.96</td>
<td>9.96</td>
<td>8.84</td>
<td>7.04</td>
</tr>
<tr>
<td>x</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>y</td>
<td>7.24</td>
<td>7.24</td>
<td>5.08</td>
<td>5.25</td>
</tr>
<tr>
<td>x</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>y</td>
<td>4.26</td>
<td>4.26</td>
<td>5.30</td>
<td>10.0</td>
</tr>
<tr>
<td>x</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>y</td>
<td>10.84</td>
<td>10.84</td>
<td>8.15</td>
<td>8.62</td>
</tr>
<tr>
<td>x</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>y</td>
<td>4.82</td>
<td>4.82</td>
<td>6.42</td>
<td>7.91</td>
</tr>
<tr>
<td>x</td>
<td>6.0</td>
<td>6.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>y</td>
<td>5.58</td>
<td>5.58</td>
<td>5.73</td>
<td>8.89</td>
</tr>
</tbody>
</table>
Why Visualisation?

• Anscombe’s Quartet
 • Visual representation of the data quite different
[Diagram showing scatter plots and data table]
Lecture Focus

• Information Visualisation
Lecture Focus

• Information Visualisation

The use of computer-supported, interactive, visual representations of abstract data to amplify cognition

[Card et al., 1999]
Visualisation Use Cases

• Exploration
• Confirmation
• Presentation
Visualisation Use Cases

- **Exploration**
 - Searching and analysis
 - No or only minor *prior knowledge* about the data
 - Find *potentially useful* information

- **Confirmation**

- **Presentation**
Visualisation Use Cases

- Exploration
- **Confirmation**
 - Goal-oriented
 - Examination of a *prior defined* hypothesis
 - More prior knowledge of the data
- Presentation
Visualisation Use Cases

- Exploration
- Confirmation
- **Presentation**
 - Efficient *communication* of data features and findings
 - Clear definition of what to show
 - Often targeted towards *external people*
Visualisation Use Cases

• **Exploration**
 • Highly *interactive*
 • Need to visualize many **different aspects** of the data
 • **Challenges** for data storage/processing and rendering (visual clutter)

• Confirmation

• Presentation
Visualisation Use Cases

• Exploration

• **Confirmation**
 • Only parts of the data are needed, data can be **prepared** (e.g., filtered)
 • Visualisation **targeted** towards goal
 • **Interactive**

• Presentation
Visualisation Use Cases

• Exploration
• Confirmation

• **Presentation**
 • Only parts of the data are needed, data can be prepared (e.g., filtered)
 • **Simple/intuitive** visualisation techniques
 • No/minor interaction
Visualisation Techniques

• Scatter Plots
• Bubble Charts
• Parallel Coordinates
• Radar Charts
• Box Plots
• Violin Plots
• Venn Diagrams
• Node-Link Diagrams
Visualisation Techniques

• **Scatter Plots**
 • Bivariate data (2 dimensions)
 • Visual channel: position
 • Intuitive, easy to spot outlier/cluster, correlations, and to identify distributions
 • More dimensions may be added by using additional visual channels
 • For **Exploration, Confirmation**, and **Presentation**
Visualisation Techniques

• **Bubble Charts**
 • Scatter plot, but additional dimensions can be shown
 • Uses size for additional attribute -> 3 dimensions
 • Color used for categorical attribute
 • For **Exploration, Confirmation,** and **Presentation**
Multivariate Data

• Data in which analysis is based on **more than two variables**
• Analysis always needs to take **several dimensions** into account
• Usually variables have **different domains** (e.g., numbers, categories)
• **Challenges** for analysis and visualisation
Visualisation Techniques

• Parallel Coordinates
 • Invented probably 1885, but got popular in 70s (Alfred Inselberg)
 • Align data dimensions as vertical axes
 • Axes need to be scaled accordingly
Visualisation Techniques

• **Parallel Coordinates**
 • Can be used to identify statistical parameters:
 • **Parallel lines**: positive correlation
 • **X-shaped lines**: negative correlation
 • **Random**: no correlation
 • **Axes order** very important to spot correlations
Visualisation Techniques

- **Parallel Coordinates**
 - Splines instead of lines
Visualisation Techniques

• Parallel Coordinates
 • Examples
Visualisation Techniques

• Parallel Coordinates

Examples
Visualisation Techniques

• Parallel Coordinates
 • Examples
Visualisation Techniques

- Parallel Coordinates

Examples

[15]
Visualisation Techniques

• Parallel Coordinates
 • Examples
Votes in Donald Trump and Social data by state - Parallel coordinates
Visualisation Techniques

• Parallel Coordinates
 • Drawbacks
 • Axes ordering
Visualisation Techniques

- Parallel Coordinates
 - Drawbacks
 - Axes ordering
 - Overplotting
Visualisation Techniques

• **Parallel Coordinates**
 • Overplotting
 • Filtering
Visualisation Techniques

- **Parallel Coordinates**
 - Overplotting
 - Filtering
 - Clustering
Visualisation Techniques

- **Parallel Coordinates**
 - Overplotting
 - Filtering
 - Clustering
 - Brushing
Visualisation Techniques

• **Parallel Coordinates**
 • Visualisation technique for multivariate data
 • For *Exploration* and *Confirmation*
Visualisation Techniques

• **Radar Charts**
 - *Circular* alignment of axes
 - *Axes* need to be scaled
 - Harder to spot **correlations**
 - Rather used for **comparisons**
Visualisation Techniques

• **Radar Charts**
 • Possible to use different representations
Visualisation Techniques

• Radar Charts
 • Examples
Visualisation Techniques

• **Radar Charts**
 • Examples
Visualisation Techniques

• **Radar Charts**
 • **Interpretation** may be difficult, because of radial distortion
 • **Axes ordering** important
 • Should not be used for **linear** data, axes should be **independent**
 • For **Exploration, Confirmation, and Presentation**
Visualisation Techniques

• **Box Plots**

 • Visualisation of *statistical parameters*

 • Box: 50% of the data

 • Whisker: data area

 • Line: median

 • Circles: outlier

• For *(Exploration,)* Confirmation, and *Presentation*
Visualisation Techniques

• **Violin Plots**
 • Visualisation of **statistical parameters**
 • For (**Exploration,**) **Confirmation, and Presentation**
Visualisation Techniques

- **Venn Diagrams**
 - Visualisation of **categorical data**
 - Especially useful for **overlapping sets**
 - For (Exploration,) **Confirmation, and Presentation**

![Venn Diagram Example](image)
Visualisation Techniques

• **Node-Link Diagrams**
 • Visualisation of network data
 • Nodes: elements
 • Links: relations between the elements
 • For **Exploration** and **Confirmation**
Visualisation Techniques

• **Node-Link Diagrams**
 • Overplotting
Further Reading

• InfoVis Community
 • https://infovis-wiki.net/wiki/Main_Page

• Data Visualisation Catalogue
 • https://datavizcatalogue.com/

• VO & UE Informationsvisualisierung
 • https://www.cg.tuwien.ac.at/courses/InfoVis/

• VO & UE Informationsvisualisierung
 • https://tiss.tuwien.ac.at/course/courseDetails.xhtml?dswid=1832&dsrid=65&courseNr=188305&semester=2018W
Hans Rosling Ted Talk

https://www.youtube.com/watch?v=Z8t4k0Q8e8Y
Visualisation principles

• Interaction
• Usage of color
• Usage of shapes
Visualisation principles

- **Interaction**
- Usage of color
- Usage of shapes
Interaction

• Especially for Exploration and Confirmation, *interactive exploration* of the data is needed

Visual Analytics is the science of analytical reasoning supported by a highly interactive visual interface
[Wong and Thomas 2004]
Interaction
Interaction

Overview first, details on demand
[Shneiderman, 1986]

• **Overview** needed, before being able to explore the data
• Exploration can then lead to **details**
Interaction

- Creating an **overview** can be challenging due to data size
 - Big Data
 - Data storage/processing
 - Overplotting
 - Limited screen space
 - Needs for aggregation
Interaction

• **Details** by interacting with the data
 • Selection techniques
 • Filtering algorithms
 • Data processing
Interaction

- **Details** by interacting with the data
 - Selection techniques
 - Filtering algorithms
 - Data processing

- **Focus+context**
 - While exploring details, context should be preserved
Interaction

• Details by interacting with the data
• Selection techniques
• Filtering algorithms
• Data processing

Focus+context

While exploring details, context should be preserved
Interaction

- **Details** by interacting with the data
 - Selection techniques
 - Filtering algorithms
 - Data processing

- **Focus+context**
 - While exploring details, context should be preserved

- **Linking and brushing**
 - Apply filtering to all views
References

[5] https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcShP_eFMGkGOhqtnwPUBLcOWAp9WpDdMVQaNNuU4d4Pc5x3IDQ
[14] https://bl.ocks.org/jasondavies/1341281
[16] https://socviz.co/
References

[22] https://docs.telerik.com/devtools/aspnet-ajax/controls/htmchart/chart-types/radar-chart
[25] https://de.wikipedia.org/wiki/Box-Plot
[26] https://datavizcatalogue.com/methods/violin_plot.html
[27] https://datavizcatalogue.com/methods/venn_diagram.html
[28] https://www.oreilly.com/library/view/learning-neo4j-3x/9781786466143/assets/a6c1bfc4d-06a-d066-49dd-a262-639f050bd075.png
[29] https://periscopic.com/content/2017/03/
[31] https://de.wikipedia.org/wiki/Fluggesellschaft
[33] https://hal-lirmm.ccsd.cnrs.fr/lirmm-01592614/document
[34] https://ieeexplore.ieee.org/document/1532821