

Seminar aus Computergraphik 186.175, WS 2016/17, 2.0h (3 ECTS)

Stefan Ohrhallinger

Institute of Computer Graphics and Algorithms (E186)
Vienna University of Technology
http://www.cg.tuwien.ac.at/staff/StefanOhrhallinger.html

Important!

Register to course in TISS: to get news & updates

These slides will on the website after this meeting

Official registration: by submitting the literature list

Topics are presented and assigned here today

Seminar Goals

Practice selecting, reading and understanding

- Search and select papers relevant to your topic
- Summarize them as a state-of-the-art report
- Prepare a talk about your topic in the seminar

This permits in-depth familiarization with the topic

Tasks

- Submit a literature list (chosen with supervisor)
- Attendance of 3 lectures
- Meetings with supervisor: paper selection, discussion of papers, preparing talk slides
- Alternative: evaluate and compare algorithms
- Final talk in seminar

Literature List

- Analyze recent papers (select with supervisor)
- Study secondary literature to understand topic
- How to find relevant papers:
- SIGGRAPH Proceedings
- Google Scholar: find the right key words
- Survey papers, often-referenced papers
- Submits a list of 10+ papers per email to supervisor
 & me → official registration

State-of-the-Art Report (STAR)

- 8 pages per student, preferably in english
- Format in the style of a scientific paper
- Use LaTeX template on course website
- LaTeX tools and guides also on the website
- Submit the draft in PDF format, per email to supervisor+organizer

Scientific Review

- You will get a draft of another student to review
- Typical conference review form (Eurographics)
- This helps author to improve the manuscript
- Guides on review writing on course website
- You will receive 2 reviews (student, supervisor)
- Improve final report according to reviews

Seminar Talk

- Prepare slides in advance, using template
- Each student talks for 15 minutes, english pref.
- 5 minutes discussion after each talk
- Focus is on overview/comparison of methods
- Present so that other students will understand it
- Active discussion is mandatory and is graded
- Submitted slides are presented on seminar PC

Grading

- Lecture attendance 5%
- Review: 20%
- Seminar slides+talk: 30%, discussion 5%
- Final report: 40%

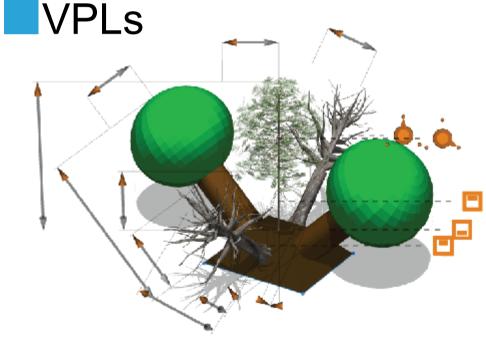
• Late submission: 15% off per day, max. 1 week

Important Dates

- 26.10. 23:59 Submit literature list (email to me)
- 13.10. 15:00 17:00 Lecture Prof. Wimmer
- 09.11. 13:00 15:00 Lecture Prof. Gröller
- 30.11. 13:00 15:00 Lecture Prof. Purgathofer
- 07.12. 23:59 Submit report draft
- 21.12. 23:59 Submit review
- 22.01. 23:59 Submit slides (per email)
- 23.01. 10:00 18:00 Seminar talks
- 23.01. 23:59 Submit final report

Topic Presentation

- Now 18 topics will be presented
- After the presentation, please mark down at least 3 in order of preference (1, 2, 3, ...)
- I will try to make a fair assignment of topics


1 Visual Interfaces for Procedural Models

Grammar-based modeling = programing.

How to change it?

- Handles
- Node editors


```
*Your code goes here

*Solve * sudoku grid * *

**script variables next empty space *

**set next empty space * to Find empty element sudoku *

**if Item *** of next empty space *

**script variables number * *

**set number * to *

**repeat until number * *

**if check element [tem *2* of next empty space *

**if item *3* of next empty space *

**set element [tem *2* of next empty space *

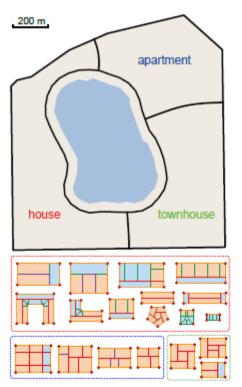
**if item *3* of next empty space *

**if Solve sudoku *

**sudoku sudoku to number *

**if Solve sudoku *

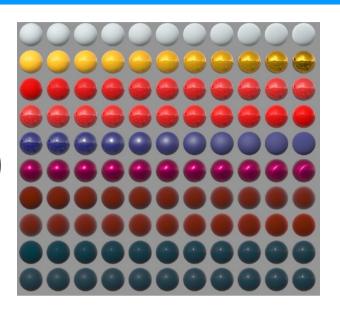
**clear element [tem *2* of next empty space *


**item *3* of next empty space *
```

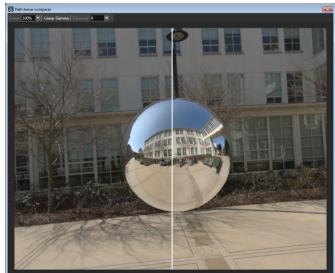

2 Layouts Generation for Cities

- Multi-scale
- Constraints
- Optimization

3 Physically Based Shading for Games

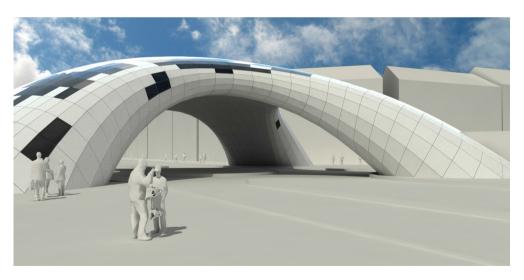


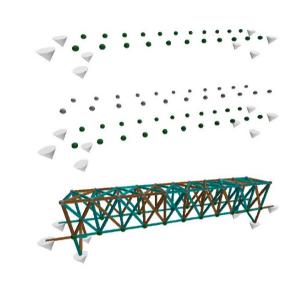
Investigate physically based illumination models for


games

Microfacet BRDFs

Image-based lighting

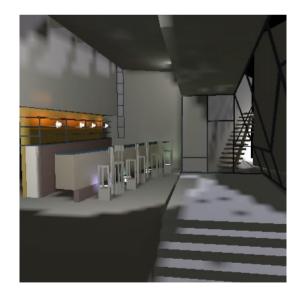



4 Design of structurally sound buildings

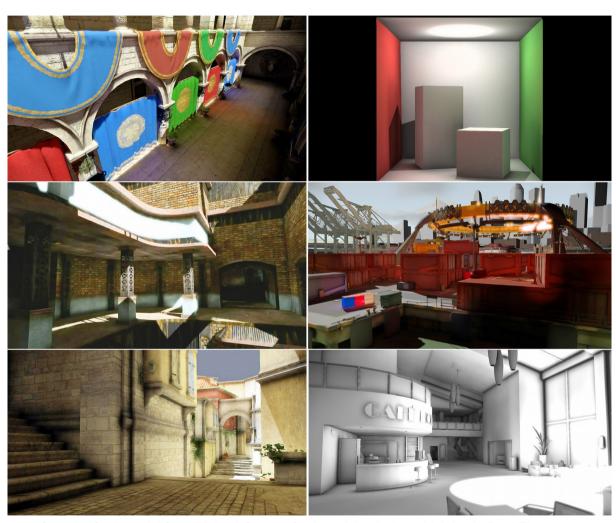
Conduct a survey of recent advances in

- Structural optimization for buildings/bridges etc.
- Modelling of plausible buildings

5 Light Painting for Lighting Design


- Solve the Inverse Lighting Problem for 3D Scenes
- Light Painting
- Sketch Based Lighting

Lin, Wen-Chieh, et al. "Interactive lighting design with hierarchical light representation." *Computer Graphics Forum.* Vol. 32. No. 4. Blackwell Publishing Ltd, 2013.



6 Real-time Global Illumination

- Radiosity
- Raytracing
- Quality versus
 Speed
- GPU methods

Crassin, Cyril, et al. "CloudLight: A System for Amortizing Indirect Lighting in Real-Time Rendering." *Journal of Computer Graphics Techniques Vol* 4.4 (2015).

7 Acceleration of Ray Tracing

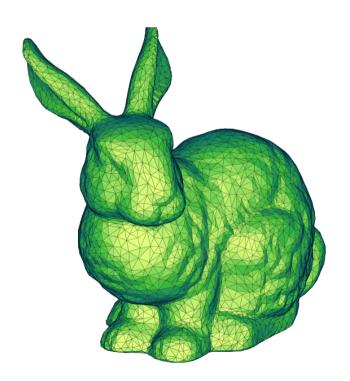
Conduct a survey of recent advances in the acceleration of ray tracing

8 NPR in Real Time

Conduct a survey of recent advances in real-time non-photorealistic rendering

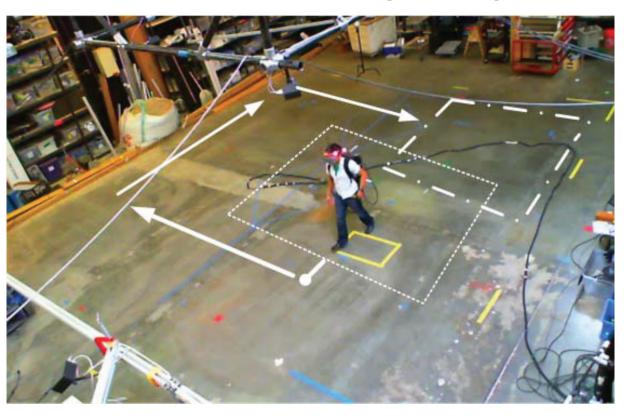
9 Fractal Image Compression

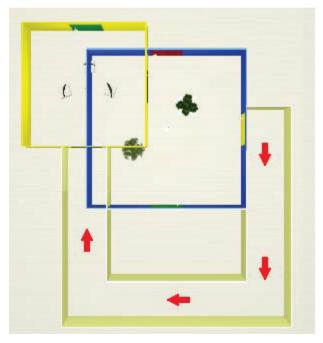
- Fractal Geometry
- State-of-the-art methods to improve speed
- Comparison with other image compression techniques



10 Surface Reconstruction

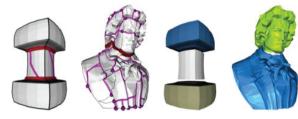
- Compare state-of-the-art algorithms
- Evaluate pros and cons of different approaches
- Will improve knowledge in:
 - Computational Geometry
 - Computer Graphics!

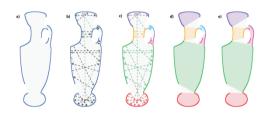




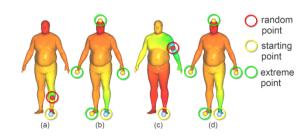
11 Walking in Virtual Environments

- How virtual spaces are formed with respect to real space
- Effects on human perception


12 Convex Decomposition

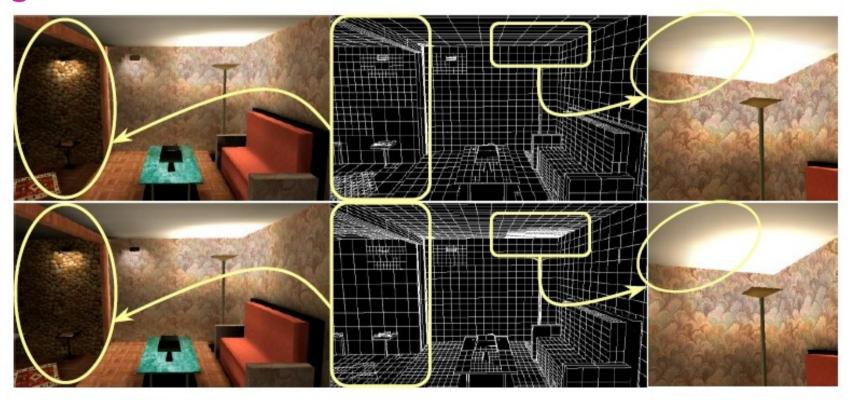

Conduct a survey of convex decomposition

methods.



Pocket cuts [Lien et al 2007]

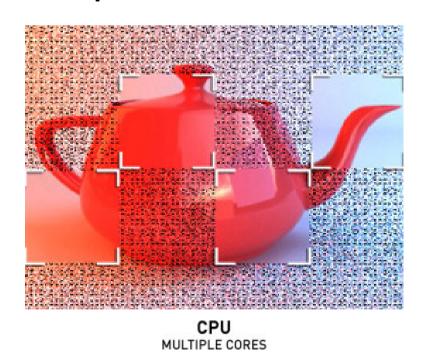
Lines of sight [Kaick et al 2014]

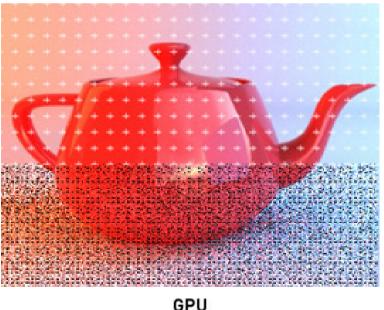

Concavity aware fields [Au et al 2012]

13 Perceptual Methods in Global Illumination

Write a state-of-the-art report about methods that exploit perceptual aspects for rendering global illumination

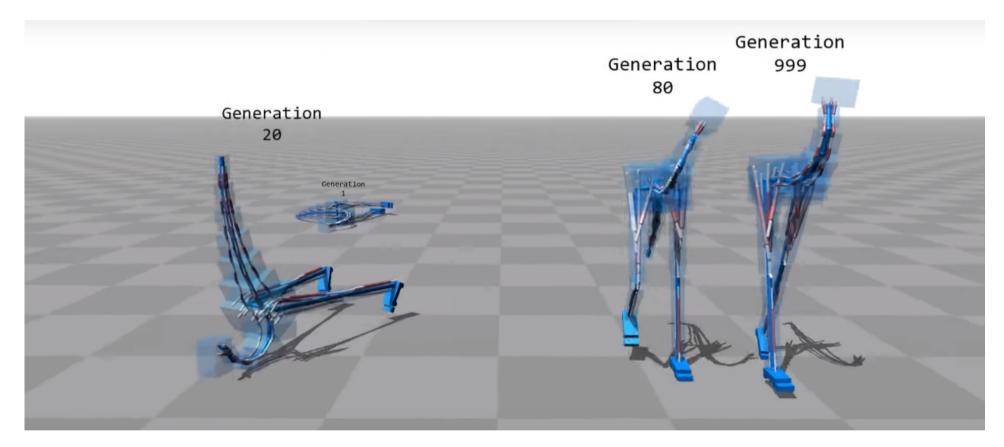
No visible difference


Perceptible artifacts



14 The State of the Art in GPU Ray Tracing

- Write an overview of current GPU ray tracing solutions
- Consider advantages and disadvantages compared to CPU methods



GPU THOUSANDS OF CORES

15 Reinforcement Learning in Graphics

Reinforcement learning is an amazing tool for optimizing the behavior of an agent in an environment. It is capable of playing computer games at a high level and also has applications in computer graphics. Check this out.

16 Neural Networks in Graphics

Neural networks are universal function approximators that are used to solve difficult problems in image and speech recognition, image synthesis, and many more. Check this out and see for yourself!

17 Improve Photos using Depth

Smartphones can soon take RGBD images.

Can depth segmentation correct these errors?

perspective

overexposure

18 Non-Spherical Virtual Tours

360°-photos are nowadays easy to generate. How about more complex scenes, using depth?

Topic Assignment

- Please mark at least 3 topics in order of preference (1, 2, 3, ...), with your name
- Hand in the sheet
- Then I will assign the topics on the spot

Questions?

- Get in contact with your supervisor ASAP
- Discuss literature list with your supervisor
- Submit the list (to me and supervisor) per email by 26.10.

