
Deferred Rendering

Jonathan Thaler∗

TU Wien

Figure 1: Forward rendering (left) compared to deferred rendering (right). Image courtesy of GSC Game World.

Abstract

In this paper an overview of the deferred rendering technique and
its applications is discussed. First, a short review of forward ren-
dering and its drawbacks is given. Then the paper dives into a tech-
nical overview of the deferred rendering technique and its imple-
mentation together with the pros and cons involved. A short review
of its applications in different areas like games and scientific vi-
sualization follows. Furthermore an overview of different effects
and techniques easy to achieve with deferred rendering as opposed
to forward rendering is presented. Finally a discussion on parallel
techniques for deferred rendering and an outlook on extensions and
alternatives is presented.

Keywords: deferred shading, deferred rendering, rendering, real-
time graphics

1 Introduction

Until some years ago forward rendering has been the state-of-the-
art approach in a realtime rendering engine. Some scene description
is traversed to generate a render list of potentially visible objects
which are then rendererd with their shaders, effects and lighting.
In the rendering process the geometry is sent through the vertex
shader and the outcoming pixels are then shaded during one or more
passes in a fragment shader. The most expensive part of shading is
naturally the process of lighting which can be implemented in two
ways in forward rendering.

• Single pass. For each object all affecting lights are searched
and then all lighting and material for an object are rendered in

∗e-mail: e0225907@stud4.tuwien.ac.at

a single shader.

• Multi pass: For each light iterate over each object and add the
contribution of the objects lighting to the framebuffer.

The following drawbacks of forward rendering can easily be iden-
tified

1. Complexity of rendering the lighting is O(Lights∗Ob jects).

2. Because each material needs a specific shader for each light-
type (point, directional, spotlight,...) the numbers of shaders
to be maintained rises very fast (combinatorical explosion).
Shaders require sometimes multiple passes to calculate light-
ing so passes increases further.

3. When using the single pass approach all shadow maps (one
for every light) needs to be hold in memory which can lead to
a bottleneck very quickly.

4. State changes increase darmatically with lighting. The current
limit is about 250 changes per frame on current hardware.

5. Reducing the overdraw - already shaded objects get covered
by others - to zero is virtually impossible so forward rendering
inherently wastes shading.

With the advent of Shader Model 3.0 together with more powerful
hardware like the GeForce 6800 around 2004 it became possible to
address these drawbacks of forward rendering by utilising deferred
rendering. The technique is not a new one and dates back in 1988
where it has been proposed by [Deering et al. 88] although they
didn’t use the term deferred rendering.

The next section gives an overview of the technical details involved
with deferred rendering and also discusses the drawbacks and per-
formance issues of it. A more in-depth tutorial on implementing de-
ferred rendering can be found in [Policarpo and Fonseca 2005] and
[Hargreaves and Harris 2004]. [Shishkovtsov 2005] and [Koonce
2008] show a more high level approach to it and discuss advanced
issues.

!"#$"%$#&'(")*+$,'-./0123'$44$(5-'615.'5.$'7-$'"4'5.$-$'5$(.2187$-'#$871#$')7+51*+$'

#20#'*/--$-'5"'*#"07($'5.$'412/+'*1,$+'("+"#&'615.'5.$'3$")$5#9'-7:)155$0'$%$#9'*/--;

<2+1=$'5#/0151"2/+'#$20$#123'/+3"#15.)-'5./5'-7:)15'3$")$5#9'/20'1))$01/5$+9'

/**+9 ' -./0123 ' 44(5- ' 5" ' 5.$ ' #/-5$#1>$0 '*#1)151%$-& ' 5.$ '0$4$##$0 ' -./0123 ' 5$(.2187$'

-7:)15- '5.$'-($2$'3$")$5#9'"2+9'"2($&'-5"#123'*$#?*1,$+ '/55#1:75$-' 125"'+"(/+'%10$"'

)$)"#9'@(/++$0'A?:744$#B'5"':$'7-$0'12'5.$'-7:-$87$25'#20#'*/--$-;'C"&'12'5.$-$'+/5$#'

*/--$-& ' -(#$$2?/+132$0 ' 87/0#1+/5$#/+- ' /#$ ' #20#$0 ' /20 ' 5.$ ' *$#?*1,$+ ' /55#1:75$-'

("25/12$0'12'5.$'A?:744$#'/#$'#$5#1$%$0'/5'/'DED')/**123'#/51"'-"'5./5'$/(.'*1,$+'1-'

-./0$0'1201%107/++9;'F.7-&'5.$'3#$/5'/0%/25/3$'"4'0$4$##$0'-./0123'12'(")*/#1-"2'615.'

5#/0151"2/+'#20#123'/+3"#15.)-'1-'5./5'15'./-'/'6"#-5'(/-$'(")*75/51"2/+'(")*+$,159'

!@27):$#G"4G":H$(5- ' I ' 27):$#G"4G+13.5-B; ' J ' *-$70" ' ("0$ ' 5./5 ' 1++7-5#/5$- ' 5.1-'

/**#"/(.'1-'*#$-$25$0'12'!"#$"%&'(;

!!"!"#$%&'("#$%&'(")"
!)""""*+$,--&."/"0123(142"5.#5&.(1&6"#-"#$%&'(7
!8"!"#$%&'("0123(")"
!9""""-.:;&$,--&."</"0123(=;#>&0?*+$,--&.@0123(A7"""""

!"#$"%&'()'K-$70"'("0$'5"'1++7-5#/5$'5.$'0$4$##$0'-./0123'5$(.2187$;

L4##$0 ' -./0123 ' *"--$--$- ' "5.$# ' /0%/25/3$-; ' M"# ' $,/)*+$& ' "2($ ' 5./5 ' 5.$'

3$")$5#9'*#"($--123'1-'0$("7*+$0'4#")'5.$'+13.5123'*#"($--123&'15'1-'2/57#/+'5"'5/=$'

/0%/25/3$ ' "4 ' :/5(.123; '!"#$"%$#& ' "2($ ' 5./5 ' 0$4$##$0 ' -./0123 ' *"-5*"2$- ' -./0123'

(/+(7+/51"2- ' 4"# ' / ' 4#/3)$25 ' 7251+ ' 5.$ ' %1-1:1+159 ' "4 ' 5./5 ' 4#/3)$25 ' 1- ' (")*+$5$+9'

0$5$#)12$0&'15'5.7-'*#$-$25-'/'*$#4$(5'!@DB'0$*5.'(")*+$,159'4"#'+13.5123;

*+,+'-.%./01'2/34"$.3$5/.

N+$/#+9& ' 5.$#$ '/#$' 4"7# '01-512(5 ' -5/3$- ' 12 '0$4$##$0 '-./0123E '3$")$5#9'-5/3$&'

+13.5123'-5/3$&'*"-5?*#"($--123'-5/3$'/20'412/+'-5/3$;'F.7-&'5.$'/#(.15$(57#$'/0"*5$0'12'

5.1- ' 575"#1/+ ' 12 ' "#0$# ' 5" ' 1)*+$)$25 ' 5.$ ' 0$4$##$0 ' -./0123 ' 5$(.2187$ ' #$4+$(5- ' 5.$'

$,1-5$2($'"4'5.$-$'-5/3$-;'6"&5/.','1++7-5#/5$-'5./5'/#(.15$(57#$;

!"#$%&'"#
()*+ ,&)-"./%,,"&.0'1&.$+1234.56/%,,"&.0'$1$&4.7"89:4.)%;<.)+7.)%;=3.)+7

,$%&.'$1$&.$+12.>6/%,,"&#.09?$.,%11.)+7.9?$.@.&"#$1%9*$+3

5"$-"9&2

A9)B"

C*B:9*+B

A9)B"

>$#96>&$'"##*+B

A9)B"

D*+)1.

A9)B"

!
"
#$%
&
$'
"
(
)
"
*$!
#+
#"

!
"
#$,
&
$'
"
(
)
"
*$!
#+
#"

!"#$%&'"#
()*+ ,&)-"./%,,"&.0'1&.$+1234.56/%,,"&.0'$1$&4.7"89:4.)%;<.)+7.)%;=3.)+7

,$%&.'$1$&.$+12.>6/%,,"&#.09?$.,%11.)+7.9?$.@.&"#$1%9*$+3

!"#$%&'"#
()*+ ,&)-"./%,,"&.0'1&.$+1234.56/%,,"&.0'$1$&4.7"89:4.)%;<.)+7.)%;=3.)+7

,$%&.'$1$&.$+12.>6/%,,"&#.09?$.,%11.)+7.9?$.@.&"#$1%9*$+3

5"$-"9&2

A9)B"

C*B:9*+B

A9)B"

>$#96>&$'"##*+B

A9)B"

D*+)1.

A9)B"

!
"
#$%
&
$'
"
(
)
"
*$!
#+
#"

!
"
#$,
&
$'
"
(
)
"
*$!
#+
#"

5"$-"9&2

A9)B"

C*B:9*+B

A9)B"

>$#96>&$'"##*+B

A9)B"

D*+)1.

A9)B"

!
"
#$%
&
$'
"
(
)
"
*$!
#+
#"

!
"
#$,
&
$'
"
(
)
"
*$!
#+
#"

6"&5/.',)'A2#/+'/#(.15$(57#$'"4'0$4$##$0'-./0123'5$(.2187$;'O$4$#$2($'5.$'277.%8"9'2'4"#'/++'5.$'
-5$*-'4#")'5.$'(")*+5'0$4$##$0'-./0123'*1*$+12$;

P/(.'-5/3$'7-$- '*#"3#/))/:+$'*1*$+12$ '472(51"2/+159' 5.#"73.'%$#5$, '/20Q"#'

4#/3)$25'-./0$#;'M7#5.$#)"#$&'$/(.'-5/3$'("))721(/5$-'615.'5.$'"5.$#'"2$-'5.#"73.'/'

-./#$0')$)"#9'/#$/'@#$*#$-$25$0'12 '6"&5/.',' :9'5.$'$25159'O$-"7#($-B'12'5.$'%10$"'

)$)"#9'"4'5.$'3#/*.1(-'(/#0;'R2'"#0$#'5"'4/(1+15/5$'5.$'7-/3$'/20')/2/3$)$25'"4'5./5'

-./#$0')$)"#9&'15'1-'"#3/21>$0'+1=$':744$#-'5./5')/9':$'7-$0'/-'$15.$#'#$20$#'5/#3$5-'

Figure 2: Architecture of deferred rendering. Image courtesy of [
Policarpo and Fonseca 2005].

2 Implementation

Deferred rendering differs fundamently in the way that it decouples
the processing of the geometry from the process of shading it. With
this approach the drawbacks of forward rendering can be circum-
vented but different problems and pitfalls rise. Figure 2 shows an
overview of the Architecture of the deferred rendering technique.
The geometry of each object is rendered in a first pass which oc-
curs in the geometry stage into the so called Geometry-Buffer (G-
Buffer) without applying shading. In the light stage the shading is
then applied globally to this backbuffer where all attributes needed
for lighting are stored and the result is written into the post pro-
cessing buffer. In the post-processing stage additional shaders can
be applied to the post processing buffer to create effects explained
in section 4. The final stage simply displays the result of the post
processing buffer onto the screen.

2.1 Geometry Stage

In the geometry stage the target is to render attributes of the geome-
try and its material needed in the lighting pass into the G-Buffer.
The specific attributes differ from application to application but
at least these four attributes are common to all deferred rendering
pipelines.

• Normals

• Diffuse color

• Specular color and shininess

• Depth

Figure 3 shows a visualization of the content of the G-Buffer split
up into each attribute.

Obviously it is not possible to store all attributes in one single buffer
due to the memory needed for each attribute and limited texture for-
mats. Therefore the geometry pass is implemented utilizing Mul-
tiple Render Targets (MRT) and vertex shaders. MRT allows the
simultaneous rendering into up to four back-buffers which is ex-
actly what deferred rendering needs. A severe restriction is that
MRT must have all the same bit-depth so using 32 bit depth this
leads to an example-layout for the four attributes shown in Figure
4.
Several tricks exist to reduce the amount of channels needed e.g.,
for normals and depths by storing only the x and y component and
reconstructing the z-component by some calculations.

!"####$$#%&'&(#)*+
!,####-'&*./#%&'&(#0#-/.12345%&'&(.126.2%&&(789
!:####$$#.(*;<-&()#;&()*'#.&#=>1?#<+*%1
!@####;&()*'#A0#BC,9
!D####;&()*'#0#;&()*'>E15;&()*'C2FGHC.*;I1;.#J#;&()*'CKFGHCL>;&()*'#
!M#######################J#;&()*'CEFGHC;&()*'89
3B####$$#%&;=1(.#;&()*'#L*%N#.&#OB6!P#%&'&(#<+*%1
3!####;&()*'#0#;&()*'FBC,JBC,9
33####$$#->''#QALR--1(
3/####STUC%&'&(B#0#;&()*'9
3"####STUC%&'&(!#0#%&'&(F7>--R<1C2KE9
3,####STUC%&'&(3#0#<+1%R'*(9
3:#V>-;71-#HWXYZH4ZYX4Z[U\XUZ]UTYZ
3@####-'&*.#7055+'*;1<C2FGHC=+&<CEJ+'*;1<CK8$AGHC=+&<CE89#$$#71.+^
3D####STUC%&'&(/#0#-'&*.X.&X%&'&(5789
3M#V1;7>-
/B####(1.R(;#STU9
/!#_

!"#$"%&'()*!"#$%&'()!*+$,'#!-.!)+'!&$)'#/$0!1$**!/(!-#,'#!)-!./00!)+'!2345..'#6

7(!'8$&10'!-.!)+'!2345..'#!9-()'()!$.)'#!)+'!'8'95)/-(!-.!)+'!&$)'#/$0!1$**!

&$:!4'!*''(!$)!+"&,-.'/6

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;$<!!!;4<

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;9<!!!;,<
+"&,-.'/*!=+'!.-5#!)'8)5#'*!%'('#$)',!4:!)+'!&$)'#/$0!1$**>!;$<!(-#&$0?!;4<!,/..5*'?!;9<!*1'950$#!$(,!;,<!

'(9-,',!,'1)+!$*!9-0-#6

)0/0'!"&1$"%&'2$3&.

7.)'#!@'!./(/*+!)+'!&$)'#/$0!1$**!.#-&!1#'A/-5*!*'9)/-(!@'!'(,!51!@/)+!.-5#!

)'8)5#'!&$1*!;2345..'#!9-()'()*<!$*!*+-@(!/(!+"&,-.'/6!=+':!$#'!)+'!(-#&$0?!,/..5*'?!

(a) Normal

!"####$$#%&'&(#)*+
!,####-'&*./#%&'&(#0#-/.12345%&'&(.126.2%&&(789
!:####$$#.(*;<-&()#;&()*'#.&#=>1?#<+*%1
!@####;&()*'#A0#BC,9
!D####;&()*'#0#;&()*'>E15;&()*'C2FGHC.*;I1;.#J#;&()*'CKFGHCL>;&()*'#
!M#######################J#;&()*'CEFGHC;&()*'89
3B####$$#%&;=1(.#;&()*'#L*%N#.&#OB6!P#%&'&(#<+*%1
3!####;&()*'#0#;&()*'FBC,JBC,9
33####$$#->''#QALR--1(
3/####STUC%&'&(B#0#;&()*'9
3"####STUC%&'&(!#0#%&'&(F7>--R<1C2KE9
3,####STUC%&'&(3#0#<+1%R'*(9
3:#V>-;71-#HWXYZH4ZYX4Z[U\XUZ]UTYZ
3@####-'&*.#7055+'*;1<C2FGHC=+&<CEJ+'*;1<CK8$AGHC=+&<CE89#$$#71.+^
3D####STUC%&'&(/#0#-'&*.X.&X%&'&(5789
3M#V1;7>-
/B####(1.R(;#STU9
/!#_

!"#$"%&'()*!"#$%&'()!*+$,'#!-.!)+'!&$)'#/$0!1$**!/(!-#,'#!)-!./00!)+'!2345..'#6

7(!'8$&10'!-.!)+'!2345..'#!9-()'()!$.)'#!)+'!'8'95)/-(!-.!)+'!&$)'#/$0!1$**!

&$:!4'!*''(!$)!+"&,-.'/6

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;$<!!!;4<

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;9<!!!;,<
+"&,-.'/*!=+'!.-5#!)'8)5#'*!%'('#$)',!4:!)+'!&$)'#/$0!1$**>!;$<!(-#&$0?!;4<!,/..5*'?!;9<!*1'950$#!$(,!;,<!

'(9-,',!,'1)+!$*!9-0-#6

)0/0'!"&1$"%&'2$3&.

7.)'#!@'!./(/*+!)+'!&$)'#/$0!1$**!.#-&!1#'A/-5*!*'9)/-(!@'!'(,!51!@/)+!.-5#!

)'8)5#'!&$1*!;2345..'#!9-()'()*<!$*!*+-@(!/(!+"&,-.'/6!=+':!$#'!)+'!(-#&$0?!,/..5*'?!

(b) Diffuse

!"####$$#%&'&(#)*+
!,####-'&*./#%&'&(#0#-/.12345%&'&(.126.2%&&(789
!:####$$#.(*;<-&()#;&()*'#.&#=>1?#<+*%1
!@####;&()*'#A0#BC,9
!D####;&()*'#0#;&()*'>E15;&()*'C2FGHC.*;I1;.#J#;&()*'CKFGHCL>;&()*'#
!M#######################J#;&()*'CEFGHC;&()*'89
3B####$$#%&;=1(.#;&()*'#L*%N#.&#OB6!P#%&'&(#<+*%1
3!####;&()*'#0#;&()*'FBC,JBC,9
33####$$#->''#QALR--1(
3/####STUC%&'&(B#0#;&()*'9
3"####STUC%&'&(!#0#%&'&(F7>--R<1C2KE9
3,####STUC%&'&(3#0#<+1%R'*(9
3:#V>-;71-#HWXYZH4ZYX4Z[U\XUZ]UTYZ
3@####-'&*.#7055+'*;1<C2FGHC=+&<CEJ+'*;1<CK8$AGHC=+&<CE89#$$#71.+^
3D####STUC%&'&(/#0#-'&*.X.&X%&'&(5789
3M#V1;7>-
/B####(1.R(;#STU9
/!#_

!"#$"%&'()*!"#$%&'()!*+$,'#!-.!)+'!&$)'#/$0!1$**!/(!-#,'#!)-!./00!)+'!2345..'#6

7(!'8$&10'!-.!)+'!2345..'#!9-()'()!$.)'#!)+'!'8'95)/-(!-.!)+'!&$)'#/$0!1$**!

&$:!4'!*''(!$)!+"&,-.'/6

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;$<!!!;4<

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;9<!!!;,<
+"&,-.'/*!=+'!.-5#!)'8)5#'*!%'('#$)',!4:!)+'!&$)'#/$0!1$**>!;$<!(-#&$0?!;4<!,/..5*'?!;9<!*1'950$#!$(,!;,<!

'(9-,',!,'1)+!$*!9-0-#6

)0/0'!"&1$"%&'2$3&.

7.)'#!@'!./(/*+!)+'!&$)'#/$0!1$**!.#-&!1#'A/-5*!*'9)/-(!@'!'(,!51!@/)+!.-5#!

)'8)5#'!&$1*!;2345..'#!9-()'()*<!$*!*+-@(!/(!+"&,-.'/6!=+':!$#'!)+'!(-#&$0?!,/..5*'?!

(c) Specular

!"####$$#%&'&(#)*+
!,####-'&*./#%&'&(#0#-/.12345%&'&(.126.2%&&(789
!:####$$#.(*;<-&()#;&()*'#.&#=>1?#<+*%1
!@####;&()*'#A0#BC,9
!D####;&()*'#0#;&()*'>E15;&()*'C2FGHC.*;I1;.#J#;&()*'CKFGHCL>;&()*'#
!M#######################J#;&()*'CEFGHC;&()*'89
3B####$$#%&;=1(.#;&()*'#L*%N#.&#OB6!P#%&'&(#<+*%1
3!####;&()*'#0#;&()*'FBC,JBC,9
33####$$#->''#QALR--1(
3/####STUC%&'&(B#0#;&()*'9
3"####STUC%&'&(!#0#%&'&(F7>--R<1C2KE9
3,####STUC%&'&(3#0#<+1%R'*(9
3:#V>-;71-#HWXYZH4ZYX4Z[U\XUZ]UTYZ
3@####-'&*.#7055+'*;1<C2FGHC=+&<CEJ+'*;1<CK8$AGHC=+&<CE89#$$#71.+^
3D####STUC%&'&(/#0#-'&*.X.&X%&'&(5789
3M#V1;7>-
/B####(1.R(;#STU9
/!#_

!"#$"%&'()*!"#$%&'()!*+$,'#!-.!)+'!&$)'#/$0!1$**!/(!-#,'#!)-!./00!)+'!2345..'#6

7(!'8$&10'!-.!)+'!2345..'#!9-()'()!$.)'#!)+'!'8'95)/-(!-.!)+'!&$)'#/$0!1$**!

&$:!4'!*''(!$)!+"&,-.'/6

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;$<!!!;4<

!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!;9<!!!;,<
+"&,-.'/*!=+'!.-5#!)'8)5#'*!%'('#$)',!4:!)+'!&$)'#/$0!1$**>!;$<!(-#&$0?!;4<!,/..5*'?!;9<!*1'950$#!$(,!;,<!

'(9-,',!,'1)+!$*!9-0-#6

)0/0'!"&1$"%&'2$3&.

7.)'#!@'!./(/*+!)+'!&$)'#/$0!1$**!.#-&!1#'A/-5*!*'9)/-(!@'!'(,!51!@/)+!.-5#!

)'8)5#'!&$1*!;2345..'#!9-()'()*<!$*!*+-@(!/(!+"&,-.'/6!=+':!$#'!)+'!(-#&$0?!,/..5*'?!

(d) Depth encoded as color. Jumps in
color comes from encoding.

Figure 3: Visualization of the four targets of the G-Buffer
!!""""#$%&'()*+,-./+$,&01
!2"3

!"#$"%&'()!"#$%!&#!'()*%(%+&!,!$%)&-!#+*.!)-,/%!$01'+2!&-%!%3%40&'#+!#5!&-%!$%5%11%$!/-,$'+2!
&%4-+'60%7

++,+'-.$/0".1'2.##

8-%!#9:%4&';%!#5!&-%!(,&%1',*!),//!'/!&#!5'**!&-%!<=9055%1!>'&-!,**!+%4%//,1.!)%1=

)'3%*! *'2-&'+2!&%1(/!'+!#1$%1! &#!%;,*0,&%! &-% !345.$"6%'77 !8-0/? !&-%!<=9055%1!(0/&!

4#+&,'+!'+5#1(,&'#+!*'@%!)#/'&'#+?!/015,4%!+#1(,*?!$'550/%!4#*#1?!/)%40*,1!4#*#1!,+$!

/-'+'+%//7!A#>%;%1?!#+4%!&-,&!&-%!<=9055%1!'/!1%)1%/%+&%$!,/!,!B=9055%1!>'&-!(0*&')*%!

1%+$%1 ! &,12%&/ ! 4,),9'*'&.? ! '& ! '/ ! +%4%//,1. ! &# ! /)%4'5. ! , ! >,. ! &# ! #12,+'C% ! ,** ! &-%/%!

'+5#1(,&'#+!%&-%17

8-%!DE8!5,4'*'&'%/!,1%!,/!5#**#>/F!'&!/0))#1&/!0)!&#!G!,4&';%!1%+$%1!&,12%&/?!,**!

1%+$%1!&,12%&/!(0/&!-,;%!&-%!/,(%!+0(9%1!#5!9'&/!,+$!'&! '/!)#//'9*%!&#!('3!1%+$%1!

&,12%&/ !>'&-!$'55%1%+& !+0(9%1 !#5 !4-,++%*/7 !H44#1$'+2*.! &-%!<=9055%1 !4#+5'201,&'#+!

'**0/&1,&%$!,&!8"&50/'*!>,/!,$#)&%$!'+!&-'/!&0',*7

!"#$%%&'

()&*$+,'-.

/&)01

2.!34

2.!34

2.!34

.56%7&)01

*8+8'

,$9:

,$9; ()&*$+,'-! ()&*$+,'-3 (1<=<=&>>

/<%%$>& . /<%%$>& ! /<%%$>& 3 ?@)0A

B8'@,+-C B8'@,+-D B8'@,+-E ?@)0A

!"#$%%&'!"#$%%&'

()&*$+,'-.

/&)01

2.!34

2.!34

2.!34

.56%7&)017&)01

*8+8'*8+8'

,$9:,$9:

,$9;,$9; ()&*$+,'-! ()&*$+,'-3 (1<=<=&>>

/<%%$>& . /<%%$>& ! /<%%$>& 3 ?@)0A

B8'@,+-C B8'@,+-D B8'@,+-E ?@)0A

8"&50/'*)!<=9055%1!4#+5'201,&'#+!,$#)&%$!'+!&-%!'()*%(%+&,&'#+!#5!&-%!$%5%11%$!/-,$'+2!&%4-+'60%!
)1%/%+&%$!'+!&-'/!&0',*7

8-%!<=9055%1I/!4#*#1!9055%1!'/!0/%$!&#!/%!&-%!/015,4%!+#1(,*!'+5#1(,&'#+7!J+!

&-%!/,(%!>,.?!&-%!,03'*',1.!9055%1/!K!,+$!L!,1%!0/%$!&#!/%!$'550/%!,+$!/)%40*,1!

'+5#1(,&'#+7!8-%!+%3&!'+5#1(,&'#+!&#!9%!/%$!'/!&-%!/015,4%!)#/'&'#+7!A#>%;%1?!/%!

&-1%%!5*#,&'+2!)#'+&!;,*0%/!'+!,!MN!9'&/!/),4%!4#0*$!4,0/%!)1%4'/'#+!%11#1/7!O#?!'+/&%,$!

#5!/'+2!)#/'&'#+!'+5#1(,&'#+!,/!&-1%%!5*#,&'+2!)#'+&!;,*0%/?!&-%!$%)&-!;,*0%!#5!&-%!

)'3%*!'/!0/%$7!P01'+2!&-%!*'2-&'+2!/&,2%!'&!'/!)#//'9*%!&#!1%4#;%1!&-%!4#()*%&%!)#/'&'#+!

'+5#1(,&'#+!0/'+2!&-%!$%)&-!;,*0%!,+$!;'%>!$'1%4&'#+7

8-%!4#$%!/-#>+!,&!!"#$"%&'9!'/!&-%!"BQ!4#$%!+%4%//,1.!&#!5'**!&-%!<=9055%17!J&!

'/!1%/)#+/'9*%!5#1!,4&';,&'+2!&-%!;%1&%3!,+$!51,2(%+&!/-,$%1/!&-,&!,4&0,**.!5'**!&-%!<=

9055%1!,+$!5#1!/%+$'+2!&-%!/4%+%!2%#(%&1.!,+$!*'2-&'+2!'+5#1(,&'#+!&#!&-%!21,)-'4/!

4,1$7

44"5678"'%&/&99&8:)+8&9;;89+<=>+(&97+$.'*&,)"?,@&A&0
4!"B
42""""'*+(&97+$"?>+(1
4C""""7A("7D"E"F",@&A&GHA/+@&>+(D"-"F"41
4I"""",@&A&GH+99+J=$6@-.KLMNOPL:QRSM*TU:QNLVNWMLQNTRXLRN01"
4Y""""ZZ"[7A8"P#"@68&"/96>"$7,(7A#,"!4D"!!D"!2"+A8"!C
4\""""[7A8=>+(&97+$=,)+8&9.01
4]""""ZZ",&A8"9+<",@&A&"#&6>&(9J"(6"()&"#9+')7@,"@+98

Figure 4: Geometry Buffer. Image courtesy of [Policarpo and Fon-
seca 2005].

!"#$%&'()!"#$%&!#'%()!()$)*%+),!-*.'!+)/+0*)1!#$!!"#$%&'*!%-+)*!+2)!&#(2+#$(!%$,!3.1+43*.5)11#$(!
3%11)16

+,*,-,'./0"&12'3455

72)!%'8#)$+!3%11!#$#+#%)1!%&&!+2)!3#/)&1!#$!+2)!80--)*!:)!%*)!(.#$(!+.!01)!+.!

%550'0&%+) ! &#(2+#$(! ;<480--)* ! = ! -*.' !!"#$%& ' 6>6 ! 72#1 ! :%?@ ! 3#/)&1 ! :#+2.0+ ! %$?!

#&&0'#$%+#.$!:#&&!2%A)!.$&?!+2)!%'8#)$+!5.$+*#80+#.$6!".*!+2%+@!%&&!:)!$)),!+.!,.!#1!+.!

)$,)!+2)!,#--01)!+)/+0*)!;-*.' !!"#$%&'*0>!'.,0&%+),!8?!+2)!50**)$+!%'8#)$+!&#(2+!

-%5+.*6!72)!5.,)!-.*!+2)!%'8#)$+!3%11!#1!12.:$!%+!7"52"1#'-66

!!"#$%&"'()*)++)&,-.&)+//&+.01.23%)456'7)8-"98:)4);
!<"=
!>""""??"8)5".23%)45":$@$+"5$"3)"2$&A@.5)&"0%5-"&%**A8)"2.5)+%.@
!B""""C@D$@$+E*#6F8:)4)GH.23%)45IJ;K
!E""""??"3%4&"&%**A8)"LG3A**)+M8".AJ%@%.+N"!
!O""""2+513%4&15)J5A+)6PQR!;K
!S""""??"&+.0"8:+))4G.@%C4)&"TA.&+%@.5)+.@
!U""""&+.01+):56!V!V218%W)JV218%W)N;K
!X""""??"A43%4&"&%**A8)"LG3A**)+M8".AJ%@%.+N"!
!Y""""2+51A43%4&15)J5A+)6PQR!;K
<!"Z

7"52"1#'-6)!B.,)!+.!#'3&)')$+!+2)!%'8#)$+!3%116

+,*,8,'7"#92':;"55<%5'=>2"/"?42"<1

C2)$!*)$,)*#$(!+2)!&#(2+#$(!3%11!-.*!%!1#$(&)!&#(2+@!%!(..,!.3+#'#9%+#.$!+.!01)!

#1 ! +2)!15#11.*1 ! *)5+%$(&)6 !D)$,)*#$(!%! -0&& !15*))$!E0%,*#&%+)*%& !3.&?(.$! +. !3)*-.*'!

&#(2+#$(!:#&&!)/)50+)!+2)!&#(2+#$(!12%,)*!-.*!%&&!3#/)&1!#$!+2)!80--)*@!80+!,)3)$,#$(!.$!

+2)!&#(2+!#&&0'#$%+#.$!*%,#01@!1.')!3#/)&1!'#(2+!8)!.0+1#,)!.-!&#(2+!132)*)!.-!#$-&0)$5)!

+201!*)5)#A#$(!$.!&#(2+!5.$+*#80+#.$6!C)!5%$!1%A)!%!&.+!.-!5.'30+%+#.$!8?!5%&50&%+#$(!

+2)!8.0$,#$(!*)5+%$(&)!#$!15*))$!13%5)!-.*!+2)!&#(2+!132)*)!.-!#$-&0)$5)!%$,!)$%8&#$(!

+2)!15#11.*1!+)1+6!C2)$!)$%8&),@!%&&!-*%(')$+1!.0+1#,)!+2)!15#11.*1!*)5+%$(&)!:#&&!8)!

,#15%*,),!8)-.*)!+2)!-*%(')$+!12%,)*!#1!)/)50+),!1%A#$(!%!&.+!.-!3*.5)11#$(6!

F$!.0*! +)1+ !15)$)!:)!2%A)!+2*))!&#(2+!1.0*5)1!80+ !,)3)$,#$(!.$!+2)!A#):)*!

3.1#+#.$!1.')!.-!+2)'!5%$!3*.G)5+!+.!%!1'%&&!%*)%!#$!15*))$6!".*!)/%'3&)@!01#$(!%!

HIJ/HIJ!80--)*!;JHKL!3#/)&1>!:)!:.0&,!$)),!+.!)/)50+)!+2)!-*%(')$+!12%,)*!MKNL!

+#')1 ! +. ! 3*.5)11 ! +2*)) ! &#(2+1 ! :#+2.0+ ! 15#11.*1 ! .3+#'#9%+#.$6 ! O0+ ! 01#$(! 15#11.*1!

.3+#'#9%+#.$!:)!*),05)!+2)!$0'8)*!.-!3#/)&1!3*.5)11),!3)*!&#(2+!%$,!.$!%A)*%()!1%A)!

Figure 5: Final Image

2.2 Lighting Stage

As a result of the geometry pass one gets access to four textures in
which the above mentioned attributes are stored. The lighting pass
uses these textures to calculate the lighting. This is done by iterating
over all lights which affect the geometry and additively apply the
lighting equations based upon the attributes. The light volumes are
transformed into screen space so their projection covers the pixels
to shade. The following volumes are used.

• Pointlight: sphere volume

• Spot light: cone volume

• Directional light: full screen quad due to no falloff and the
direction.

An issue is that for a sophisticated material-model different calcu-
lations are needed based upon the type of the model. This can be
either implemented in one huge shader or be split up into separate
shaders with an additional attribute is used to indicate the type of
material. Of course in this stage there are both vertex and pixel
shaders active but the pixel shader produces a different output than
in a forward renderer.

2.3 Post Processing Stage

This stage takes the output of the lighting stage and the additional
information from the G-Buffer to implement effects like Motion
Blur, Depth Of Field and Bloom as a post processing effect. See
section Effects for a further discussion of these topics in the context
of deferred rendering.

2.4 Final Stage

In the final stage the result of the post processing stage is brought
onto the screen by texturing a quad polygon which has the size of
the screen-resolution with the output of the Post Processing Stage.

Figure 5 shows the final result of applying the lighting and post-
processing pass on the above four attributes.

2.5 Drawbacks

Despite its convincing advantages over forward rendering, deferred
rendering has two major drawbacks. Those can be solved by using

either clever workarounds or hacks and tricks which fall back to
forward rendering as shown below.

• Multisample Antialiasing MSAA and Coverage Sampling
Antialiasing CSAA. Deferred rendering is inherently incom-
patible with MSAA and CSAA because MRTs don’t support
it. [Policarpo and Fonseca 2005], [Shishkovtsov 2005] and
[Koonce 2008] all apply an edge-detection filter during post-
processing and blur the edges to solve this issue.

• Transparency is not possible to directly render within a de-
ferred renderer because the first hit with a surface is recorded
and no multi-layer frame-buffer as proposed by [Bavoil
et al. 2007] exist yet in hardware. [Shishkovtsov 2005] and
[Koonce 2008] both propose forward rendering as a fallback
solution for rendering alpha blended geometry after the light-
ing pass. Despite the drawbacks of transparent rendering,
with the depth values at hand gathered through the geometry
pass, interesting effects like a more sophisticated water and
refraction effect can be implemented as shown in section 4.1.

2.6 Performance

Although deferred rendering has many performance benefits op-
posed to forward rendering there are some points which need care-
ful consideration and experimentation otherwise a deferred renderer
could very easily suffer from bad performance.

• G-Buffer layout and format. If using fat formats e.g. 64-
bit depth this can mean that reading a texel can take twice as
much time. Another point to consider when designing the G-
Buffer layout is how much performance one wants to spend
on unpacking e.g. when storing only the x- and y-component
of the normal. [Shishkovtsov 2005] gives an overview of dif-
ferent G-Buffer layouts, [Valient 2007] discusses the highly
packed G-Buffer layout used in the game Killzone 2.

• Bound lights. A naive approach of deferred rendering would
apply the lighting calculations to all pixels on the screen but
this is only necessary for global directional lights. For most of
the local lights their influence on the pixels can be bound and
so the number of pixels to be processed by the shader. Dif-
ferent techniques like early z-rejection, stencil masking and
dynamic branching exist for this approach. [Policarpo and
Fonseca 2005] propose to utilize the scissors test to bound
the influence of each light. The bounding rectangle of a light
is calculated in screen space on the CPU and then passed to
OpenGL for the scissor test. [Koonce 2008], [Valient 2007]
and [Hargreaves and Harris 2004] propose light-volumes by
using stencil mask to mark pixels which are really affected by
the light.

• Multiple Materials. In deferred rendering one shader needs
to cover the lighting of multiple materials. One solution as
implemented by [Shishkovtsov 2005] is to store the material-
id in the G-Buffer and do dynamic branching in the shader.
Another approach is to render the light for each material it
affects but this would waste most of the deferred renderings
benefits. [Hutchinson et al. 2010] propose a technique to
split the screen into tiles of different classifications like sky,
MSAA edge, sun-facing and soft-shadow. They generate then
a shader id out of the classification which allows a more spe-
cific rendering.

2.7 Benefits

The use of deferred rendering turns out to excel in these areas in
which forward rendering has difficulties.

• Decoupling geometry from shading and thus reaching a com-
plexity for shading of O(Ob jects+Lights).

• Much lower shader complexity and no combinatorial explo-
sion.

• Much less wasted shading than in forward rendering.

• A kind of global information in the form of the G-Buffer
which can be utilized in huge variations as shown in the sec-
tions Effects and Advanced Techniques.

3 Applications

3.1 Games

The most prominent application for deferred rendering are games.
In the last years since the upcoming of powerful enough hardware
deferred rendering found itself being implemented in a number of
AAA Titles like the S.T.A.L.K.E.R. series, Tabula Rasa, Killzone 2
and Starcraft 2. [Filion and McNaughton 2008] and [Valient 2007]
give an in depth discussion of their implementation of deferred ren-
dering.

The question is why not all modern games use deferred rendering
as their primary rendering technique and the answer is simply that
not all type of games and scenarios are equally well suited for it.
According to [Hargreaves and Harris 2004] deferred rendering is
very well suited for complex scenes with many local lights which
ideally don’t overlap. In this case the lights can be bound very well
to a small amount of pixels they influence in the G-Buffer and thus
reducing shader complexity to O(R) where R is the screen resolu-
tion. Many directional lights are the worst scenario for deferred
rendering because they require to run their shaders over the com-
plete G-Buffer and not only a small subset of pixels. There shading
complexity raises to O(R∗Lights) where R is the screen resolution.
Applied to games this would imply nighttime scenes with many dy-
namic lights as ideal for deferred rendering and outdoor scenes with
one ore more large directional light source like the sun as the worst
scenario. An exceptional scenario when to use deferred rendering
is when there is no tight control over the environment, its effects
and thus the count of local lights.

As an example Starcraft 2 as a realtime strategy game is ideal for
deferred rendering because a huge amount of units can combat each
other and could cast a vast number of dynamic lights. The game de-
velops some episodes of it’s story line in in-game graphic cutscenes
which use highly complex effects and techniques (see section 4) so
deferred rendering was a good choice because these scenes benefit
a lot from it.

Another example is Tabula Rasa which is a MMORPG and thus
inherently has no direct control over the environment. A potentially
unlimited amount of players can logon and combat each other or
the environment and thus increase the complexity for rendering. It
has a day-night cycle which in night creates an ideal scenario for
deferred rendering.

NPR renderer has access to a restricted collection of spatial
information.

Different information from the object space can be used to
influence the pen-and-ink drawing in different ways. An
outline of an object, such as the one shown in Figure 4(a)
may be determined by the variation of the distance of neigh-
bouring pixels in the image plane to the visible surface or,
alternatively, by the angle between the surface normals and
the view plane normals. The length, thickness and density
of strokes may be determined by normals in relation to a
light source, as shown in Figure 4(b) where all strokes fol-
low the same direction. Direction of strokes can be con-
trolled by the curvature of the surface (Figure 4(c)). The fi-
nal image shown in 4(d) is generated by an amalgamation of
the interior shading (Figure 4(c)) and outline (Figure 4(a))
images.

(a) (b)

(c) (d)

Figure 4: The sphere rendered in pen-and-ink as: (a) out-
line only, (b) interior shading with lines in oue direction
only, (c) interior shading with control of line direction (d)
(a) and (c) together.

In 2 D pen-and-ink rendering, the first phase forwards
more than just colour information into the image space.
This information can be passed on as a set of image
buffers . The choice of information to
pass on very much depends on the NPR effects one wishes
to achieve, but obviously the more information, the more
flexibility and control can be exercised in image space. In
our 2 D rendering system we forward the following set of
image buffers into image space:

: A greyscale image synthesized using a PR
shading method as shown in Figure 5(b), where any
light source or sources can be introduced as required.

: A buffer containing the distances from the
image plane, following the individual projection lines,
to the visible part of a specific iso-surface in the
dataset. Figure 5(a) shows a visualisation of this
where the distances are mapped to a grey-scale range
of and the background designated as not hit-

ting the surface in the dataset is coloured red for clar-
ity.

: A buffer that forwards, for each pixel, a
vector represents the normal estimated for the cor-
responding point on the visible surface. In Fig-
ure 5(c), is visualized as the angles between the
surface normal and the view plane normal. An angle

maps onto an intensity , and red
once again represents the background.

: Actually split into two s, namely
(Figure 5(e)) and (Figure 5(d)),

which contain the curvature of the surface in the hor-
izontal and vertical directions respectively. In this
case, curvature is taken as the rate of change of nor-
mals across the surface.

(a) (b)

(c)

(d) (e)

Figure 5: Control image buffers containing (a) distance, (b)
shade, (c) normals, (d) vertical curvature and (e) horizontal
curvature.

Having a set of s containing the necessary spatial infor-
mation, the second phase renderer can apply different pen-
and-ink filters to synthesise an NPR image. For example,
an outline filter

determines the pixel values in according to the val-
ues in . If a pixel neighbours others of significantly
different distance values, it is interpreted as being on the
outline, and a short, oriented pen stroke is added in the di-
rection of this section of the outline. Figure 6(a) shows an

206

(a) outline

NPR renderer has access to a restricted collection of spatial
information.

Different information from the object space can be used to
influence the pen-and-ink drawing in different ways. An
outline of an object, such as the one shown in Figure 4(a)
may be determined by the variation of the distance of neigh-
bouring pixels in the image plane to the visible surface or,
alternatively, by the angle between the surface normals and
the view plane normals. The length, thickness and density
of strokes may be determined by normals in relation to a
light source, as shown in Figure 4(b) where all strokes fol-
low the same direction. Direction of strokes can be con-
trolled by the curvature of the surface (Figure 4(c)). The fi-
nal image shown in 4(d) is generated by an amalgamation of
the interior shading (Figure 4(c)) and outline (Figure 4(a))
images.

(a) (b)

(c) (d)

Figure 4: The sphere rendered in pen-and-ink as: (a) out-
line only, (b) interior shading with lines in oue direction
only, (c) interior shading with control of line direction (d)
(a) and (c) together.

In 2 D pen-and-ink rendering, the first phase forwards
more than just colour information into the image space.
This information can be passed on as a set of image
buffers . The choice of information to
pass on very much depends on the NPR effects one wishes
to achieve, but obviously the more information, the more
flexibility and control can be exercised in image space. In
our 2 D rendering system we forward the following set of
image buffers into image space:

: A greyscale image synthesized using a PR
shading method as shown in Figure 5(b), where any
light source or sources can be introduced as required.

: A buffer containing the distances from the
image plane, following the individual projection lines,
to the visible part of a specific iso-surface in the
dataset. Figure 5(a) shows a visualisation of this
where the distances are mapped to a grey-scale range
of and the background designated as not hit-

ting the surface in the dataset is coloured red for clar-
ity.

: A buffer that forwards, for each pixel, a
vector represents the normal estimated for the cor-
responding point on the visible surface. In Fig-
ure 5(c), is visualized as the angles between the
surface normal and the view plane normal. An angle

maps onto an intensity , and red
once again represents the background.

: Actually split into two s, namely
(Figure 5(e)) and (Figure 5(d)),

which contain the curvature of the surface in the hor-
izontal and vertical directions respectively. In this
case, curvature is taken as the rate of change of nor-
mals across the surface.

(a) (b)

(c)

(d) (e)

Figure 5: Control image buffers containing (a) distance, (b)
shade, (c) normals, (d) vertical curvature and (e) horizontal
curvature.

Having a set of s containing the necessary spatial infor-
mation, the second phase renderer can apply different pen-
and-ink filters to synthesise an NPR image. For example,
an outline filter

determines the pixel values in according to the val-
ues in . If a pixel neighbours others of significantly
different distance values, it is interpreted as being on the
outline, and a short, oriented pen stroke is added in the di-
rection of this section of the outline. Figure 6(a) shows an

206

(b) interior

NPR renderer has access to a restricted collection of spatial
information.

Different information from the object space can be used to
influence the pen-and-ink drawing in different ways. An
outline of an object, such as the one shown in Figure 4(a)
may be determined by the variation of the distance of neigh-
bouring pixels in the image plane to the visible surface or,
alternatively, by the angle between the surface normals and
the view plane normals. The length, thickness and density
of strokes may be determined by normals in relation to a
light source, as shown in Figure 4(b) where all strokes fol-
low the same direction. Direction of strokes can be con-
trolled by the curvature of the surface (Figure 4(c)). The fi-
nal image shown in 4(d) is generated by an amalgamation of
the interior shading (Figure 4(c)) and outline (Figure 4(a))
images.

(a) (b)

(c) (d)

Figure 4: The sphere rendered in pen-and-ink as: (a) out-
line only, (b) interior shading with lines in oue direction
only, (c) interior shading with control of line direction (d)
(a) and (c) together.

In 2 D pen-and-ink rendering, the first phase forwards
more than just colour information into the image space.
This information can be passed on as a set of image
buffers . The choice of information to
pass on very much depends on the NPR effects one wishes
to achieve, but obviously the more information, the more
flexibility and control can be exercised in image space. In
our 2 D rendering system we forward the following set of
image buffers into image space:

: A greyscale image synthesized using a PR
shading method as shown in Figure 5(b), where any
light source or sources can be introduced as required.

: A buffer containing the distances from the
image plane, following the individual projection lines,
to the visible part of a specific iso-surface in the
dataset. Figure 5(a) shows a visualisation of this
where the distances are mapped to a grey-scale range
of and the background designated as not hit-

ting the surface in the dataset is coloured red for clar-
ity.

: A buffer that forwards, for each pixel, a
vector represents the normal estimated for the cor-
responding point on the visible surface. In Fig-
ure 5(c), is visualized as the angles between the
surface normal and the view plane normal. An angle

maps onto an intensity , and red
once again represents the background.

: Actually split into two s, namely
(Figure 5(e)) and (Figure 5(d)),

which contain the curvature of the surface in the hor-
izontal and vertical directions respectively. In this
case, curvature is taken as the rate of change of nor-
mals across the surface.

(a) (b)

(c)

(d) (e)

Figure 5: Control image buffers containing (a) distance, (b)
shade, (c) normals, (d) vertical curvature and (e) horizontal
curvature.

Having a set of s containing the necessary spatial infor-
mation, the second phase renderer can apply different pen-
and-ink filters to synthesise an NPR image. For example,
an outline filter

determines the pixel values in according to the val-
ues in . If a pixel neighbours others of significantly
different distance values, it is interpreted as being on the
outline, and a short, oriented pen stroke is added in the di-
rection of this section of the outline. Figure 6(a) shows an

206

(c) interior shading

NPR renderer has access to a restricted collection of spatial
information.

Different information from the object space can be used to
influence the pen-and-ink drawing in different ways. An
outline of an object, such as the one shown in Figure 4(a)
may be determined by the variation of the distance of neigh-
bouring pixels in the image plane to the visible surface or,
alternatively, by the angle between the surface normals and
the view plane normals. The length, thickness and density
of strokes may be determined by normals in relation to a
light source, as shown in Figure 4(b) where all strokes fol-
low the same direction. Direction of strokes can be con-
trolled by the curvature of the surface (Figure 4(c)). The fi-
nal image shown in 4(d) is generated by an amalgamation of
the interior shading (Figure 4(c)) and outline (Figure 4(a))
images.

(a) (b)

(c) (d)

Figure 4: The sphere rendered in pen-and-ink as: (a) out-
line only, (b) interior shading with lines in oue direction
only, (c) interior shading with control of line direction (d)
(a) and (c) together.

In 2 D pen-and-ink rendering, the first phase forwards
more than just colour information into the image space.
This information can be passed on as a set of image
buffers . The choice of information to
pass on very much depends on the NPR effects one wishes
to achieve, but obviously the more information, the more
flexibility and control can be exercised in image space. In
our 2 D rendering system we forward the following set of
image buffers into image space:

: A greyscale image synthesized using a PR
shading method as shown in Figure 5(b), where any
light source or sources can be introduced as required.

: A buffer containing the distances from the
image plane, following the individual projection lines,
to the visible part of a specific iso-surface in the
dataset. Figure 5(a) shows a visualisation of this
where the distances are mapped to a grey-scale range
of and the background designated as not hit-

ting the surface in the dataset is coloured red for clar-
ity.

: A buffer that forwards, for each pixel, a
vector represents the normal estimated for the cor-
responding point on the visible surface. In Fig-
ure 5(c), is visualized as the angles between the
surface normal and the view plane normal. An angle

maps onto an intensity , and red
once again represents the background.

: Actually split into two s, namely
(Figure 5(e)) and (Figure 5(d)),

which contain the curvature of the surface in the hor-
izontal and vertical directions respectively. In this
case, curvature is taken as the rate of change of nor-
mals across the surface.

(a) (b)

(c)

(d) (e)

Figure 5: Control image buffers containing (a) distance, (b)
shade, (c) normals, (d) vertical curvature and (e) horizontal
curvature.

Having a set of s containing the necessary spatial infor-
mation, the second phase renderer can apply different pen-
and-ink filters to synthesise an NPR image. For example,
an outline filter

determines the pixel values in according to the val-
ues in . If a pixel neighbours others of significantly
different distance values, it is interpreted as being on the
outline, and a short, oriented pen stroke is added in the di-
rection of this section of the outline. Figure 6(a) shows an

206

(d) a) and c) together

Figure 6: Different styles of 2+D NPR technique

3.2 Scientific Visualization

Deferred rendering can also be applied to volume rendering as pro-
posed by [Treavett and Chen 2000]. In their paper they show a pen-
and-ink style rendering technique of volumes to do non photorealis-
tic rendering (NPR) to achieve volume illustration effects. To over-
come the difficulties of just having access to very local data around
a voxel during rendering they suggested a two-phase approach. In
the first phase all 3D information in object space is gathered and
in the second phase the NPR effects can be applied globally in im-
age space. Although they call it 2+D NPR technique because of
the access to a subset of spatial information they never mention the
term deferred rendering but it is exactly the same procedure like de-
ferred rendering. See Figure 6 for some results rendered with this
technique.

4 Effects and Advanced Techniques

With the use of global depth and other pixel informations, global
effects become possible. In this chapter some of the most com-
mon effects to deferred rendering are presented and some details
discussed.

4.1 Water and Refraction

Direct water and refraction rendering is not possible with deferred
rendering due to its incompatibility with alpha blended geometry.
[Koonce 2008] brings in a forward renderer in combination with

(a) Forward rendering

(b) Deferred rendering

Figure 7: Water with refraction rendering compared. Image cour-
tesy of Destination Games.

deferred rendering to do water rendering in Tabula Rasa. See Fig-
ure 7 for a comparison of the water renderer in Tabula Tasa with
only forward rendering (a) and with deferred rendering (b). One
can see that the color of the water smoothly darkens in the deferred
rendering version whereas in the forward rendering sharp edges at
the shore of the water show up. This effect was implemented by
accessing the G-buffers depth values in the water shader of the for-
ward renderer. An additional artist-crafted 1D-texture was brought
in to give artists the control over the gradient of the water color.

4.2 Depth of Field

Depth of field is the effect where objects appear in focus and objects
nearer or farther away from the viewer appear out of focus which
results in the blurring of those objects. This effect is quite natural
in photography and film making and is used as a tool for directing
the attention of the viewer.

Depth of field is caused by light reflected by an object falling
through a lens and being not projected directly on the plane in fo-
cus. The bigger a lens is the bigger gets the circle of confusion and
vice versa. See figure 8 for an illustration of the circle of confusion.
The object lies not on the plane in focus and is therefore projected
behind the image plane which causes the blurriness. The same is
true for objects with a higher distance to the lens than the plane in
focus. Their rays will meet in front of the image plane and thus
resulting again a blurred object.

Because realtime-rendering does not simulate the light distribution
by shooting rays through a lens like a sophisticated ray-tracer [Pharr
and Humphreys 2004] but by performing scan-line rendering and
thus behaving like a pin hole camera this effect is not naturally built
in with OpenGL or DirectX and needs to be simulated with other
techniques.

[Demers 2004] cites five different methods of generating the depth
of field effect.

1. Distributing traced rays. Tracing rays in realtime-rendering
despite the ever increasing performance of hardware is still
not acceptable at interactive frame rates but would lead to the
correct solution.

2. Rendering from multiple cameras - accumulation buffer tech-
nique. In this technique the scene is renderer multiple times
into an additional back buffer - the accumulation buffer - each
time the camera a little bit altered - and the resulting pixels
are then blurred. Due to the need for very much passes for ac-
ceptable quality (around 50) this technique is not amenable
to realtime-rendering.

3. Rendering multiple layers. In this technique the scene is di-
vided into multiple layers and each layer is rendered blurred
based on the distance to the image plane.

4. Forward-mapped z-buffer technique. This technique scatters
color from a pixel to its neighbors .

5. Reverse-mapped z-buffer technique. First multiple mip-map
levels of the resulting image are calculated and then based
upon the circle of confusion of each texel the according mip-
map is chosen. Because the smaller mip-maps are scaled to
the original solution this results the blurring.

The last two techniques introduce the basic concepts of rendering
depth of field in a deferred renderer. They utilize the z-value which
are already at hand in deferred rendering through the G-Buffer and
they either gather or scatter color from or to neighboring pixels.
All practical real-time depth of field implementations in deferred
rendering build upon these three concepts.

A plain forward approach would be to calculate each pixels circle
of confusion and use this factor to scale a blur kernel (e.g. a poisson
disc) which operates over the whole image in the post-processing
stage. Unfortunately this just works for objects beyond the focal
plane, doesn’t scale well to low-end hardware and causes artifacts
like pixel bleeding as shown in Figure 9.

A highly specialized implementation of the depth of field was de-
veloped for the game Starcraft 2 and has been discussed by [Filion
and McNaughton 2008]. Instead of applying a blur filter three im-
ages of different levels of blur are generated and interpolated to
achieve a gradual blur. The circle of confusion is calculated and
stored for every pixel in a separate texture. Then blurred circle of
confusion and blurred depth maps are calculated. With this infor-
mation at hand depth ordering is used to do correct pixel bleeding-
free depth of field. The depth ordering works like this: Compare
the average depth of the filtered area to the current processing pix-
els depth. If the depth of the current pixel is higher then it is behind
its neighbours and thus the circle of confusion value of blurred cir-
cle of confusion map is used. If the current pixel is nearer then it
is in front of its neighbors and in this case the circle of confusion is
computed and used just for this pixel and nothing from the circle of
confusion map.

Another implementation of depth of field for the Game Call of Duty
4: Modern Warfare was shown by [Hammon 2008]. Although they
don’t utilize a deferred renderer they generate a depth map - as
present in deferred rendering - during rendering and apply depth
of field as post process by calculating different circle of confusion
maps and interpolating between them.

See figure 10 for a difficult depth of field scene in the game Star-
craft 2. In this scene a sharp character in the plane of focus appears
in front of the out of focus and thus blurred background. Another

Figure 8: Circle of confusion

Figure 9: Pixel bleeding

character appears in front of the sharp one out of focus and is there-
fore blurred too.

4.3 Global Methods

With the information of depth and normal for each pixel a number
of global effects become possible. First a short overview of how
depth and normals can be used for global calculations and then three
global methods are introduced and their issues are discussed.

The approach to do global effects is to sample neighbors nearer or
farther away with an arbitrary number of samples. This can be ac-
complished by ”shooting” rays as shown in figure 11. Of course we
are not in real 3D but in image-space when sampling the G-Buffer
and rays must be projected back into 2D to access the neighbors on
the G-Buffer. In a real global illumination ray-tracer as presented
by [Pharr and Humphreys 2004] BRDFs are used to calculate the
distribution of the rays over the hemisphere of a point but this is not
feasible for real-time rendering. Instead the assumption is made
that the surface is perfect diffuse and all rays are equally distributed
over the hemisphere. So this implies that global effects won’t work
in this way for other surfaces then lambertian like perfect specular
material.

4.3.1 Ambient Occlusion

Ambient occlusion is an effect very easy to understand and although
it makes up very much of a correct visual impression of a 3D scene

DOF with maximum blur

Figure 10: Difficult DOF scene. Image courtesy of Blizzard Enter-
tainment.

8 to 32 samples per pixel

Figure 11: Shooting rays for neighbor sampling. Image courtesy of
Blizzard Entertainment.

(a) No ambient occlusion

(b) With ambient occlusion

Figure 12: Comparison of rendering with and without ambient oc-
clusion. Image courtesy of [Pharr and Green].

it still has been very difficult until today to integrate it into real-
time graphics. Ambient occlusion is simply the result of geometry
occluding each other in an indirect way and thus blocking incoming
indirect light. See figure 12 for a comparison of ambient occlusion
and standard flat-rendering. Notice the complete different shading
of the kangoroo especially below it and around its stomach. In this
picture there is a very subtle shadow casted by the kangoroo on the
floor which is also caused by ambient occlusion. [Pharr and Green
2004], [Bunnell 2005] and [Jared and Jia 2008] give an overview of
different implementations of ambient occlusion.

For deferred rendering a so-called screen space ambient occlusion
(SSAO) technique has been invented. See figure 14 for an example
of it. Notice how occluded areas darken at any distance. The idea is
to sample the depth of the neighboring pixels in screen space. The
depths of the pixel from where samples are cast and the depths of
the samples are compared. If the samples depth is lower there is a
surface near to the origin pixel and ambient occlusion may be oc-
cur. Whether ambient occlusion really occurs or not depends on the
occlusion function which must be carefully designed. See figure 13
which shows an example of an occlusion function. Notice the small
epsilon which is used to handle special cases. Some care must also
be taken to prevent self-occlusion which simply means rays which
point below the surface are e.g. flipped or ignored. SSAO is nor-
mally not able to render the subtle shadow as shown in figure 12b
because this would take too much samples at a too far distance of
neighbors and is more a global illumination effect than ambient oc-
clusion. In fact in real global illumination there is no distinguishing
between global illumination and ambient occlusion because a real
global illumination algorithm brings ambient occlusion with it for
free.

[Filion and McNaughton 2008] discusses the implementation of

Figure 13: An occlusion function. Image courtesy of Blizzard En-
tertainment.

Chapter 8: Finding Next Gen – CryEngine 2

114

Figure 15. Screen-Space Ambient Occlusion in a complete ambient lighting situation

(note how occluded areas darken at any distance)

Figure 16. Sample scene A with special material setup to visualize SSAO (left: with SSAO,

right: without SSAO)

Figure 14: Screen Space Ambient Occlusion. Image courtesy of
Crytek.

ambient occlusion in Starcraft 2. They use a random 3D vectors tex-
ture which allowed to create the random sampling pattern for each
pixel. Of course randomized sampling is not cache friendly and the
wider the area to sample the worse it gets. As another performance
issue textures have been reported to be a bottleneck. To increase
performance a lower resolution depth-map with quarter size was
used.

[Mittring 2007] give a short introduction of how SSAO was im-
plemented in CryEngine 2 used in Crysis and their approach was
basically the same as the one in Starcraft 2.

4.3.2 Global Illumination

[Filion and McNaughton 2008] report that they implemented global
illumination the same way as their ambient occlusion technique just
by sampling a wider area.

[Soler et al. 2010] calculate global illumination in deferred render-
ing by first mip-mapping the G-Buffer and then calculating the in-
direct lighting at each level. This calculation is based upon Monte-
Carlo sampling to get uniform screen-space samples. The result is
the combination of all contribution from all mip-map levels. See
figure 15 for a comparison of direct only lighting and direct with
one indirect bounce lighting. Their approach is real-time compati-
ble as the picture from figure 15b took 10 ms to render.

[Shishkovtsov 2005] reported that during the development of
S.T.A.L.K.E.R. experiments of extending the deferred renderer to
support global illumination of diffuse surfaces have been made.
This idea was then of course dropped due to insufficient perfor-
mance although it ran about 10 fps with 500 indirect lights.

Copyright is held by the author / owner(s).

SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010.

ISBN 978-1-4503-0210-4/10/0007

A Deferred Shading Pipeline for Real-Time Indirect Illumination

Cyril Soler

INRIA, Grenoble university∗
Olivier Hoel

INRIA, Grenoble university

Frank Rochet

Eden Games

1 Introduction
Computing indirect lighting in video games simultaneously im-
proves gameplay and scene realism. However, the context of 3D
video games brings very restrictive constraints: (1) the computa-
tion should be very fast (less than 10 ms) and –most importantly–
with a constant cost, i.e. independent of both the geometric and
lighting complexity of the scene; (2) the indirect illumination algo-
rithm should work seamlessly on dynamic scenes, with any source
of direct illumination –not only point light sources– and easily take
place into a game engine pipeline; and (3) the computed result may
be approximate but must be artifact-free and temporally coherent.
We present a deferred-shading algorithm for computing indirect

illumination that exactly suites these constraints. The method is
approximate as the indirect visibility is not accounted for, but it
naturally allows multiple bounces and the last bounce of indirect
illumination can reflect on non-diffuse materials.

Direct only Direct + indirect

Direct only Direct + indirect

Figure 1: One-bounce indirect illumination computed by our tech-
nique (top row in a scene with 3M polygons), and bottom row in
the the game engine "Alone in the Dark, Near Death Investigation".
In the bottom the indirect illumination is importance sampled and
reflected on the glossy metallic bin. Computation time is 10 ms for
both on a GTX260 NVidia card, at resolution 1280x1024.

2 Deferred shading indirect illumination
Our algorithm works entirely in screen-space, hierarchically. It
takes G-Buffers as input: normals, reflectance parameters, depth,
and diffuse direct illumination. These buffers are mipmap-ed, and
we compute indirect illumination at each level using a common
shader. This shader gathers light from points randomly sampled
in a fixed-size circular region of the image. This eventually gath-
ers light from arbitrary distances. To do this, we reformulate the
Monte-Carlo sampling of the bouncing light equation to fit uniform
screen-space samples. The contributions from all mipmap levels are
then up-sampled (with bilateral up-sampling) and added together.
The resulting image contains indirect lighting between all visible
parts of the scene. To remove the noise due to sampling, we aver-
age indirect lighting across successive UN-warped frames (at now
extra cost), and we combine multiple indirect illumination compo-
nents from several cameras. The indirect illumination is combined
with the reflectance buffer. It is added to the direct illumination,
and possibly further used as input to compute the next bounce.

As a consequence, our technique computes light interaction at
arbitrary distance in the image plane, at a constant cost. Further-
more, it allows a computation time / accuracy trade-off by selecting
starting from which screen resolution the light gathering shader is
applied. This approximation results in low-pass filtering the in-
direct illumination rather than loss of illumination. It works with
arbitrary sources of direct illumination (most games commonly use
e.g. a huge number of omni-directional point light sources), and the
cost is independent on visual complexity and illumination. Finally,
our algorithm is real-time (less than 10 ms per frame) on recent
graphics hardware as shown in the table below:
Resolution/samples Quarter/64 Quarter/256 Half/256 Half/64

Architectures (a) (b) (a) (b) (a) (b) (a) (b)
Total time (ms) 13.9 4.6 33.6 11.2 110.6 32.6 34.8 10.5

Figure 2: Computation times in ms for different parameter sets,
measured using (a) NVidia 8800GTS and (b) NVidia GTX260 cards,
for a display resolution of 1280×720p for the images on Figure 1.
3 Related work
We extend to arbitrary distances the local indirect illumination com-
putation proposed by Ritschel [2009]. Multiresolution Splatting of
Indirect Illumination [Nichols and Wyman 2009] and Hierarchical
Image-Space Radiosity [Nichols et al. 2009] also compute long-
distance indirect illumination. They use virtual point lights (VPL)
to represent the direct illumination, which they collect with Reflec-
tive Shadow Maps (RSM). While the former adaptively splats illu-
mination for all VPLs, the later further organizes the VPLs into a
tree structure and performs adaptive gathering.
RSMs may need a large number of render passes to approximate

low frequency sources of direct illumination (e.g. envmaps, or indi-
rect lighting for 2nd bounce). Methods based on RSMs thus depend
on the complexity of the direct illumination and therefore are less
robust to varying lighting conditions and less suited to more than
one bounce of indirect illumination. Because we use and compute
screen-space illumination, we don’t have this limitation. The cost
of RSMs also depends on the scene complexity, whereas our tech-
nique has a constant cost w.r.t to geometric and illumination com-
plexity. Splatting indirect illumination from VPLs does not allow
to importance sample non diffuse BRDFs, because all pixels share
the same VPLs. With our method, each pixel may have it’s own
sets of lights samples in screen-space.
Imperfect shadow maps [Ritschel et al. 2008] approximately

simulates indirect shadows, for large enough objects. In addition
to using VPLs, this method requires preprocessing of the geometry,
which makes it incompatible with fully dynamic scenes where the
geometry content may not be known in advance, such as in games.

References
NICHOLS, G., AND WYMAN, C. 2009. Multiresolution splatting for indirect illumi-

nation. In Proc. ACM Symposium on Interactive 3D Graphics and Games 2009.

NICHOLS, G., SHOPF, J., AND WYMAN, C. 2009. Hierarchical image-space radiosity

for interactive global illumination. In Proceedings of Eurographics Symposium on

Rendering 2009, H. Lensch and P.-P. Sloan, Eds.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHSBACHER, C., AND

KAUTZ, J. 2008. Imperfect shadow maps for efficient computation of indirect

illumination. ACM Transactions on Graphics 27, 5 (December).

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approximating dynamic

global illumination in image space. In Proc. ACM Symposium on Interactive 3D

Graphics and Games 2009 (I3D ’09).

(a) Direct only

Copyright is held by the author / owner(s).

SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010.

ISBN 978-1-4503-0210-4/10/0007

A Deferred Shading Pipeline for Real-Time Indirect Illumination

Cyril Soler

INRIA, Grenoble university∗
Olivier Hoel

INRIA, Grenoble university

Frank Rochet

Eden Games

1 Introduction
Computing indirect lighting in video games simultaneously im-
proves gameplay and scene realism. However, the context of 3D
video games brings very restrictive constraints: (1) the computa-
tion should be very fast (less than 10 ms) and –most importantly–
with a constant cost, i.e. independent of both the geometric and
lighting complexity of the scene; (2) the indirect illumination algo-
rithm should work seamlessly on dynamic scenes, with any source
of direct illumination –not only point light sources– and easily take
place into a game engine pipeline; and (3) the computed result may
be approximate but must be artifact-free and temporally coherent.
We present a deferred-shading algorithm for computing indirect

illumination that exactly suites these constraints. The method is
approximate as the indirect visibility is not accounted for, but it
naturally allows multiple bounces and the last bounce of indirect
illumination can reflect on non-diffuse materials.

Direct only Direct + indirect

Direct only Direct + indirect

Figure 1: One-bounce indirect illumination computed by our tech-
nique (top row in a scene with 3M polygons), and bottom row in
the the game engine "Alone in the Dark, Near Death Investigation".
In the bottom the indirect illumination is importance sampled and
reflected on the glossy metallic bin. Computation time is 10 ms for
both on a GTX260 NVidia card, at resolution 1280x1024.

2 Deferred shading indirect illumination
Our algorithm works entirely in screen-space, hierarchically. It
takes G-Buffers as input: normals, reflectance parameters, depth,
and diffuse direct illumination. These buffers are mipmap-ed, and
we compute indirect illumination at each level using a common
shader. This shader gathers light from points randomly sampled
in a fixed-size circular region of the image. This eventually gath-
ers light from arbitrary distances. To do this, we reformulate the
Monte-Carlo sampling of the bouncing light equation to fit uniform
screen-space samples. The contributions from all mipmap levels are
then up-sampled (with bilateral up-sampling) and added together.
The resulting image contains indirect lighting between all visible
parts of the scene. To remove the noise due to sampling, we aver-
age indirect lighting across successive UN-warped frames (at now
extra cost), and we combine multiple indirect illumination compo-
nents from several cameras. The indirect illumination is combined
with the reflectance buffer. It is added to the direct illumination,
and possibly further used as input to compute the next bounce.

As a consequence, our technique computes light interaction at
arbitrary distance in the image plane, at a constant cost. Further-
more, it allows a computation time / accuracy trade-off by selecting
starting from which screen resolution the light gathering shader is
applied. This approximation results in low-pass filtering the in-
direct illumination rather than loss of illumination. It works with
arbitrary sources of direct illumination (most games commonly use
e.g. a huge number of omni-directional point light sources), and the
cost is independent on visual complexity and illumination. Finally,
our algorithm is real-time (less than 10 ms per frame) on recent
graphics hardware as shown in the table below:
Resolution/samples Quarter/64 Quarter/256 Half/256 Half/64

Architectures (a) (b) (a) (b) (a) (b) (a) (b)
Total time (ms) 13.9 4.6 33.6 11.2 110.6 32.6 34.8 10.5

Figure 2: Computation times in ms for different parameter sets,
measured using (a) NVidia 8800GTS and (b) NVidia GTX260 cards,
for a display resolution of 1280×720p for the images on Figure 1.
3 Related work
We extend to arbitrary distances the local indirect illumination com-
putation proposed by Ritschel [2009]. Multiresolution Splatting of
Indirect Illumination [Nichols and Wyman 2009] and Hierarchical
Image-Space Radiosity [Nichols et al. 2009] also compute long-
distance indirect illumination. They use virtual point lights (VPL)
to represent the direct illumination, which they collect with Reflec-
tive Shadow Maps (RSM). While the former adaptively splats illu-
mination for all VPLs, the later further organizes the VPLs into a
tree structure and performs adaptive gathering.
RSMs may need a large number of render passes to approximate

low frequency sources of direct illumination (e.g. envmaps, or indi-
rect lighting for 2nd bounce). Methods based on RSMs thus depend
on the complexity of the direct illumination and therefore are less
robust to varying lighting conditions and less suited to more than
one bounce of indirect illumination. Because we use and compute
screen-space illumination, we don’t have this limitation. The cost
of RSMs also depends on the scene complexity, whereas our tech-
nique has a constant cost w.r.t to geometric and illumination com-
plexity. Splatting indirect illumination from VPLs does not allow
to importance sample non diffuse BRDFs, because all pixels share
the same VPLs. With our method, each pixel may have it’s own
sets of lights samples in screen-space.
Imperfect shadow maps [Ritschel et al. 2008] approximately

simulates indirect shadows, for large enough objects. In addition
to using VPLs, this method requires preprocessing of the geometry,
which makes it incompatible with fully dynamic scenes where the
geometry content may not be known in advance, such as in games.

References
NICHOLS, G., AND WYMAN, C. 2009. Multiresolution splatting for indirect illumi-

nation. In Proc. ACM Symposium on Interactive 3D Graphics and Games 2009.

NICHOLS, G., SHOPF, J., AND WYMAN, C. 2009. Hierarchical image-space radiosity

for interactive global illumination. In Proceedings of Eurographics Symposium on

Rendering 2009, H. Lensch and P.-P. Sloan, Eds.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHSBACHER, C., AND

KAUTZ, J. 2008. Imperfect shadow maps for efficient computation of indirect

illumination. ACM Transactions on Graphics 27, 5 (December).

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approximating dynamic

global illumination in image space. In Proc. ACM Symposium on Interactive 3D

Graphics and Games 2009 (I3D ’09).

(b) Direct and indirect

Figure 15: Comparison of rendering with and without indirect
bounce. Image courtesy of Eden Games.

4.3.3 Subsurface scattering

This has been a very difficult technique to implement in real-time
so far because of the lack of global information and its inherent
very costly process. Even global illumination ray-tracers use sim-
plified models like the diffusion-model to do subsurface scattering.
Although there exist different approaches for real-time rendering
as presented by [Hao and Varshney 2004], [Hao et al. 2003], [Carr
et al. 2003] and [Green 2004] with the approach of SSAO at hand
these methods could be adapted to implement subsurface scattering
in deferred rendering.

4.4 Other Techniques

Beside the above mentioned techniques there exists a vast number
of other techniques which become more suitable with the use of
deferred rendering. Here some other techniques worth mentioning
which can be improved using a deferred renderer are presented.

• Motion Blur. This technique is easy to implement using de-
ferred rendering. The motion vectors of each object of the
scene are rendered into additional channels in the G-Buffer.
In the lighting stage then sampling along direction of the vec-
tors is performed to achieve the directional motion blur. See
[Rosado 2008] and [Ritchie et al. 2010] for more details.

• Shadowing. Deferred rendering works both for shadow maps
and stencil shadows although the later is hardly used anymore
due to its hard edges and high fill rate consumption. The im-
plementation for soft shadow maps can be increased in quality
with the use of additional data at hand in deferred rendering.
See [MohammadBagher et al. 2010] for more details on en-
hancing the quality of Percentage Close Shadow Maps with
deferred rendering.

4.5 Parallel Rendering

Todays games spend about 25-40% of their rendering time in the
graphics driver and GPU. During this time if not special care has
been taken the CPU stalls idle and just waits for the return of the
call. If the game-engine is single-threaded this would implicitly de-
lay the running of other subsystems like physics or AI. If it is pos-
sible to keep the CPU doing useful work during these calls rather
than just waiting for their return a huge speedup could be gained.

It is important to consider that rendering is at its lowest level - the
GPU - an inherent single threaded task because of the GPU can
just process one issued command after another. But rendering also
involves a large amount of CPU cost for issuing commands and set-
ting up their data so this is the place where gain can be gained. Be-
cause deferred rendering is split into at least two passes parallelism
can be exploited to reduce CPU stalling as much as possible.

One way to approach a parallel rendering is to separate independent
engine-subsystems into different threads. In this case a stalling in
one subsystem doesn’t have an influence on all the others. Unfortu-
nately in game-engines there is hardly a really independent subsys-
tem because everything relies on each other. The physics produce in
conjunction with the animation-system the new orientation matrices
which gets passed to the renderer somehow and the sound-system
must also be tightly synced with those subsystems to prevent out-
of-sync effects. As one can see this approach would need at some
point one or more sync-points where the subsystems can exchange
data. If this locking is not very clever this would bring the whole
system to a grind. See [Tulip et al. 2006] for a more in-depth ap-
proach on the design of a multithreaded game-engine.
Another approach divides the work that has to be done into fine-
grained batches which get distributed over the threads but for this
the algorithms used must support parallelism. A perfect example
for such an algorithm are occlusion queries used in conjunction
with deferred rendering. Occlusion queries allow to start a query,
issue the rendering of some primitives - normally low-poly mod-
els without any shading, stop the query and then wait for the result
from the GPU. The primitives aren’t really rendered but only their
z-value is produced and compared to the z-values currently set in
the frame-buffer. The amount of pixels which would have been po-
tentially drawed are returned as a result as soon as the query has
finished.
Because of the inherent latency and the built-in mechanism to check
whether the result is already present or not occlusion queries are
useful in parallel rendering. A very sophisticated algorithm that
builds upon occlusion queries to do dynamic occlusion culling is
presented in [Mattausch et al. 2008]. A key point in this algorithm is
that within queries many geometric objects are rendered in a batch
which could take some time for the result to be available. As an
example for deferred rendering during the G-Buffer rendering we
could theoretically also render the depth to the framebuffer to have
a z-value. Then during the lighting and final stages we then could
perform occlusion culling as described in [Mattausch et al. 2008]
and so split the rendering in smaller tasks.

[Lorenzon and Clua 2009] discuss a straight-forward approach for
deferred rendering utilizing DirectX 11. In this version of Direct3D
command buffers have been introduced which allow the issuing and
cleaning up of rendering commands from different threads. In this
paper these command buffers are used to split deferred rendering
into three parallel steps: the G-Buffer creation, lighting with non-
shadow casting lights and lighting with shadow casting lights. They
reported an increase in performance just at a high amount of objects
which is because higher object count put more stress on the CPU to
issue the commands and run through the driver. Although it is not a
very sophisticated approach it gives an interesting direction to start

with when researching parallel rendering for deferred shading.

A complete different approach is possible on the Playstation 3 as
shown by [Heirich and Bavoil 2005]. The Playstation 3 has a very
powerful hardware architecture - the Cell Broadband Engine - at
its heart. It consists of 1 PowerPC Processing Element PPE and 8
Synergistic Processing Elements SPEs. Because the PPE contains
2 cores this makes a total of 9 threads of execution. The Playstation
3 draws a big amount of its power from the unified memory archi-
tecture which allows the SPEs to access memory from GPU. Al-
though programming is tricky and introduces synchronizing primi-
tives specific for this platform with careful design the Playstation 3
can deliver about the same throughput as todays modern hardware.
In the paper by [Heirich and Bavoil 2005] 5 SPEs do the lighting
calculations on the G-Buffer data which comes from the GPU. The
challenge in programming the SPEs is that they must receive data
in a stream of blocks. This was accomplished by sending the data
of each scanline to another SPE which then run the pixel-shader on
it and delivered the result to the GPU memory.

[Valient 2007] report to use the SPEs of the Playstation 3 a lot dur-
ing rendering in Killzone 2 so their approach can be classified as a
parallel deferred renderer too. They generate display lists, do scene
graph traversal/visiblity culling, skinning, particles, ... on the them.
An interesting feature is that the engine is data driven and no direct
draw-calls on objects occur. The objects themself store decision-
trees which contain the parts to draw together with their shaders
and other stuff. The SPEs then traverse the scenegraph to find the
according objects and process their decision-tree to find parts to
draw.

5 Extensions and improvements

Some work has been done on the field of extending deferred render-
ing to overcome the limits of it not being able to render transparent
objects and being incompatible with anti aliasing.

[Engel 2008] proposed the use of a light pre-pass together with an
additional light-buffer. In the first pass a reduced G-Buffer with
only depth and normal values is rendered. Then in the next pass
light properties are rendered into the light-buffer using the reduced
G-Buffer as a screen space operation. In the last pass the main ge-
ometry is rendered with full texturing etc. and using the light-buffer
to calculate lighting. This approach supports full MSAA/CSAA be-
cause of rendering the geometry in a way forward rendering does.

Inferred Lighting by [Kircher and Lawrance 2009] builds directly
on deferred rendering but extends it in several ways to achieve light-
ing of alpha blended geometry and MSAA. It introduces an ad-
ditional lighting-pass in which the lighting is calculated with the
inputs from the G-Buffer and the result is written to a separate L-
Buffer. Both the G-Buffer and L-Buffer have a lower resolution
in inferred lighting than the frame buffer. Additionally discontinu-
ity sensitive lter DSF data is calculated and stored in the geometry
stage. This data is used in the material stage to up-sample the L-
and G-Buffer to calculate an unaliased result. Transparent geometry
is encoded in a stipple pattern which is recognized in the material-
stage and rendered correctly with the use of the DSF data.

6 Conclusion

Deferred rendering is a powerful technique to render difficult
lighting situations where normal forward rendering would break.
The main drawbacks of not being able to handle transparent

geometry and MSAA can be overcome with straight forward tricks
but extensions and newer exploits exist which solve these issues.
Most implementations are found in AAA Games like
S.T.A.L.K.E.R., Starcraft 2 and Killzone 2 but it has also
found its applications in non-photo-realistic volume rendering.
With the G-Buffer at hand a series of image-space effects and
techniques like depth of field, ambient occlusion, motion blur and
to some extend global methods like ambient occlusion, global
illumination and subsurface scattering can be achieved. It is also a
good candidate for parallel rendering due to its inherent multi pass
technique.

References

BAVOIL, L., CALLAHAN, S. P., LEFOHN, A., COMBA, J. A.
L. D., AND SILVA, C. T. 2007. Multi-fragment effects on the
gpu using the k-buffer. In Proceedings of the 2007 symposium
on Interactive 3D graphics and games, ACM, New York, NY,
USA, I3D ’07, 97–104.

BUNNELL, M. 2005. Dynamic Ambient Occlusion and Indirect
Lighting. In GPU Gems 2, 223–233.

CARR, N. A., HALL, J. D., AND HART, J. C. 2003. GPU al-
gorithms for radiosity and subsurface scattering. In HWWS ’03:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, Eurographics Association, Aire-la-
Ville, Switzerland, Switzerland, 51–59.

DEMERS, J. 2004. Depth Of Field: A Survey Of Techniques. In
GPU Gems 1, 375–389.

ENGEL, W., 2008. Light Pre-Pass Renderer. http:
//diaryofagraphicsprogrammer.blogspot.com/2008/
03/light-pre-pass-renderer.html.

FILION, D., AND MCNAUGHTON, R. 2008. Effects & Tech-
niques in Starcraft 2. In SIGGRAPH ’08: ACM SIGGRAPH
2008 classes, ACM, New York, NY, USA, 133–164.

GREEN, S. 2004. Real Time Approximations To Subsurface Scat-
tering. In GPU Gems 1, 263–278.

HAMMON, E. 2008. Practical Post-Process Depth of Field. In
GPU Gems 3, 583–605.

HAO, X., AND VARSHNEY, A. 2004. Real-time rendering of
translucent meshes. ACM Trans. Graph. 23, 2, 120–142.

HAO, X., BABY, T., AND VARSHNEY, A. 2003. Interactive subsur-
face scattering for translucent meshes. In I3D ’03: Proceedings
of the 2003 symposium on Interactive 3D graphics, ACM, New
York, NY, USA, 75–82.

HARGREAVES, S., AND HARRIS, M., 2004. 6800 Leagues
under the sea - Deferred Shading. http://http.download.
nvidia.com/developer/presentations/2004/6800_
Leagues/6800_Leagues_Deferred_Shading.pdf.

HEIRICH, A., AND BAVOIL, L., 2005. Deferred Pixel Shad-
ing on the Playstation 3. http://research.scea.com/ps3_
deferred_shading.pdf.

HUTCHINSON, N., KNIGHT, B., RITCHIE, M., PARRISH, G.,
AND MOORE, J. 2010. Screen space classification for efficient
deferred shading. In SIGGRAPH ’10: ACM SIGGRAPH 2010
Talks, ACM, New York, NY, USA, 1–1.

JARED, H., AND JIA, Y. 2008. High-Quality Ambient Occlusion.
In GPU Gems 3, 257–274.

KIRCHER, S., AND LAWRANCE, A. 2009. Inferred lighting:
fast dynamic lighting and shadows for opaque and translucent
objects. In Sandbox ’09: Proceedings of the 2009 ACM SIG-
GRAPH Symposium on Video Games, ACM, New York, NY,
USA, 39–45.

KOONCE, R. 2008. Deferred Shading in Tabula Rasa. In GPU
Gems 3, 429–457.

LORENZON, J., AND CLUA, E. 2009. A novel multithreaded ren-
dering system based on a deferred approach. In Games and Dig-
ital Entertainment (SBGAMES), 2009 VIII Brazilian Symposium
on, 168 –174.

MATTAUSCH, O., BITTNER, J., AND WIMMER, M., 2008.
Chc++: Coherent hierarchical culling revisited, Apr.

MITTRING, M. 2007. Finding NextGen: CryEngine 2. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New York,
NY, USA, 97–121.

MOHAMMADBAGHER, M., KAUTZ, J., HOLZSCHUCH, N., AND
SOLER, C. 2010. Screen-space Percentage-Closer Soft Shad-
ows. In SIGGRAPH ’10: ACM SIGGRAPH 2010 Posters, ACM,
New York, NY, USA, 1–1.

PHARR, M., AND GREEN, S. 2004. Ambient Occlusion. In GPU
Gems 1, 279–292.

PHARR, M., AND HUMPHREYS, G. 2004. In Physically Based
Rendering.

POLICARPO, F., AND FONSECA, F., 2005. Deferred Shad-
ing Tutorial. http://www710.univ-lyon1.fr/~jciehl/
Public/educ/GAMA/2007/Deferred_Shading_Tutorial_
SBGAMES2005.pdf.

RITCHIE, M., MODERN, G., AND MITCHELL, K. 2010. Split
second motion blur. In SIGGRAPH ’10: ACM SIGGRAPH 2010
Talks, ACM, New York, NY, USA, 1–1.

RITSCHEL, T., GROSCH, T., AND SEIDEL, H.-P. 2009. Approxi-
mating dynamic global illumination in image space. In I3D ’09:
Proceedings of the 2009 symposium on Interactive 3D graphics
and games, ACM, New York, NY, USA, 75–82.

ROSADO, G. 2008. Motion Blur as a Post-Processing Effect. In
GPU Gems 3, 575–581.

SHISHKOVTSOV, O. 2005. Deferred Shading in S.T.A.L.K.E.R. In
GPU Gems 2, 143–166.

SOLER, C., HOEL, O., AND ROCHET, F. 2010. A deferred shading
pipeline for real-time indirect illumination. In SIGGRAPH ’10:
ACM SIGGRAPH 2010 Talks, ACM, New York, NY, USA, 1–1.

TREAVETT, S. M. F., AND CHEN, M. 2000. Pen-and-ink ren-
dering in volume visualisation. In VIS ’00: Proceedings of the
conference on Visualization ’00, IEEE Computer Society Press,
Los Alamitos, CA, USA, 203–210.

TULIP, J., BEKKEMA, J., AND NESBITT, K. 2006. Multi-threaded
game engine design. In Proceedings of the 3rd Australasian con-
ference on Interactive entertainment, Murdoch University, Mur-
doch University, Australia, Australia, IE ’06, 9–14.

VALIENT, M., 2007. Deferred Rendering in Kill-
zone 2. http://www.develop-conference.com/
developconference/downloads/vwsection/Deferred%
20Rendering%20in%20Killzone.pdf.

