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Abstract

The goal of this paper is to give a short overview on different tech-
niques describing realistic, physical based surface models. At first I
am going to give a short introduction to surface models, mentioning
the most common definitions and terms used in the paper. Then we
take a small look on physical surface model generated by empiri-
cal models like the popular Phong or Oren-Nayar. The we proceed
to the analytical, physical based models like Cook-Torrance, He
or Schlick. We examine anisotropic, heterogeneous and polarized
models, as well as the limits on realism when working with surface
models. As a result we compare the most popular models to see
how they behave under similar conditions.

Keywords: BRDF, surface model, reflectance model, physical cor-
rect, survey

1 Introduction

The common known goal of rendering is to create realistic im-
ages, which are impossible to distinguish from photographs of real
world objects. In order to achieve this goal realistic surface models
and representations are needed. Various algorithms exist to create
these images, some of them are based on reflectance models. The
most common reflectance model is based on the equation 1, which
uses the so called bidirectional reflectance distribution function or
BRDF in order to simulate different surface reflection properties.
This function describes the ratio of the reflected radiance for all
points of the surface in all every direction.

It is a part of the Fredholm Integro-differential equation. This equa-
tion defines the amount of radiance that arrives at a distinct point
from any other point in the scene. The reflectance function is de-
fined by:

I(x,x") = g(x,x) {S(x,x') +/S.p(x,x’.,x") I, x"dx" | (1)

with 7(x,x) being the radiance which arrives at point x in the scene
from another point x/, an emission factor &(x,x’), responsible for
self emission of the material. The most important part of the equa-
tion is done by p, which is the reflective characterization of the sur-
face. This function is our mentioned BRDF which was introduced
first by Nicodemus in [Nicodemus et al. 1977].

In this paper we will focus on the BRDF function, the other parts
of the equation 1 are explained at [L4szl6 1999] and [Wilkie 2007]
in further detail.

1.1 BRDF in detail

The BRDF function is responsible for the creation of realistic sur-
faces by exactly defining how the light is reflected from any given
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Figure 1: Visualisation of important angles of an BRDF, L; (or later
L) is the incoming radiance, L, (or V) the outgoing radiance on

point x on the surface. N is the surface normal vector. [Wilkie
2007]

point in dependence of the incoming light. A general BRDF func-
tion can be described as

L ()
Li(®;) cos 0;d w;

fr(wi - wr) (2)

which is a hemispherical function with different stages of complex-
ity. A visualization of the incident and reflected angles can be seen
at figure 1.1.

The common parameters for our function are the 4 angles for the
incoming and outgoing light. The elevation and azimuth angles ¢
and 6 as seen in figure 1.1. In addition the surface reflectance can
depend on the wavelength of the light, so we have different reflec-
tion schemes for different wavelength of light. In most equations
wavelength is not mentioned, but it is contained implicitly. Also
the exact location and orientation on the surface can have a signif-
icant influence on the reflection. So a BRDF function can have up
to 7 dimensions, depending on the current situation and the require-
ments for the scene and reflectance model.

1.2 Properties of BRDFs

Any valid BRDF must fulfill two important, fundamental proper-
ties, derived from the physics of light. The first property, the En-
ergy Conservation Law describes that the sum of light being re-
flected from a surface must not be bigger than the incoming light.
So a BRDF must not create more output energy than it gained as
input, but it can consume as much energy as desired. The second
rule, the Helmholtz Reciprocity Rule means that a BRDF has to be
symmetric. Symmetry in this context is understood that it is pos-
sible to exchange the sampling directions of light. As example its



no difference if you follow the light coming from x’, reflected at x
and moving on to the eye or another position. For a valid BRDF the
opposite way creates the same result.

1.3 Extensions and modifications

An extension to the BRDF is the BSDF (BSSRDF), or bidirectional
scattering distribution function (bidirectional subsurface scattering
distribution function) which allows reflections being modified in
subsurface areas. With these modifications it is possible to let light
travel through the surface instead of being just bounced off. This
modification is needed to describe very common effects like the
translucency of objects. This effect can be seen on glowing candles
or the surface of human skin.

Another extension for textural data is the BTF or bidirectional tex-
ture function which is again quite similar to the BRDF. It adds posi-
tional information to a texture to combine it with individual BRDF
datasets.

1.4 Classification of BRDF models

Two general types of BRDFs can be classified, a more general
anisotropic and a simple isotropic reflection. An anisotropic re-
flection is a surface reflection scheme which changes its reflected
radiance when the surface below is rotated around the normal vec-
tor at point x. This is often used to visualize small scratches on the
surface which reflect the light differently. In reality nearly all ma-
terials are anisotropic reflectors. A simplification of an anisotropic
reflectance is now the isotropic reflection model. Here reflections
do not change while the object is rotated, so its properties remain
constant over the whole surface. The most analytical BRDFs mod-
els are isotropic models because they are much easier to calculate
and configure. An example for a real, nearly perfect isotropic re-
flector would be smooth plastic.

1.5 Reflection components

Two types of radiance reflections can be distinguished. The first
one is the plain diffuse reflection, where light is distributed equally
and independent of the current viewing position. Diffuse reflection
can be seen on objects like dull/matte paint. The other type is the
specular reflection or mirror like reflection of light. Here the light
is reflected nearly into a single (or small) outgoing direction ac-
cording to the law of reflection. Examples for objects with specular
reflections are mirrors, polished metals or coated objects.

2 Surface models

In this section surface models which can be used as a BRDF are
described. Beside the two basic requirements of reciprocity and en-
ergy conservation analytical models need to be elevated fast, they
should be easy to sample (especially when doing stochastic sam-
pling) and should be quite expressive and easy to use. A plot of
a BRDF can be viewed in figure 2 where the overall, macro scale
behavior of a BRDF is seen, a more detailed milli-scale surface and
a nano-scaled facet with its reflection properties.
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Figure 2: Three different simulations of BRDFs, showing several
surface properties. [Wilkie 2007]

2.1 Empirical Models

Empirical models just try to simulate the look of a surface, not to
calculate it physically correct. Normally the configuration parame-
ters have no real physic relevance and are just used to configure the
models. A main feature of the empirical models is that they can be
calculated very fast and are easy to understand and implement. But
they can never produce physical correct solutions, although they
still look very realistic in most situations. They are mostly used in
applications which don’t require a lot of realism but need to look
quite good and with a main goal of fast computation. Examples
for such Applications would be special effects in movies, video art,
games or in commercials.

2.1.1 Lambert

The Lambert model is the first and simplest diffuse reflection
model. It assumes we have a perfectly diffuse reflecting surface
and the light leaves this surface in proportion to to the cosine of the
incident angle. The general equation of a diffuse reflection is now

k,
fr(wi - wr) = ;d 3)

with k; being the diffuse surface constant and 7 as the normaliza-
tion factor for correct energy conservation. A lambertian surface is
like every diffuse surface view independent, so the brightness of the
surfaces remains the same for all angles of view and depends only
on the angle of the incoming light.

2.1.2 Oren-Nayar

The Oren-Nayar Model as described in [Oren and Nayar 1994] is a
generalization of the Lambert model. It is a microfacet based model
which is able to simulate the roughness of a surface. More infor-
mation about mircofacets is given at section 2.2 where the Cook-
Torrance model is explained. For special values of the parameter
o the model is identical to a lambertian surface, for other values it
becomes more and more retro-reflective.

2.1.3 Phong

A simple way to add specular highlights to a diffuse model is the
combination with the Phong model. It allows fast reflection in a



Figure 3: The left sphere is rendered with Phong, the right one with
the Blinn-Phong model. [Calkins ]

small area. With this model it is possible to to represent various
stages of shininess on the reflector. The specular Phong reflection

is defined by
- =\
) (R : v)
= k.-

Fr(LV) =k W

with kg being the specular reflection coefficient, V is the direction
to the viewer and L the direction from the surface point to the light.
R defines the direction of the perfect reflection, thats L mirrored
on the normal vector N. The parameter ng defines the shininess
of the surface, perfect reflectors would have infinity as value for
ng, complete dull surfaces have 0. A basic problem of the Phong
model is that energy conservation depends on the correct choice
and combination of the coefficients of the model. Another problem
of the model is that the objects often look very plastic, so in the
most cases not very realistic. Furthermore the Phong model is quite
complex to calculate for an empirical model, specially when used
in real time rendering.

@

2.1.4 Blinn-Phong

An extension to the Phong model is the Blinn-Phong model, as de-
scribed in [Blinn 1977]. It is a much faster modification of the
classical Phong model. It uses the so called halfway vector for the
reflectance calculation, a combination between the view and light
vector. This vector is used in many other models mentioned later.

L+V
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The big advantage of this model is that for cases where viewer and
light are at infinity the halfway vector is independent of position
and surface curvature. So the vector will only to be calculated once
per light and frame and not for each pixel as in the original model.
Because of this optimization we have a huge performance increase
while rendering.

A common issue for both specular models is the fact that they act
not very accurate when they are viewed from grazing angles. The
reflections are either to sharp or far to blurred compared to a real
image. These problems can not be handled by empirical models so
more complicated reflectance models are needed.

2.2 Cook-Torrance

Cook and Torrance [Cook and Torrance 1982] introduced a gen-
eral physically plausible reflectance model which is able to cor-
rectly predict the directional and spectral composition of reflected

light. The model is based on a work from Torrance and Sparrow
[Torrance and Sparrow 1967] and Blinn [Blinn 1977]. Its basic as-
sumption is that the surface of an objects consists of many small
parts, or microfacets which are all perfect reflecting mirrors. The
microfacets are evenly distributed on the surface. The model itself
works only correct if the wavelength of the light is smaller than
the mean roughness of the surface patches. Each facet has a ran-
dom orientation but they are aligned along a specified distribution
around the mean surface normal N with a maximum slope differ-
ence angle . The Gaussian distribution for the microfacets used
in the Torrance-Sparrow model is now replaced by the Beckmann-
distribution function:
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with m being the root of the mean slope of microfacets and « the
maximum slope difference angle. Small values of m create gentle,
smooth slopes, while bigger values create a much bigger distribu-
tion. Beside this distribution others are possible, depending on the
current situation. Surfaces with different types of roughness can
use a weighted sum of different distribution functions.

The calculation of the reflected light is now done by two terms.
The first one, the Fresnel-reflection-coefficient, has three parame-
ters, the index of refection n, the surface extinction coefficient k
and the angle of illumination 6. The values of n and k vary with the
wavelength so their exact values are often unknown, except if they
were measured in an experiment. If they are unknown there is a
way to calculate the missing values. For non-metals k = 0, for met-
als we can set it to zero to get an effective value for the refraction
coefficient n. The Fresnel equation gives us the angular dependence
of F, it is only weakly dependent on the coefficient k. With the as-
sumption k = 0 the Fresnel coefficient can be written as:

1(g—c)’ <c<c+g>—1>2>
F = = 1 7
2 (g1 07 ( T lele—g)—17 @
c = cos9 V.H
g2 = n? +c —1

For a given angle, as example 8 = 0 we can quantify F and with it

we can estimate n:
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The second term in the calculation of the reflectance is the geomet-
rical attenuation factor. With this factor the self shadowing and
masking of the single facets is simulated. Self shadowing means
that light coming to a facet can be blocked by other facets due to
irregularities on the surface or simply shadowing of the neighbor
facets. Masking is the same effect only that now the already re-
flected light from a facet is blocked by other facets. An example
for masking and self-shadowing can be viewed in figure 2.2. The
attenuation factor describing these effects is now defined as

G(N,V,Z) = min(1, st Gshadon) ®)
s - D)
(fv i) (v z)

Gshadow SR,
( H
with N being the average surface normal, V the vector facing the
viewer and L the vector facing the light from the current point.
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Figure 4: The two figures show situations with self shadowing and
masking. [Wilkie 2007]

Now putting all the parts from equation 6, 7 and 8 together we get
the following expression for specular reflectance when using the
Cook-Torrance model:

fr(z,v) =

F DG
— ©)

To get the complete BRDF we need a diffuse part, which is nor-

mally just a lambertian reflection. It needs to be combined with the
Cook-Torrance model by simply adding them.

The big advantages of this model is the physical plausibility which
creates excellent results. Besides that it has a generic approach, var-
ious parts of the model can be replaced according to the current re-
quirements, like other Fresnel reflection terms, different slope dis-
tribution functions or other attenuation factors. On the other side it
is quite difficult to obtain correct material constants, it is difficult to
code an often not so easy to sample. Sample pictures of different
materials can be seen at 10.

2.3 He-Sillion-Torrance-Greenberg

The model introduced by He, Torrance, Sillion and Greenberg in
1991 [He et al. 1991] is one of the most comprehensive BRDF mod-
els. It is able to handle previously ignored features like anisotropic
surfaces, polarization or subsurface scattering. This rich set of fea-
tures is very expensive in terms of computation time. In other pa-
pers this model is just called He or He-Torrance model.

The models splits the BRDF in three parts:

fr :fr.,sp +fr,dd+fr,ud (10)

with the specular f;.s, uniform-diffuse f}.,; and directional diffuse
fraa reflection. The specular and directional diffuse reflection re-

Figure 5: A visualization of the three different light reflection parts
sp-dd-ud, the roughness parameter o and the autocorrelation factor
T from the He reflection model. [Greenberg et al. 1997]

sult from an ordinary first surface reflection like in previous models.
The third component is now responsible for multiple surface reflec-
tions and the subsurface scattering.

For the uniform diffuse component only a light wave dependent
constant a(A) is defined. Values for a() can be estimated either
theoretical by using known V-grooves and subsurface scattering pa-
rameters. Or they can be calculated via a Genio-reflecto-meter to
get the reflection response over a hemisphere. Without any known
parameters the value can also be estimated as long as it is valid to
the energy conservation law.

The specular reflection term is defined as:

ko, |F|>.e78-S
cosOidw;  cosBidw;

fr,sp: A (1])

with kg being the specular reflectivity of the surface, |F \2 is the
Fresnel reflectivity depending on the index of refraction n(1). A
is a masking function for a specular term, its value is one if the
reflection is in the specular cone, otherwise it is zero.

The variables mentioned in the next parts can be viewed in figure 6.
g is a function for the effective surface roughness:

2

with ¢ being the mean difference of the surface height.
S is the shadow function defining which part of the surface is
viewed an illuminated.

S = Si(6;)-5:(6r) (13)
Si(6) = L-serfe <T§(<)’toei)
ne A(cot6;) +1
sy - ()
e A(cot6,) +1
1 2 oo TcotO
Alcot8) = 5(71’1/2 Tcotf erfe( 209 ))

The parameter oy and 7 are both material depended values for the
mean difference from the surface and the correlation length coeffi-
cient.

On smooth surfaces the wavelength of incident light A is relative
large compared to the surface roughness the specular term is not
attenuated because g — 0 and S — 1 because on smooth surfaces



Figure 6: Input parameters for the He model. k; is the incident
light, k, the reflected, p;, s; / p,, s, the polarization vectors for the
incident/reflected light, z is the surface normal vector. [Gebhardt
2003]

there are not many shadows. So the term is reduced to the common
from:
FP?

_ 14
cos 0;d w; (14

frﬁspﬁsmuoth =
The last factor of equation 10 is the directional diffuse reflection.
With a small wavelength compared to the size of the surface el-
ements the first reflection introduces several diffraction and inter-
ference effects. It is again dependent on the roughness ¢ and the
correlation 7, with a smoother surface the effect of the directional
reflection is disappearing.

Flinp) S @ ¢ gret R
cosB;-cosB, 16w — m!-m P 4m

Jrdd =

p is describing the polarization state vector of the incident light
defined via the the polarizations coefficients ¢y and ¢, and the unit

polarization vectors §;, p; of the incident plane formed by (1?,-,1).
The vectors are defined by

) kl‘ XZ
T Texd
pi = siXk
p = csSitceppi

F calculates the Fresnel coefficients and takes the polarization vec-
tors and the unit vector 7}, into account.

o — ky —k;
b |kr—ki|

Vxy is a function depending on the incident light and reflection angle
and describing the change of the wavelength with the factor k.

Viy = \/V;%JFV%

k(ky — k;)

v

With the He model it is possible to simulate many different materi-
als and reflections properties, but it uses a lot of different equations
what results in a very long computation time. A teapot rendered
with the He model is shown in figure 11, cylinders with anisotropic
reflectance is shown in figure 9.

Ward mentioned in his paper [Ward 1992] that this model has some
lacks concerning energy conservation, because the ambient term is
added without regard to the overall reflectance of the material. Also
He did not make absolute BRDF measurements to compare them
with his model, he only scaled existing data to match his function.
Overall Ward states that He did not treat normalization adequately
enough in his derivation.

2.4 Ward

The model from Ward [Ward 1992] can be uses specially for mod-
eling anisotropic surfaces and reflections. One main goal of the
model was to combine physical correctness and computation effi-
ciency.

To realize his goal Ward needed a method to measure the re-
flectance properties of a surface easily, cheap and fast. He devel-
oped an imaging Gonioreflectometer with a simple CCD camera
and a fish eye lens. This device was able to measure the reflectance
of anisotropic surfaces much quicker and cheaper than other de-
vices. From the measurements Ward extracted the reflection coef-
ficients and surface roughness parameters.With these values Ward
introduced now his isotropic elliptical Gaussian model, similar to
other models like Torrance-Sparrow. But in his model he elimi-
nated the Fresnel coefficient and the geometrical attenuation fac-
tor because they are rather difficult to integrate. He replaced them
with a single normalization factor that insures the distribution in-
tegrates easily and predictable over the hemisphere. The isotropic
reflectance is now defined as:

ky 1 eftam2 §/a?
fr,iso = —+ks

bid VcosBicosB,  4ma?

(16)

kg and k; are the normal diffuse and specular surface coefficients, &
is the angle between the normal vector N and the halfway vector H.
« is the standard deviation of the surface slope. Values for k; and
kg4 can vary on demand as long as k; + k; < 1. The normalization
factor

1

Amo?

is accurate as long as « is not much greater than 0.2, when the sur-
face becomes very diffuse.

The isotropic model is simple to extend to the anisotropic ellipti-
cal Gaussian model. It has two perpendicular, uncorrelated slope
distributions ¢, and o

e tan®(cos® ¢ / o2 +sin’ 0/a})

ky 1
5o =~ + kg :
Jraniso T s \/cos 6; cos 6,

17
AT 00 0y an

The equation 17 can be approximated with unit vector from the sur-
face plane which enables a much faster computation. The exact
formulas can be viewed in Wards paper [Ward 1992].

Ward achieved its goal to create a model where all parameters have
a physical meaning and they can be set independently. In addi-
tion its model can be evaluated fast and it can be used with Monte-
Carlo sampling. A sample picture of a chair rendered with the Ward
model can be viewedin figure 7.



2.5 Schlick

Schlick introduced a model which is like the Ward model a hybrid
between empirical and theoretical models [Schlick 1994]. A goal
of the model was to keep it simple and efficient, and just use a small
set of parameters with physical relevance.

Schlicks model breaks with the common used method that the light
is split into ambient, diffuse and specular reflection part which is
combined via a linear combination. Schlick says that this combina-
tion is incorrect in the most cases because the diffuse and specular
components are normally not constants but functions of the inci-
dent angle. Beside these heterogeneous materials there are a lot of
homogeneous materials for which this distinction is completely un-
necessary, like metals. So the distinction in diffuse and specular
terms is never really satisfying.

Another criticized point is the geometrical attenuation factor which
is normally just used as a multiplicative factor for the light that is
not obstructed. The obstructed light itself does not disappear as the
most models assume, it is reflected in other, overall random direc-
tions.

The last unsatisfactory point for Schlick is the fact that the most
empirical BRDFs are not physically correct but fast to calculate.
The physical models on the other hand are to detailed and are to
complex compared with the errors in other parts of the rendering
pipeline, so that this increased complexity is often useless because
their advantages disappear in the errors of the other stages.

Schlicks solution is now the approximation of complex equations
with a method he called rational fraction approximation. For terms
like the Fresnel equation in 7 Schlick tries to find intrinsic charac-
teristic kernel conditions. Conditions like a value at a given point of
the function or of its derivatives or integrals. With this kernel con-
ditions a fraction is formed that approximates the original function.
With this method it is possible to minimize the Fresnel term to the
simple form of

R = f+0-f)1-u)’ (18)
u = V-L

which is optimized and has very similar conditions as the real func-
tion. The function is now only dependent on the vector u# and the
spectral distribution f,. The refraction factor and the surface extinc-
tion coefficient were eliminated because they have to less influence
on the function. This optimized formula can be computed up to
32 times faster with an error less then 1% compared to the orignial
Fresnel formula.

Schlick uses a geometrical attenuation factor which is invariant by
rotation around the normal vector and dependent from the surface
roughness instead of the attenuation factors mentioned in the previ-
ous chapters.

G(vv) = GOWG(H) (19)
G(v) = i%
g = Vhr(2—erfcVh)
V2
ho= 2m2(1—v?)

with v, v/ being the incident and reflected angles and m as the root
mean square slope of the microfacets. Normally m € [0,0.5] for real
surfaces. The approximation has now the following form:

v

o= e 20
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With a precomputed k and 1 - k the function only needs a few op-
erations during runtime and is again much faster than the original
version.

The last approximation is a different formulation for the slope dis-
tribution function. Schlick uses like Cook-Torrance in section 2.2
the Beckmann-distribution, as described in equation 6. Schlick
managed to reduce the function to

m3x

Dl = t(mx? —x2 +m?2)? @b

t+m—1

X

with t = cos a..

If we put the parts from equation 19, 21 and 22 together we get a
very fast, even in hardware realizable Cook-Torrance model. But
Schlick has chosen a different way, instead a split up in diffuse,
ambient and specular he divided the BRDF in heterogeneous and
homogeneous materials. Homogeneous material consists of mate-
rial with a single optical property and reflection scheme, objects
like glas, or metal. Heterogeneous material has two layers of differ-
ent properties, each of them are homogeneous materials. Normally
the first layer is transparent and the second opaque. Popular exam-
ples are the human skin, plastic or painted/varnished surfaces.
Each material is characterize by a set of parameters. The first one is
C,,, the reflection factor at wavelength A, it is similar to the factor
used in 19. The second parameter is the roughness factor r with r
= 0 as perfect specular and r = 1 as a perfect diffuse surface. r is
releated to the RMS slope m of the surface in equation 22. The last
parameter is the isotropy factor p, with perfect anisotropy at 0 and
perfect isotropy at 1.

How we have two different BRDF functions, one for each material

type.

fnhonw(tvuu v, V/7(0) = Sl (M)D(t,v, V/7a))

Johar (v @) = S3 (u)D(t,v,V, @) +[1 =83, ()] §7 (u)D'(1,v,V(28)

Now it is possible to select different functions for the S, and D.
For the spectral factor S it is possible to consider it as a constant
function and set it to reflection factor C. But its easier to replace
it with the Fresnel approximation from 19.

The directional factor D has an extra term for each angle, expressed
by two factors Z() and A().

1
1
(122

P
Alw) = \ P2+ 20’ + @2

With a r = 0 Z() is a constant function and simulating a lambert
surface, with r = 1 it changes to a perfect specular. p acts similar
for isotropy. If the geometric attenuation factor is needed it can be
included:

D(t,v,V, @)

G(v)G(V) .
4w’

1-G()G(Y)

D(t,u,v,v', @) = P~

Z(HA(0) +
The last term is responsible for the reemission of the self obstructed
light at a random direction so the light is not absorbed but reflected.
A third method for D is possible, because 25 has not a complete
transition from perfect diffuse to perfect specular.

(25)

’ c
B(t,V,V,a))"‘mA (26)

With the values a,b,c being calculated from the roughness factor r.
fr;05wehaveb=4r(l-r);a=0;c=1-biorelse b=4r(1l-r);

a
D(t,v, v’,a) = —+
( ) n 4w/
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Figure 8: Schlick model: A continuum between isotropic and
anisotropic reflection. r = 1.0, p = {1.0,0.5,0.2,0.05}. [Schlick
1994]

Figure 9: Aluminum cylinders with surface roughness ¢y =
{0.18,0.28,0.38} um, 7 = 3.0um. The nearly total reflection at a
very flat angle can be seen especially good on the first object. [He
etal. 1991]

c=0;a=1-b. B() is a Beckmann like factor from equation 24 or
25, A is the Dirac function.

It is possible to use the Schlick model with Monte-Carlo rendering
techniques and importance sampling. Overall this model is a very
flexible approach, it offers many possibilities to add customized
functions needed for actual scenes. A cylinder drawn with different
stages of anisotropy is shown in figure 8.

3 Conclusion

This paper gave a short overview on the most important and popu-
lar surface models used for physical rendering. It started with the
common definition of the surface function BRDF and its properties.
It introduced the basic, and widely used empirical models and pro-
ceeded then to the more complicated physical models.

We looked at the somehow basic Cook-Torrance model from which
many parts are used in other, later introduced models. Then we
proceeded to the complex but comprehensive He model with its
nearly perfect physical simulation. Then we learned two other ap-
proaches, one by Ward, were we relied on measurement data to gain
the required parameters of our model. At the end we mentioned the
Schlick model, a model created to be evaluated fast but still being
very accurate. The last models show that BRDF does not need to
be very complex in terms of calculation, some of them could even
be implemented in hardware!

Beside these models there are many more, all with different proper-
ties and other fields of applications. In the next years they will also
get more and more popular in consumer near field of applications
enhancing the realism.
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Figure 7: 1. picture: photograph of a chair with two lights (one above, one behind). 2. picture isotropic reflection. 3. picture anisotropic
gaussian. [Ward 1992]

Figure 10: Different materials with reflection types shown on the same object. [Cook and Torrance 1982]



Simple Mirror He-Torrance Model

Figure 11: Rendering of a smooth metal teapot. The mirror like reflectance has only a very small highlight from the sun. The He-Torrance
model shows the teapot rendered with the Fresnel reflectance. [Westin et al. 2004]



