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Abstract

The high computational costs associated with global illumination
in the field of computer graphics call for effective ways of handling
complicated integrals and sums. This paper offers an overview of
Monte Carlo methods, stochastic methods of approximating such
constructs. Starting with the necessary mathematical basis for un-
derstanding Monte Carlo, the paper continues with a survey of sam-
pling methods and variance reduction techniques, to conclude in an
introduction to the use of Monte Carlo in global illumination.
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1 Introduction

1.1 What is Monte Carlo?

Monte Carlo integration is based on the principle that a definite in-
tegral of a certain function can be approximated using the value
of that function at several randomly chosen (or sampled) positions
from within the integration domain (see Figure 1.1). Since Monte
Carlo can yield arbitrarily accurate results depending on the num-
ber of samples used, it has gained much importance in the field of
computer graphics, where finding solutions to certain problems an-
alytically is nearly impossible due to the associated computational
costs.
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Figure 1: The principle of Monte Carlo integration. Samples x1
and x2 (marked in red) are chosen randomly from the domain of the
integral, each sample representing half of the integration domain.
The area within the two boxes is the estimate of the integral.

Descriptively, Monte Carlo integration is similar to integration by
(deterministic) numerical quadrature, where samples are not cho-
sen randomly but distributed evenly across the integration domain.
Figure 1.1 shows the difference between these two numeric inte-
gration methods. Note that the “clumping” of samples in the figure
results in a poor approximation of the integral; this is one of the
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problems that can be encountered when using Monte Carlo tech-
niques (unless appropriate measures are taken to avoid this issue).
In higher dimensions numerical quadrature becomes far less effec-
tive than Monte Carlo as the actual number of samples required
grows exponentially.
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Figure 2: Comparison of deterministic numerical quadrature (top)
and integration by Monte Carlo quadrature (bottom). Red lines rep-
resent randomly chosen samples.

1.2 History of Monte Carlo

The term Monte Carlo was first coined in the 1940s by scientists
working on the development of nuclear weapons in Los Alamos.
The term referred to games of chance whose behavior and outcome
could be used to study some interesting phenomena. Since then,
Monte Carlo methods have found widespread use in many fields
such as operations research, radiation transport and especially sta-
tistical physics and chemistry [Kalos and Whitlock 1986].

Of course, the use of “randomness” in experiments and calcula-
tions dates much further back than the 1940s. For example, Kalos
and Whitlock [1986] mention the probably earliest use of random
numbers to approximate an integral, which dates back to 1777 and
is attributed to Comte de Buffon.

1.3 Usage in Computer Graphics

The most prominent use of Monte Carlo in the field of computer
graphics is in global illumination. Depending on the chosen ap-
proach, several highly complex, multi-dimensional integrals have
to be evaluated in order to confer realistic lighting to a scene.

Basically, all approaches to the global illumination problem attempt
to solve a recursive equation called the rendering equation or a sim-
plification thereof. This was first pointed out by Kajiya [Kajiya
1986], who describes the rendering equation as:

I(x,x′) = g(x,x′)
[

ε(x,x′)+
∫

S
ρ(x,x′,x′′)I(x′,x′′)dx′′

]



According to the equation, the intensity of light I(x,x′) that passes
from a point x′ to another point x, is related to:

• A “geometry” term g(x,x′), which equals zero if the two
points are not mutually visible and which otherwise encodes
the distance between the two points.

• The light emitted towards x from a surface at x′, denoted as
ε(x,x′).

• The light that reaches x′ from all surface points x′′, modified
by a scattering term ρ(x,x′,x′′).

The rendering equation thus posesses several quantities which are
hard to compute; the dependence of I(x,x′) on all other I(x′,x′′)
poses a particular problem. For this reason, many simplifications
of the rendering equation have been considered in conjunction with
algorithms that attempt to solve them; even so, the quantities in-
volved often remain so complicated that Monte Carlo methods have
to be used to approximate them. Beside what is mentioned in the
rendering equation, there are also several other complex quantities,
such as importance and flux, that some algorithms use; in this pa-
per, these quantities are only briefly explained when necessary. A
thorough overview of the quantities mentioned and their properties
can be found in literature [Dutré et al. 2003].

2 Foundation of Monte Carlo

In order to achieve a better understanding of what Monte Carlo is,
an overview of its mathematical foundation is given. The foun-
dation lies in probability theory; this section will describe, among
other things, the concepts of random events, random variables, ex-
pectation, variance, estimators, bias and consistency, concluding in
an examination of the Monte Carlo estimator. A more in-depth re-
view of probability theory with respect to Monte Carlo methods is
given by Kalos and Whitlock [Kalos and Whitlock 1986].

2.1 Random Events

As explained by Kalos and Whitlock [1986], a Monte Carlo calcu-
lation is basically a sequence of random events. Random events –
which can be, for example, the result of flipping a coin or throw-
ing a dice – have a set of possible outcomes. Associated with each
possible outcome Ek is a number between 0 and 1 called the proba-
bility of Ek – or pk – which is a measure of how likely it is for Ek to
occur. If Ek never occurs, then pk = 0 and if Ek is bound to occur,
then pk = 1.

When the occurence of an event Ei implies that another event E j
does not occur and vice versa, these two events are called mutually
exclusive. The probability of these two events occuring together is
0, and the probability that either one of these events will occur is
the sum of the two events’ probabilities:

P{Ei and E j}= 0
P{Ei or E j}= pi + p j

Furthermore, considering a class of events which are all mutually
exclusive to each other, and where all possible events are enumer-
ated, these events’ probabilities sum up to one:

∑
i

pi = 1

2.2 Composite Events

Composite events can be created from two or more elementary
events. Considering a composite event consisting of only two el-
ementary events E and F , the probability of a specific outcome
(Ei,Fj) is called the joint probability for Ei and Fj. One can say
that Ei and Fj are independent if:

pi j = p1i p2 j

If Ei and Fj are not independent, the joint probability pi j can be
written as:

pi j =

(
∑
k

pik

)(
pi j

∑k pik

)
(1)

Each of the two events has a marginal probability that can be
extracted from the formulation of joint probability above. The
marginal probability for event Ei can be described as the probability
that Ei will occur, regardless of the outcome of F :

p(i) = ∑
k

pik

The other part of Equation 1 above is called the conditional proba-
bility p( j|i). This is the probability of event Fj occuring, consider-
ing that event Ei has occured:

p( j|i) =
pi j

∑k pik

Clearly, Equation 1 can be written so that p( j) and p(i| j) are gen-
erated, the results are analogous.

Furthermore, these definitions can be generalized in order to apply
to more than two events.

2.3 Random Variables

Random variables are numerical values that can be attributed to the
outcomes of events.

2.3.1 Expectation

The stochastic mean, or expectation of a random variable, is defined
as:

E(x) = ∑
i

pixi

When applying a function g to a random variable x, the result g(x)
is a random variable as well. The expectation of this new random
variable is defined as:

E(g(x)) = ∑
i

pig(xi)

The following properties can be shown to hold:

• The expectation of a constant is the constant itself.

• For any constants λ1, λ2 and two functions g1, g2:

E(λ1g1(x)+λ2g2(x)) = λ1E(g1(x))+λ2E(g2(x)).



Independent random variables have the property that the expecta-
tion of their product is the product of their expectations. This is
implied by the definition of independence:

E(xy) = ∑
i, j

xiy j pi j = ∑
i, j

xiy j p1i p2 j

= ∑
i

xi p1i ∑
j

yi p2 j

= E(x)E(y) (2)

This property becomes important when calculating the variance of
independent variables.

2.3.2 Variance

Variance is another important characteristic of a random variable;
it is defined as:

var{x}= E(x−E(x))2

and can be analogously written as:

var{x}= E(x2)−E(x)2

The square root of the variance, called the standard deviation, is an
often used measure for the dispersion of the random variable.

The variance of a function g(x) can be written as:

var{g(x)}= E(g(x)2)−E(g(x))2

Due to the linearity of the expectation operator, the variance of a
linear combination of two functions g1(x) and g2(x) becomes [Ka-
los and Whitlock 1986]:

var{λ1g1(x)+λ2g2(x)}=λ
2
1 var{g1(x)}+λ

2
2 var{g2(x)}

+2[λ1λ2E(g1(x)g2(x))
−λ1λ2E(g1(x))E(g2(x))]

Considering Equation 2, we see that when g1(x) and g2(x) are in-
dependent, the last term of the sum becomes zero. Covariance is
derived from this term and measures the degree of independence
between two random variables1:

cov{x,y}= E(xy)−E(x)E(y)

In case covariance is zero, we are left with a shorter formula for the
variance of a linear combination of two functions:

var{λ1g1(x)+λ2g2(x)}= λ
2
1 var{g1(x)}+λ

2
2 var{g2(x)} (3)

2.3.3 Continuous Random Variables

Random variables do not have to be confined to a set of discrete
values, they can also be continuous. In this case however, expecta-
tion is defined with the aid of a probability density function (PDF)2.
For a continuous real-valued random variable x, the probability that
the variable will have the value x is given by the value of p(x)dx,
where p(x) is the probability density function [Dutré et al. 2003].

1Zero covariance does not imply independence, for the details see Kalos
and Whitlock [1986].

2The reason for this lies in the fact that if there are infinitely many pos-
sible outcomes of a stochastic event, each possible outcome will have a
probability of zero [Viertl 2003].

The PDF is similar to discrete probability, as the (definite) integral
of the PDF over all possible values of x is 1:∫

∞

−∞

p(x)dx = 1

The cumulative distribution function (CDF) is related to the PDF:

F(x) =
∫ x

−∞

p(y)dy

This function yields the probability that the random variable will be
lower or equal to x; the CDF has the important property that it is a
nondecreasing function with values between 0 and 1.

The expectation of x is thus:

E(x) =
∫

∞

−∞

xp(x)dx =
∫

∞

−∞

xdF(x)

and has the same properties as noted in the discrete case. The ex-
pectation of a function g(x) is, analogously:

E(g(x)) =
∫

∞

−∞

g(x)p(x)dx (4)

The variance of x is defined and can be calculated just as in the
discrete case.

2.3.4 The Uniform Probability Distribution
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Figure 3: The uniform probability distribution.

The uniform probability distribution (Figure 2.3.4) is quite common
in probability theory and will serve as an example of a continuous
distribution. The PDF of this distribution is constant within a spe-
cific interval [a,b] and zero everywhere else. Since the integral over
the whole domain of the PDF has to be 1, we find that:

p(x) =

{
1

b−a if a≤ x≤ b
0 otherwise

For convenience, we will analyze the uniform distribution in the
interval [0,1], for which p(x) is 1 within the given domain [0,1]
and 0 outside of it. More on the uniform distribution can be found
in literature [Kalos and Whitlock 1986; Viertl 2003]. In this case,
the CDF is:

F(x) =


0 if x < 0
x if 0≤ x≤ 1
1 otherwise

The expectation is, intuitively, 0.5:

E(x) =
∫ 1

0
xdx =

1
2
(1−0) = 0.5



The variance can be calculated easily as well:

var{x}= E(x2)−E(x)2 =
∫ 1

0
x2dx− 1

4

=
1
3
− 1

4

=
1
12

2.4 Estimators

2.4.1 A Monte Carlo Estimator

Examining Equation 4 above, we see that we can express the inte-
gral of a function f (x) as the expectation of a function g(x) = f (x)

p(x) ,
where p(x) is an arbitrary PDF which is nonzero within the integra-
tion range:

g(x) =
f (x)
p(x)

⇒ E(g(x)) =
∫

∞

−∞

f (x)
p(x)

p(x)dx =
∫

∞

−∞

f (x)dx (5)

This method of describing integrals is crucial to Monte Carlo in-
tegration because expectation can be estimated by the arithmetic
mean of several random variables drawn from g(x), as follows:

If random variables x1,x2, . . . ,xN are drawn independently from
p(x), we can build the sum:

G =
1
N

N

∑
i=1

g(xi) (6)

which is also a random variable. We can now calculate the expec-
tation of G, which is:

E(G) = E

(
1
N

N

∑
i=1

g(xi)

)
=

1
N

N

∑
i=1

E(g(xi))

=
1
N

N

∑
i=1

E(g(x))

= E(g(x))

Thus, the expectation of G is equal to the expectation of a single
random variable g(x). This fact alone is not satisfactory enough,
as an estimator has to be a useful approximation of a given quan-
tity [Kalos and Whitlock 1986]. Thus, we also have to observe the
variance of G.

2.4.2 Variance of the Estimator

Using the formula for the variance of a sum of independent random
variables illustrated in Equation 3, we obtain:

var{G}= var

{
1
N

N

∑
i=1

g(xi)

}
=

N

∑
i=1

1
N2 g(xi)

=
1
N

var{g(x)} (7)

Assuming the number of samples drawn from g(x) is one, the vari-
ance is equal to the actual variance of g(x). By increasing the num-
ber of samples however, variance diminishes; for an infinite number
of samples, the variance becomes zero and with it the probability

that G equals E(g(x)) becomes one. Thus, G can be considered an
estimator for the expectation of g(x).

The actual error of the Monte Carlo estimator still has to be de-
termined; two theorems can be used for this purpose. The first is
Chebyshev’s inequality [1986; 2003], which states that the prob-
ability that the estimator deviates from its expected value by more
than

√
var{G}/δ is smaller than δ , where δ is an arbitrary positive

number:

P

{
|G−E(G)| ≥

√
var{G}

δ

}
≤ δ

By substituting the variance of the Monte Carlo estimator, we ob-
tain:

P
{

(G−E(G))2 ≥ 1
Nδ

var{g}
}
≤ δ

meaning that by knowing the variance var{g} and fixating a certain
probability δ , we can always calculate a number of samples N such
that the probability that our estimator deviates from the expected
value is lower than δ .

A second theorem for determining the error of Monte Carlo calcu-
lations is the central limit theorem of probability. The central limit
theorem states that the Monte Carlo estimator will asymptotically
(for N → ∞) have a normal distribution [1986; 2003]. When N is
large enough, the standard deviation will vary as much as 1/

√
N.

This is the normally encountered error in Monte Carlo calculations.

2.5 Bias and Consistency

Clearly, not all estimators are necessarily equally good. Some may
converge slower toward the desired value, some faster; likewise,
the expectation of some estimators may not always be equal to the
desired value, either.

Assuming that the quantity Q is to be approximated by an estimator
θ , the bias of θ is defined as E(θ)−Q. If the bias is zero, θ is
called an unbiased estimator for Q. While it is more desirable to
have an unbiased estimator, one should also consider the variance
of the estimator as a factor of interest. A biased estimator with low
variance is usually preferred to an unbiased one with high variance.

Most of the time, an unbiased estimator cannot be found, so a
weaker constraint is imposed: An estimator θ is consistent if θ

converges to Q with probability 1 as the number of samples N ap-
proaches infinity [1986], or:

P{ lim
N→∞

θ(x1,x2, . . . ,xN) = Q}= 1

2.6 Summary

As we have seen, an estimator for the expectation of a function
g(x) = f (x)

p(x) is:

GN =
1
N

N

∑
i=1

g(xi)

Using this estimator, we can approximate the definite integral of
f (x):

E(GN) = E(g(x)) =
∫ f (x)

p(x)
p(x)dx =

∫
f (x)dx



The expectation of GN has been shown to equal the expectation
of g(x), regardless of the number of samples N or of the sampling
distribution p(x); GN is therefore unbiased (and implicitly consis-
tent).

The variance of GN decreases with the number of samples, mean-
ing that the probability of finding a GN which is a fixed distance
away from E(GN) becomes smaller, reaching zero as N approaches
infinity.

As a side note, Monte Carlo can also be used to approximate sums
instead of integrals, especially when the number of summands is
very high [1986]; the principle remains the same, with the major
difference being that values are sampled from a discrete distribution
instead of a continous one.

3 Sampling and Variance Reduction

Although Monte Carlo can calculate an asymptotically correct re-
sult, the method used often converges badly, meaning that variance
is quite high given a low number of samples. For this reason, vari-
ance reduction methods have been developed, which aim to counter
this problem. Variance is reduced either by introducing bias or by
incorporating additional information about the integral.

Also, some calculations require a special integration domain or –
more generally – values sampled from a certain distribution. Unfor-
tunately, one usually only has access to random (or pseudo-random)
variables that follow a single distribution, most commonly a uni-
form distribution between 0 and 1. This calls for ways to transform
one distribution into another without introducing bias.

Finally, some algorithms require that the termination criteria be ran-
dom, this criteria also has to be chosen wisely with respect to the
entire calculation as to not introduce bias.

3.1 ICDF Sampling

ICDF sampling [Kalos and Whitlock 1986; Dutré et al. 2003] is an
analytical method of transforming a sample taken from a uniform
distribution over the interval [0,1) into one that follows a given dis-
tribution p(x). This is done by applying the inverse cumulative dis-
tribution function of p(x) to the uniformly generated sample. As-
suming F(x) is the CDF based on p(x) as defined in Section 2.3.3,
it is easy to calculate the inverse CDF by, for example, isolating x
from F(x) = y, knowing that x = F−1(y).

Let u be the uniformly generated sample from [0,1) and y =
F−1(u). In order to validate this approach, we need to prove that p
really is the PDF of y. We will do so by showing that:

P{y≤ Y}=
∫ Y

−∞

p(x)dx = F(Y )

First of all, two things have to be noted. One of them is the value of
the CDF for a uniform distribution in [0,1), as explained in Section
2.3.4, which is:

P{u≤ X}= X

The other is the fact that the CDF is a monotonically nondecreasing
function by definition and thus that applying it to both sides of an
inequality of the form a ≤ b yields F(a) ≤ F(b). We proceed by
applying F(x) to both sides of the inequality contained in P{y≤Y}.
As u is uniformly distributed, the result proves our assumption:

P{F−1(u)≤ Y}= P{u≤ F(Y )}= F(Y )

It is thus possible to use samples taken from a uniform distribution,
which is commonly available through a computer function, to gain
samples distributed according to any desired PDF. The downside
of this approach is that the CDF needs to be computable at all and
invertable analytically. Rejection sampling techniques, as will be
discussed in succession, do not have this downside.

3.1.1 Sampling the Cosine Lobe

Many global illumination algorithms have to solve an integral equa-
tion that includes a cosine term; in these cases, sampling according
to the cosine term over the hemisphere can make Monte Carlo inte-
gration easier [Dutré et al. 2003].

Sampling can be done using the ICDF technique; we define the PDF
according to which we want to generate samples as:

p(θ ,φ) =
cosθ

π

The CDF can be computed as:

F(θ ,φ) =
φ

2π
(1− cos2

θ)

Since the CDF is a product of a function of φ and a function of θ ,
we can use two independent random variables ξ1 and ξ2 uniformly
distributed in the domain [0,1) for each of the two values:

Fφ =
φ

2π
⇒ φi = 2πξ1

Fθ = 1− cos2
θ ⇒ θi = cos−1

√
ξ2

In the second equation, 1− ξ was replaced by ξ2 for simplicity
(since 1−ξ is a uniform random variable in [0,1), ξ will be uniform
and in the same domain). φi and θi are now distributed according
to the cosine PDF.

3.2 Rejection Sampling

Rejection sampling is another general method of sampling an ar-
bitrary probability distribution [Kalos and Whitlock 1986; Dutré
et al. 2003]. A sample is first proposed, then tested for acceptance.
If the sample does not pass the acceptance test, it is said to be re-
jected, meaning that it is simply discarded and the process has to
be repeated for another sample. Looking at the procedure, one can
see that its most obvious disadvantage is the low efficiency that may
arise from rejecting a lot of samples. The main difficulty thus lies in
finding adequately efficient rejection tests for certain distributions.

We will now have a closer look at how samples can be proposed
and tested; a straightforward method is to sample uniformly from
the box that encloses the entire PDF [2003] (see Figure 3.2).

For a one-dimensional PDF p(x), which is to be sampled over the
domain [a,b], the value of the PDF can lie between 0 and a max-
imum M. Thus, sampling will be done uniformly from a two-
dimensional region [a,b]× [0,M], producing a sample (x,y). This
sample will be accepted if y ≤ p(x), or rejected otherwise. The
distribution of the accepted samples thus follows p(x) (intuitively,
the higher the value of p(x) at a certain position, the more samples
taken at this position will be accepted).

In practice, sampling from the two-dimensional uniform distribu-
tion can also be done by sampling x from the given region and y
from [0,1) as opposed to [0,M). The test is then adjusted to reflect
this change, by accepting the samples only when y≤ p(x)

M .
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Figure 4: Rejection sampling. Red samples are rejected, blue sam-
ples (below the function curve). Note that when sampling uni-
formly and the maximum of a function is high in relation to the
rest of the function (bottom), many samples are rejected.

As the efficiency of this technique is proportional to the probability
that a sample will be accepted, we can see that the higher the area
of the PDF within the bounds of the sampling rectangle, the higher
the efficiency of the technique will be (see Figure 3.2, down).

A more general approach to rejection techniques is discussed by
Kalos and Whitlock [Kalos and Whitlock 1986]. Here a random
variable Z with a PDF g(Z) is considered. The random variable is
accepted if a uniformly distributed sample ξ2 is lower than the value
of a function of Z, h(Z): ξ2 ≤ h(Z) < 1. By looking at the test as a
composite event, the probability of success, that is, the probability
that a sample will be accepted is found to be:

P{success}= ε =
∫

∞

−∞

h(z)g(z)dz

Here, ε is also called the efficiency of the method. Furthermore, the
probability distribution of Zs that results from the rejection tech-
nique is:

f (z) =
h(z)g(z)∫

∞

−∞
h(t)g(t)dt

The number of trials until a sample is accepted follows a geomet-
rical distribution [Viertl 2003; Kalos and Whitlock 1986], the ex-
pected number of trials is thus 1

ε
. All these quantities offer quite an

effective framework for analyzing rejection techniques.

3.3 Importance Sampling

The methods described until here primarily dealt with transforma-
tions of random variables from one PDF into another, not consider-
ing variance. The following methods attempt to lower the variance
of a given PDF by optimizing the Monte Carlo estimator.

A very widespread and widely discussed variance reduction tech-
nique is importance sampling [Kalos and Whitlock 1986; Dutré
et al. 2003; László 1999]. When computing an integral using Monte
Carlo (see Equation 5), the variance of the estimator (Equation 7)
depends on the number of samples, f (x) and p(x). Since f (x) can-
not be influenced, this leaves us with two ways of modifying the
variance:

• Increasing or decreasing the number of samples.

• Choosing a certain sampling probability density function
p(x).

Out of these two options, importance sampling pursues the latter.

We want to find a p(x) such that the variance is as low as possible
(ideally, the variance should be zero, yielding a perfect estimator).
This can be done by minimizing the equation of the variance using
variational techniques and Lagrange multipliers [2003]. The opti-
mal p(x) is given by:

p(x) =
| f (x)|∫

D f (x)dx

where D is the integration domain. If f (x) does not change sign,
this p(x) will yield a variance of zero when used. An interesting
explanation for the fact that variance can be minimized by choosing
a p(x) proportional to f (x) is given in [László 1999]:

The ratio f (x)
p(x) can be expressed as:

f (x)
g(x)

= α +β ·δ (x)

where α = E
[

f (x)
p(x)

]
and

∫
D(δ (x))2 · p(x)dx = 1. The variance of

the Monte Carlo estimator can be written as:

var
{

f (x)
p(x)

}
= E[(α +β ·δ (x)−E[α +β ·δ (x)])2]

= E[(β ·δ (x))2]

= β
2 ·E[(δ (x))2]

= β
2

We can see that the minimum variance is achieved when β = 0 and
thus f (x)

p(x) is a constant (meaning f (x) and p(x) are proportional).

Both results mentioned lead however to a single conclusion: in or-
der to achieve the lowest possible variance, we have to know the
value of

∫
D f (x)dx, which is exactly the quantity we are trying to

approximate. This might not be directly visible for the second re-
sult, but considering that p(x) is a PDF and its integral over the
whole domain is 1, the only way we can compute a p(x) that is also
proportional to f (x) is by dividing f (x) by the value of its integral.

b

f(x)

f(x)

p(x)

p(x)

.

.

Figure 5: Importance sampling. The continuous function is the
function we want to integrate, while the dotted function is the PDF
used. The PDF above will yield a higher variance than the PDF
below.

Although the usage of the perfect estimator can be ruled out, vari-
ance can be reduced considerably by using PDFs that “look like”



the function we are trying to integrate (see Figure 3.3). Several ex-
amples are given by Kalos and Whitlock [1986], one of which we
will analyze here for clarification:

Suppose the following integral should be approximated by Monte
Carlo:

G =
∫ 1

0
cos
(

πx
2

)
dx

When approximating the integral using uniformly distributed sam-
ples from [0,1) (that is, p(x) = 1), the function g1(x) used by the
estimator (as g in Equation 6) has the variance:

var{g1}= E
(

cos2
(

πx
2

))
−E

(
cos

πx
2

)2

≈ 0.0947

By expanding cos(πx/2) in a power series, an approximation of the
function for low values of x can be easily found:

cos
(

πx
2

)
= 1− π2x2

8
+

π4x4

384
− . . .

From this result, an even more convenient approximation is made.
By choosing p̃(x) = a(1−x2) and calculating the factor a = 3

2 such
that the integral of p̃(x) over [0,1) is 1, p̃(x) thus becoming a valid
PDF, we get:

g̃(x) =
g1(x)
p̃(x)

=
2
3

cos(πx/2)
1− x2

The variance of g̃(x) is approximately:

var{g̃(x)} ≈ 0.000990

yielding a variance decrease by a factor of 100.
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Figure 6: The function cos(πx/2) (bottom, red) and its approxima-
tion function (top, green).

As we have seen from this example, sampling according to even a
highly approximated PDF proportional to f (x) can lower the vari-
ance greatly.

More importance sampling based methods, which serve special
problems in rendering, will be discussed later.

3.4 Use of Expected Values

This technique can be used to reduce the dimension of the ap-
proximated integral when one dimension can be integrated analyt-
ically [Kalos and Whitlock 1986; Veach 1998]. Consider that the

integral to be approximated is:

G =
∫

g(x,y)p(x,y)dxdy

and let m(x) be the marginal distribution for x:

m(x) =
∫

f (x,y)dy

The integral can be written as:

G =
∫

m(x)
1

m(x)

∫
g(x,y)p(x,y)dydx

=
∫

m(x)h(x)dx

If m(x) and the inner integral h(x) can be evaluated analytically, we
can remove y completely from the calculation.

The difference between the variance of g(x,y) and the variance of
h(x) can be shown to equal E(var{g|x}), meaning that it is always
positive [1986]. Thus, calculating part of the integral analytically
will result in lower variance.

3.5 Correlation Methods

When two random variables are correlated, that is, one depends
on the other, this correlation can be used to decrease variance in a
Monte Carlo calculation [Kalos and Whitlock 1986].

In the method of control variates, the integral to be estimated is
written as:

G =
∫

(g(x)−h(x))p(x)dx+
∫

h(x)p(x)dx

where
∫

h(x)p(x) can be calculated analytically. The estimator for
G becomes:

〈G〉=
∫

h(x)p(x) dx+
1
N ∑

i=1
N[g(xi)−h(xi)]

This method is useful when the variance of g(x)− h(x) is much
lower than the variance of g(x), that is, when h(x) is very similar
to g(x). This technique appears similar to importance sampling; in
fact, when |g(x)− h(x)| is approximately constant, the method is
more efficient than importance sampling, but when |g(x)−h(x)| is
approximately proportional to |h(x)|, importance sampling is more
efficient [1986].

The method of antithetic varieties [1986] exploits negative correla-
tion and is useful when g(x) is linear; however, it has been shown
that this is not a very good method for variance reduction in many
dimensions.

3.6 Stratified Sampling

Stratified sampling [Kalos and Whitlock 1986; Dutré et al. 2003] is
another important variance reduction method; it tries to address the
problem that samples are often chosen unevenly from the integra-
tion domain, thus resulting in “clumping”. The solution is to split
the integration domain into m disjoint subdomains (called strata)
and approximate each resulting integral separately. Note that here,
for simplicity, samples are taken from a uniform distribution:∫ 1

0
f (x)dx =

∫
α1

0
f (x)dx+

∫
α2

α1

f (x)dx+ . . .+
∫ 1

αm−1

f (x)dx



This method does indeed reduce variance; considering that each
stratum receives a number of uniformly distributed samples n j, the
variance of the corresponding estimator is [2003]:

σ
2 =

m

∑
j=1

α j−α j−1

n j

∫
α j

α j−1

f (x)2dx

−
m

∑
j=1

1
n j

(∫
α j

α j−1

f (x)dx
)2

Furthermore, if all strata are of equal size and each stratum only
contains one uniformly generated sample, the variance becomes:

σ
2 =

m

∑
j=1

1
N

∫
α j

α j−1

f (x)2dx−
m

∑
j=1

(∫
α j

α j−1

f (x)dx
)2

=
1
N

∫ 1

0
f (x)2dx−

m

∑
j=1

(∫
α j

α j−1

f (x)dx
)2

By comparing this to the variance of the naive Monte Carlo estima-
tor we can see that the variance obtained using stratified sampling
is always lower than the one of the naive estimator. Thus, instead of
using two or more samples to approximate the integral of a stratum,
performing a subdivision on the stratum such that only one sample
is attributed to each stratum will yield a lower variance.

Achieving the smallest possible variance with stratified sampling is
not very easy; for this, the size of the strata relative to each other
and the number of samples per stratum have to be adjusted. It can
be shown that the optimal number of samples per stratum is propor-
tional to the variance of the function with regard to its mean within
that stratum [2003]. If only one sample per stratum is used, the
boundaries of strata have to be chosen such that the function vari-
ance within all strata is equal, which requires detailed knowledge
of the function.

f(x)

x

f(x)

x

Figure 7: The advantage of stratified sampling (above) - in one di-
mension. With stratified sampling and one sample per stratum, each
sample is confined within the bounds of its stratum, below samples
are taken randomly. Clearly, stratified sampling yields a better re-
sult in this case.

In order to further lower variance, stratified sampling can be com-
bined with importance sampling, retaining the advantages of both
techniques. In practice, this can be done by applying stratified sam-
pling on a uniform distribution and then using ICDF sampling to
distribute the values according to a PDF of choice [2003].

An interesting sampling method was introduced by Arvo [Arvo
1995] which makes use of stratification to more efficiently sample

spherical triangles. Techniques for sampling spherical polygons,
especially useful when requiring integration over the unit hemi-
sphere, are also described by Arvo [Dutré et al. 2004].

Stratified sampling is slightly reminescent of deterministic numer-
ical quadrature as it shares one of its downsides: the number of
samples required by the technique grows exponentially with the di-
mension of the function (that is, when approximating the integral of
a d-dimensional function with one sample per stratum, Nd samples
are required). Considering that Monte Carlo is primarily used to
estimate highly-dimensional integrals, we see that this shortcoming
has to be addressed. Fortunately, Quasi Monte Carlo or techniques
such as the N-rooks algorithm, which are both described below, can
be used for this purpose.

3.6.1 N-Rooks

The N-Rooks, or latin hypercube algorithm [Dutré et al. 2003; Ka-
los and Whitlock 1986; Owen 1998], offers a way to distribute N
samples evenly across multiple dimensions, thus allowing a con-
stant number of samples with stratified sampling.

Consider that we want to sample N times from a d-dimensional
hypercube. This is done by first dividing each dimension of the hy-
percube into N segments. Then we form d−1 independent random
permutations of 1,2, . . . ,N. Assuming that the i’th member of the
j’th permutation is n(i, j), we can sample from the regions:

[1,n(1,1),n(1,2), . . . ,n(1,d−1)],
[2,n(2,1),n(2,2), . . . ,n(2,d−1)], . . . ,

[N,n(N,1),n(N,2), . . . ,n(N,d−1)], . . . ,

In two dimensions, each combination of a row and a column will
contain exactly one sample (see Figure 3.6.1).
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Figure 8: Stratified sampling (left) and N-Rooks sampling in two
dimensions (right). With 4 subdivisions, stratified sampling already
needs 16 samples.

A generalization of the N-Rooks algorithm, called orthogonal ar-
ray sampling was introduced by Owen [Owen 1992]. This method
increases the rate of convergence in some cases compared to N-
Rooks.

3.7 Quasi Monte Carlo

Quasi-Monte Carlo (QMC) [Dutré et al. 2003; László 1999] de-
scribes a class of methods that use non-random numbers to perform
Monte Carlo calculations. In order for this approach to work, the
numbers chosen need to have low discrepancy, that is, they must be
distributed as uniformly as possible.

The key principle of quasi-Monte Carlo is thus the same as that of
Monte Carlo: the integral of an s-dimensional function f (z) (for



simplicity, we choose the domain of the integral as [0,1] in each di-
mension) can be approximated using a sequence z1,z2, . . . ,zN such
that [1999]: ∫

z∈[0,1]s
f (z)dz≈ 1

N

N

∑
i=1

f (zi)

A property that needs to be fulfilled in this case, and which can
be seen as analogous to choosing a consistent estimator in Monte
Carlo, is the stability of the sequence. This means that the error in
approximation becomes zero asymptotically:∫

z∈[0,1]s
f (z)dz = lim

N→∞

1
N

N

∑
i=1

f (zi)

Sequences that meet this criterium are called uniform [1999].

Discrepancy is most often quantified using a measure called star
discrepancy, which can be explained as follows: Consider an s-
dimensional box with one corner positioned at the origin, and the
outmost corner at coordinates A = (v1,v2, . . . ,vs). The volume of
this box is:

V (A) =
∫

z∈[0,A]
dz =

s

∏
j=1

v j

The volume can also be approximated by QMC using N samples:

V (A)≈ 1
N ∑

i=1
N f (zi)

≈ m(A)
N

where m(A) is the number of samples in the box. The star discrep-
ancy measure shows how much the distribution of samples deviates
from the ideal situation:

D∗(z1,z2, . . . ,zN) = sup
A

∣∣∣∣m(A)
N
−V (A)

∣∣∣∣
The Koksma-Hlawka inequality is uses the star discrepancy mea-
sure to describe the error bounds of quasi-Monte Carlo:∣∣∣∣∣

∫
z∈[0,1]s

f (z)dz− 1
N

N

∑
i=1

f (zi)

∣∣∣∣∣≤VHK ·D∗((z1,z2, . . . ,zN)

where VHK is the Hardy-Krause variation [1999], which is basi-
cally a measure of how fast the function can change. As we can
see, the error of quasi-Monte Carlo becomes lower with discrep-
ancy. A lot of research has been done in the area of minimizing dis-
crepancy, and several low discrepancy sequences have been found.
Examples include Halton, Hammersley, Sobol and Niederreiter se-
quences [2003].

Halton sequences are very popular in QMC. They are based on the
radical inverse function, which basically mirrors the representation
of a number i expressed in base b about the decimal point in that
base. For example, the representation of i = 4 in base b = 2 is 1002.
This representation is mirrored about the decimal point, resulting
in 0.0012, or 0.125. A multidimensional Halton sequence uses a
radical inverse sequence with a different base for each dimension,
with all bases being relatively prime to each other. It can be shown
that the discrepancy of an s-dimensional Halton sequence is of order
O((logN)s/N) [2003].

Considering that pure Monte Carlo has an error bound of 1/
√

N,
QMC appears very advantageous. Indeed, low-discrepancy se-
quences work best for low dimensions (10-20), while at higher
dimensions, their performance does not offer a direct advantage.
Low-discrepancy sequences are also highly correlated, thus trading
randomness for uniformity when sampling from them [2003].

3.8 Combining Estimators of Different Distributions

Often, more than one estimator for an integral is available. It is also
possible that each estimator is good at approximating one particular
feature of the integral, such as one of the terms in the rendering
equation. Since the estimators may thus have different relevance
depending on the parameters of the integrated function, it would
be best to calculate all estimators and weigh them appropriately,
depending on these parameters [Dutré et al. 2003].

3.8.1 Weighting by Variance

Mathematically speaking, it can be shown that if I1, I2, . . . Im are
all estimators for a certain integral, a linear combination of these
estimators:

I =
m

∑
i=1

wiIi

will also be a valid estimator of the integral, provided that the sum
of all wi is 1. For simplicity, let us analyze the variance when m = 2:

var{I}= var{w1I1 +w2I2}

= w2
1var{I1}+w2

2var{I2}+2w1w2cov(I1, I2)

By minimizing the variance, we obtain a formula for the optimal
ratio of the two weights [2003]:

w1

w2
=

var{I2}− cov(I1, I2)
var{I1}− cov(I1, I2)

Knowing that the covariance of independent variables is zero (as
explained in Section 2.3.2), we can see that, for independent esti-
mators, the weights should be chosen inversely proportional to the
variance. This is quite straightforward, as the function with the
higher variance is weighted less and the function with the lower
variance is weighted more.

3.8.2 Multiple Importance Sampling

Multiple importance sampling was introduced by Veach [1998].
Like the previously discussed method, it allows estimators to be
combined using a weighting scheme, only the weight can also de-
pend on the sample, not only on the variance of the estimator.

Let n be the number of estimating techniques used, ni the total num-
ber of samples generated using the i’th technique, Xi, j the j’th sam-
ple generated using the technique and finally wi(X) a weighting
function for the technique. The estimator used by multiple impor-
tance sampling (called the multi-sample estimator) is:

F =
n

∑
i=1

1
ni

ni

∑
j=1

wi(Xi, j)
f (Xi, j)
pi(Xi, j)

If the weighting functions wi satisfy two simple conditions:

• whenever f (x) 6= 0, the weights of all estimators sum up to
one:

n

∑
i=0

wi(x) = 1

• and whenever the probability density pi(x) = 0, the weight
must be zero as well,



the estimator can be shown to be unbiased [1998].

The approach makes use of specialized weighting functions. One of
them is the so-called balance heuristic for which it is proven [1998]
that no other combination strategy is much better. The balance
heuristic implies weighting functions of the form:

ŵi(x) =
ni

pi(x)
∑
k

nk pk(x)

which result in an estimator:

F =
1
N

n

∑
i=1

ni

∑
j=1

f (Xi, j)
∑k ck pk(Xi, j)

where N = ∑i ni is the total number of samples taken and ck = nk/N
is the fraction of samples originating from technique k.

Other weighting functions for the multi-sample estimator, designed
especially for low-variance problems, have also been proposed by
Veach [1998].

3.9 Adaptive sampling

Adaptive sampling refers to a class of sampling techniques that
attempt to reduce variance by sampling more values at positions
where the variation of the integrand is high [Veach 1998]. This is
usually done dynamically by analyzing the samples already taken.

The downside of adaptive sampling techniques is that they can in-
troduce bias, as information about the number of samples taken is
usually calcuated on-the-fly; furthermore, given a high number of
dimensions, it is usually quite expensive to sample in all dimen-
sions that require it, especially if only one or two dimensions are
responsible for the variance.

3.10 Other Variance Reduction Methods

As variance reduction is a necessity for Monte Carlo algorithms,
this field has received much attention. Many other specialized vari-
ance reduction methods have been developed, most of them extend-
ing importance or stratified sampling. Some examples are listed
below, while other more specialized ones can be found in litera-
ture [Kajiya 1986; Agarwal et al. 2003; David Burke 2004; Ghosh
and Heidrich 2005].

3.10.1 Weighted Importance Sampling

Weighted importance sampling is an extension to importance sam-
pling and was introduced by Bekært et al. [2000]. This technique
uses two PDFs, a so-called “source” PDF q(x) and a “target” PDF
p(x). It should be possible to sample from the source PDF, but not
necessarily from the target PDF.

The integral of the function f (x) to be approximated over the do-
main D is written in such a way that both PDFs are contained within
the integral: ∫

D
f (x)dx =

∫
D

f (x)
p(x)

p(x)
q(x)

q(x)dx

Let the weighting function w(x) = p(x)/q(x). The integral can now
be written as: ∫

D
f (x)dx =

∫
D

f (x)
p(x)

w(x)q(x)dx

In order to estimate the integral, samples are taken from the source
PDF q(x) and weighted according to the ratio w(x). The proposed
estimator is:

I =
N

∑
i=1

f (xi)
p(xi)

w(xi)
∑

N
j=1 w(x j)

=
∑

N
i=1 f (xi)/q(xi)

∑
N
i=1 p(xi)/q(xi)

Although this technique is biased, it is proven to be consistent (the
bias disappears by 1/N) [2000].

3.10.2 Resampled Importance Sampling

Resampled importance sampling is another more robust technique
based on importance resampling [Talbot et al. 2005]. The principle
of importance resampling is as follows:

1. A number M of samples x1, . . . ,xM is taken from the distribu-
tion p(x).

2. Each acquired sample is given a weight w j.

3. A random sample y from x1, . . . ,xM is chosen according to the
defined weights w1, . . . ,wM .

If the weights are chosen such that:

w j =
g(x j)
p(x j)

then the x j will be distributed approximately according to g(x).

Thus, resampled importance sampling offers a Monte Carlo estima-
tor based on this principle:

Iris =
1
N

N

∑
i=1

(
f (yi)
g(yi)

· 1
M

M

∑
j=1

g(xi j)
p(xi j)

)

This technique can be proven to be unbiased, the only source of
error coming from variance.

3.11 Russian Roulette

Sometimes, an algorithm requires a certain more or less arbitrary
termination condition, as it would otherwise run indefinitely (an
example of such an algorithm is stochastic ray tracing discussed
further below). By automatically terminating the algorithm after
a fixed number of iterations, bias may be introduced. Russian
Roulette is a stochastic, unbiased method for determining termi-
nation [Dutré et al. 2003].

Suppose we have a recursive algorithm and a random variable de-
termines the weighting of the next recursion. Thus, if the random
variable is 0, the algorithm will terminate. With Russian Roulette,
the PDF of the random variable can be adjusted to return 0 with
a certain additional probability α = 1− P, called the absorbtion
probability:

The integral

I =
∫ 1

0
f (x)dx



can be “compressed” horizontally, more precisely scaled by P hor-
izontally and by 1/P vertically, resulting in:

I =
∫ P

0

1
P

f (
x
P

)dx

1P0

b

bx

y

Figure 9: Russian Roulette. The dotted function is the PDF after
applying Russian Roulette with abosrbtion probability 1−P.

If x is a sample from the uniform distribution between 0 and 1, an
estimator for the integral can be written as:

〈I〉=

{
1
P f ( x

P ) if x≤ P
0 otherwise

Clearly, the expectation of 〈I〉 remains I and, since the 1/P weight-
ing factor compensates for the fact that a value of 0 is chosen be-
tween P and 1, the estimator remains unbiased.

Variance will clearly be influenced by α (the higher α is, the higher
the variance), however this is to be expected as the average recur-
sion length will decrease as α grows, making the algorithm gener-
ate less accurate results.

3.12 Metropolis Sampling

As a final sampling technique, Metropolis sampling [Kalos and
Whitlock 1986] is presented. First introduced by Metropolis et
al. in 1953 in the field of computational physics, this sampling
technique has been adapted by Veach and Guibas [1997] for use
in global illumination, resulting in the Metropolis Light Transport
algorithm.

The principle of Metropolis sampling is quite simple and was in-
spired by the behavior of systems in statistichal mechanics that
approach an equilibrium regardless of the kinetics of the sys-
tem [1986]. Metropolis sampling can be used to generate a random
walk, that is, a series of random variables X0,X1,X2, . . .. The de-
sired property of this random walk is that starting from a certain
Xi, the random variables are distributed proportionally to a specific
function f (x), regardless of what X0 was; this is achieved by con-
ducting a random “change” between Xi−1 and Xi.

The “change” between Xi−1 and Xi can be described by a proba-
bility function. The probability of transitioning from a state x to
a state y is given by K(y|x), the probability that y will be the next
state, given that x is the current state.

In order for the random walk to eventually reach a distribution pro-
portional to f (x), it has to be just as likely to transition from a state
X to a state Y as the other way around. More precisely:

K(X |Y ) f (Y ) = K(Y |X) f (x)

This property is known as detailed balance.

We thus have to find a K such that the above equation is fulfilled; in
practice, this is done by splitting K into two parts: a tentative tran-
sition function T which can be chosen arbitrarily and an acceptance
probability a. A rejection technique is then applied:

Suppose that we want to transition from a state Xi−1 to a state Xi:

1. We choose a tentative sample X
′
i according to the tentative

transition function T .

2. We accept the sample X
′
i with probability a(X

′
i |Xi−1) or we

set Xi = Xi−1 otherwise.

The acceptance probability a is chosen such that detailed balance
is fulfilled. A commonly used acceptance probability function (as
in Metropolis Light Transport) is:

a(X |Y ) = min
(

1,
T (Y |X) f (X)
T (X |Y ) f (Y )

)

The key strength of Metropolis sampling is that the only require-
ment for the function f (x) to be sampled is that it can be evaluated
at a given position. However, Metropolis sampling is biased at the
beginning, so commonly the first few elements of the random walk
are discarded [1986]; Veach and Guibas use a weighting scheme
to eliminate this bias [1997]. Another problem is that consecutive
samples are also highly correlated [1986].

4 Applications

This section will explain how the theoretical framework outlined
above can be used in actual Monte Carlo rendering algorithms.
For this purpose, the two main approaches to realistic rendering,
stochastic ray tracing and stochastic radiosity, are briefly explained.

4.1 The Rendering Equation

4.1.1 Radiometric Quantities

The rendering equation introduced by Kajiya [1986] and actually
describes, just like most of its variations, a radiometric quantity
called radiance. This quantity is fundamental in global illumina-
tion, as it describes the “appearance” of an object.

Physically speaking, radiance is the total energy flow per unit pro-
jected area per unit solid angle [Dutré et al. 2003]. Radiance varies
with position and direction and is thus a five-dimensional quantity.
Radiance shall be denoted as L(x,Θ), where x is the position and
Θ the direction, or alternatively as L(x→ Θ) to symbolize the ra-
diance leaving from x in direction Θ and L(x← Θ) to express the
radiance arriving at x from direction Θ, as in Dutré et al. [2003].

Radiance is invariant along straight paths, meaning that the radiance
leaving point x in direction of point y equals the radiance leaving
point y and heading for point x. This property implies the absence
of a participating medium (such as fog or water) between the two
points. Radiance itself also does not diminish with distance, this ef-
fect is indirectly encoded in the definition of the solid angle [2003].

Furthermore, radiance is the quantity observed by sensors such as
cameras and the human eye. This explains why brightness or color
does not diminish with distance and why radiance is so important
in rendering.

Other important quantities used in global illumination can be de-
rived from radiance [2003]:



• Irradiance (noted E)3 is the incident radiant power on a sur-
face, per unit surface area. It can be calculated by integrating
the radiance over the hemisphere:

E(x) =
∫

Ω

L(x←Θ)cosθdωΘ

• Radiant Exitance or Radiosity (noted B) is the exitant radiant
power per unit surface area:

B(x) =
∫

Ω

L(x→Θ)cosθdωΘ

Importance is also often used in global illumination algorithms; al-
though it does not exactly belong to radiometry, it can be mentioned
that importance is a quantity analogous to radiance, only it “flows”
in the opposite direction.

4.1.2 BRDF

The bidirectional reflectance distribution function (BRDF) de-
scribes the (approximate) interaction of light with a material. It
assumes that light always exits at the same point it enters an object
and thus not accounting for subsurface scattering. The BRDF is a
four-dimensional function defined at every surface point, with the
incident direction of light Ψ and the exitant direction Θ as parame-
ters.

The BRDF can thus be expressed as the ratio of the differential radi-
ance reflected in direction Θ and the differential irradiance coming
from Ψ [2003]:

fr(x,Ψ→Θ) =
dL(x→Θ)
dE(x←Ψ)

The BRDF is also reciprocal, meaning that if Θ and Ψ are reversed,
the result is the same.

Several material types exist and can be characterized by the BRDF,
including diffuse (the BRDF is constant), specular (for an incident
angle, the BRDF is nonzero only for a special exitant angle) and
glossy materials.

4.1.3 Formulations of the Rendering Equation

The rendering equation can be written in many ways to allow evalu-
ation by a specific type of algorithm. Basically, the rendering equa-
tion can be described for a pair of two points, or for a point and a
direction. Either the incoming or the outgoing radiance at a point
can be described, with contributions being made by (or to) either
all surfaces in the scene, or all surfaces reached through the hemi-
sphere [2003].

For example, a formulation of the rendering equation based on ex-
itant radiance (that is, we describe the radiance leaving x for di-
rection Θ) and on integration over the hemisphere can be written
as:

L(x→Θ) = Le(x→Θ)

+
∫

Ωx

fr(x,Ψ↔Θ)L(y→−Ψ)cos(Nx,Ψ)dωΨ

where Le is the emitted light and Nx is the surface normal of x.

3Not to be confused with expectation in probability theory, noted with E
as well.

When integrating over all surfaces in the scene, the equation be-
comes:

L(x→Θ) = Le(x→Θ)

+
∫

A
fr(x,Ψ↔Θ)L(y→−→xy)V (x,y)G(x,y)dAy (8)

where:

G(x,y) =
cos(Nx,Ψ)cos(Ny,−Ψ)

r2
xy

Here, V (x,y) is a visibility term that is 1 if x and y are mutually vis-
ible and G(x,y) is a geometry term basically making the transition
between solid angle and distance.

4.2 Stochastic Path Tracing

Stochastic path tracing is based on classical path tracing (or ray
tracing) but uses probabilities to determine the destination of rays.

4.2.1 Principle

The principle of stochastic path tracing is the same as that of ray
tracing: for each pixel on the image plane, one or more rays are
shot which are used to determine the radiance value of that pixel. A
ray then hits a certain point in the scene, and in order to calculate
the contribution of that point to the original ray, another ray can be
shot from this point.

Rays are shot from point x in a direction Θ according to the radiance
at (x,Θ) [2003]:

L(x→Θ) = Le(x→Θ)+Lr(x→Θ)

= Le(x→Θ)+
∫

Ωx

L(x←Ψ) fr(x,Ψ↔Θ)cos(Ψ,Nx)dωΨ

The integral can be approximated using Monte Carlo integration.

N random directions over the hemisphere, Ψ1, . . . ,ΨN , are sampled
according to a given PDF p(Ψ). The classic Monte Carlo estimator
for the integral is:

〈Lr(x→Θ)〉= 1
N

N

∑
i=1

L(x←Ψi) fr(x,Ω↔Ψi)cos(Ψi,Nx)
p(Ψi)

However, we do not yet know the value of L(x← Ψi). For this
reason, a ray is shot in the direction of Ψi and the resulting radiance
is added to the calculation.

Termination of this recursion can be done best with a Russian
Roulette technique, since this will result in an unbiased image. Ter-
minating after a fixed number of iterations would possibly discard
more important paths.

The estimator can also be enhanced using importance sampling, one
option being to sample according to the cosine of the direction and
the normal.

One problem that exists with this simple approach is that light
sources are rarely hit, especially when they are small. That is
why the radiance calculated at a certain point is usually split into
two parts: direct illumination, which quantifies the radiance com-
ing from light sources visible at that point and indirect illumina-
tion, which contains an approximation of interreflected light com-
ing from more distant sources.



4.2.2 Direct Illumination

For efficiency and better results, the light at each point is thus split
into a direct illumination component and an indirect illumination
component.

Direct illumination includes the light that is explicitly emitted by
light sources in the direction of the current point. It can be written
as [2003]:

Ldirect(x→Θ) =
∫

Ωx

Le(r(x,Ψ)→−Ψ)

· fr(x,Θ↔Ψ)cos(Ψ,Nx)dωΨ

where r(x,Ψ) denotes the point closest to x in direction Ψ.

Since the emitted light will only be nonzero at a low number of
points, it might be more advantageous to integrate over the areas
of the light sources, requiring the calculation of the same terms
(visibility and geometry) as in Equation 8.

The visibility terms can be calculated by tracing so called shadow
rays between the point and the light sources. With the aid of these
shadow rays, it is simple to calculate the direct contribution of light
sources.

An estimator can be created using the formulation of Ldirect to ap-
proximate the contribution made by light sources to x; this estimator
uses several points yi on the light sources and depends on:

• The incident light from those points on x;

• The value of the light sources’ BRDFs at the given yi;

• The distance between x and yi and the cosine terms residing
in G(x,yi)
and finally on:

• The visibility predicate.

Knowing this, the sampling PDF p(yi) used by the estimator can
be chosen accordingly. Dutre et al. [2003] illustrate a few options,
such as uniform sampling over the light source area or sampling
according to the cosine terms. Furthermore, if the scene contains
more light sources which all have different power, meaning there
are weaker and stronger light sources, it might be a good idea to
include the power of the light source in the estimator, too.

4.2.3 Indirect Illumination

The indirect illumination of a given point in a given direction is
illustrated by the following equation [2003]:

Lindirect(x→Θ) =
∫

Ωx

Lr(r(x,Ψ)→−Ψ)

· fr(x,Θ↔Ψ)cos(Ψ,Nx)dωΨ

Indirect illumination is thus determined by the radiance not emitted
directly from the visible points across the hemisphere, but only by
the light that these points themselves receive.

Since indirect illumination remains quite general and cannot be
sampled better using special methods as is the case with direct illu-
mination, Monte Carlo variance reduction techniques gain a much
greater importance here.

The general Monte Carlo estimator for indirect illumination
is [2003]:

〈Lindirect(x→Θ)〉= 1
N

N

∑
i=1

Lr(r(x,Ψi)→−Ψi)

· fr(x,Θ↔Ψi)cos(Ψi,Nx)
p(Ψi)

To estimate the integral, we thus simply choose N directions
Ψ1, . . . ,ΨN and evaluate all components above for the given di-
rection. Since the reflected radiance Lr(r(x,Ψi)→−Ψi) will de-
pend on the value of indirect lighting at r(x,Ψi), a similar approach
as in simple stochastic path tracing has to be taken, by evaluating
Lindirect(r(x,Ψi)→−Ψi) recursively.

As outlined above, variance reduction techniques, especially impor-
tance sampling, play a more important role in indirect illumination.
The PDF p(Ψ) can be made proportional to an arbitrary combina-
tion of functions used in the estimator, for example:

• The PDF can be made proportional to the cosine factor
cos(Ψi,Nx) (a technique for sampling according to the cosine
factor is discussed in Section 3.1.1). In this case, the PDF will
be:

p(Ψ) =
cos(Ψ,Nx)

π

If the BRDF fr is diffuse (that is, the value of the BRDF is a
constant), a more compact estimator results [2003]:

〈Lindirect(x→Θ)〉= π fr
N

N

∑
i=1

Lr(r(x,Ψi)→−Ψi)

• BRDF sampling can be employed, meaning that regions with
a high value of the BRDF are more likely to be sampled.
BRDF sampling offers good results when the surface is glossy
or specular, however, only a few BRDF models allow proper
sampling (although a technique such as resampled importance
sampling, Section 3.10.2 can still be used for this purpose).

• The recursive term Lr(r(x,Ψi)→ −Ψi) can also be used in
importance sampling; but as this quantity is often unknown,
adaptive methods or approximations (using a photon-map al-
gorithm, for example) can be used.

4.2.4 Light tracing

It should be noted that methods analogous to path tracing exist
which do not start at the camera, but at the light sources [2003].
Such methods are dubbed light tracing methods and function basi-
cally the same way as path tracing, with the only difference being
that they try to solve the importance equation, which is the dual of
the rendering equation:

W (x→Θ) = We(x→Θ)

+
∫

Ωx

W (x←Ψ) fr(x,Θ↔Ψ)cos(Ψ,Nx)dωΨ

Light tracing is seldom used as a primary image rendering tech-
nique as it does not necessarily want to compute all pixels of an
image; some pixels will most likely not be reached unless the num-
ber of light rays shot is very high.



4.3 Stochastic Radiosity

Another approach to solving the rendering equation lies in radios-
ity; this technique requires the scene to be split into a large number
of so called surface patches, polygons that act as single entities in
regard to light transport in the scene. Only diffuse light transport is
modeled in radiosity.

The radiosity integral equation is a specialization of the rendering
equation. The radiance at point x only regarding diffuse surfaces is:

L(x) = Le(x)+
∫

Ωx

fr(x)L(x←Θ
′)cos(Θ′,Nx)dω

′

Θ

This equation can be transformed to integrate over all surfaces in
the scene:

L(x) = Le(x)+ρ(x)
∫

S
K(x,y)L(y)dAy

As, in a diffuse environment, radiance and radiosity are propor-
tional by a factor of π [2003], multiplying the equation above by
this factor will yield the radiosity integral equation:

B(x) = Be(x)+ρ(x)
∫

S
K(x,y)B(y)dAy

where K(x,y) is G(x,y)V (x,y) as in the area formulation of the ren-
dering equation.

By regarding the average radiosity emitted by a surface patch i with
the area Ai [2003] and by assuming that reflectivity is constant over
each patch, we obtain the classical radiosity system of equations:

B
′
i = Bei+ρi ∑

j
Fi jB

′
j

where Fi j are so called form factors:

Fi j =
1
Ai

∫
Si

∫
S j

K(x,y)dAydAx

4.3.1 Computing Form Factors

It soon becomes clear that calculating the form factors is the most
difficult part in solving the radiosity system of equations. There-
fore, several methods have been developed to make form factor cal-
culations efficient. Two methods that are interesting with regard
to Monte Carlo are sampling using local lines and sampling using
global lines [2003].

Form factor sampling using local lines can be employed as follows:
From a certain patch i, Ni virtual particles that behave like photons
are shot throughout the scene. The number of particles that land on
another patch j, Ni j is an estimate of the form factor Fi j:

Ni j

Ni
≈ Fi j

The variance of this estimator is shown to be Fi j(1−Fi j)
Ni

[2003].

Form factor sampling using global lines is done using a similar
technique; this time, “global lines” are shot uniformly throughout
the scene, thereby connecting pairs of patches i and j. It can be
shown that form factors can again be estimated by the number of
lines that passed though a patch:

Ni j

Ni
≈ Fi j

While global lines can usually be generated more efficiently by ex-
ploiting the coherence of the scene, the methods used cannot be
easily adapted to increase the number of lines passing through a
certain patch, also, the variance of the estimator depends on the
area of the examined patch Ai; the lower the area, the higher the
variance.

4.3.2 Solutions of the Radiosity System of Equations

Many solutions for the radiosity system of equations exist, but they
will not be described in detail here. Instead, an extensive overview
can be found in Dutre et al. [2003].

Basically, two types of stochastic solutions can be distinguished:

• Stochastic relaxation methods attempt to solve the radiosity
system using a mathematical iterative solution; each iteration
of such a solution is basically a sum that can be approximated
using Monte Carlo techniques.

• Discrete random walk radiosity methods try to reach a so-
lution of the radiosity system by regarding random walks in
a discrete state space. A particle will be “born” on a light-
emitting patch with a certain probability, it will transition to
another patch according to a transition probability and will
again be absorbed with a certain probability, thus ending the
random walk. The estimated radiosity of a patch then results
from how often a patch is “visited” by such particles.

Random walk approaches used for radiosity have lead to photon
density estimation methods, which regard a continuous state space
and can thus be used to approximate integrals instead of sums. This
also leads to the technique of photon mapping.

4.4 Combined Approaches

Monte Carlo is also used as an integral technique in approaches that
combine path tracing and radiosity, such as final gathering (which
uses a final path tracing pass to enhance a radiosity solution), bidi-
rectional tracing (which uses a combination of path tracing and light
tracing) [Lafortune and Willems 1994; Veach and Guibas 1994] and
general multipass methods.

Also, the Metropolis Light Transport (MLT) algorithm [Veach and
Guibas 1997] makes use of Metropolis sampling as discussed in
Section 3.12 to compute a random walk that converges to the ac-
tual solution. MLT starts by generating a path with bidirectional
path tracing and then subjecting this path to certain mutations; each
mutation is designed to optimize a specific feature such as caustics.

5 Conclusions

This paper has given an overview of the mathematical basics be-
hind Monte Carlo methods, starting with elements of probability
theory, continuing with general sampling methods and methods for
reducing variance in Monte Carlo calculations.

We have seen that the integral of a given function f can be approx-
imated by evaluating f at several randomly chosen positions and
calculating the weighted sum thereof; in fact, we have seen that
the expected value of this technique is the value of the integral it-
self. We have analyzed the error bounds that arise when performing
such an approximation; in probability theory, the error bounds are
determined by variance and bias. In the standard case, variance



was shown to be inversely proportional to the square root of N, the
number of samples. By carefully choosing the distribution of the
samples used when approximating, we observed that the error can
be drastically reduced, which was the principle of importance sam-
pling.

We have also addressed the problem of random samples “clumping
together”; the solution was to either confine samples to a subdo-
main of the integrand, much in the spirit of deterministic numerical
quadrature (stratified sampling) or use special sequences of non-
random numbers with low discrepancy instead of random numbers;
the according technique being called quasi-Monte Carlo.

We also took a short turn at analyzing various methods that could
combine different estimators, techniques such as multiple impor-
tance sampling and weighted importance sampling were noted. We
also saw how, using Metropolis sampling, we can sample from
complicated functions without even needing to know what they
look like. Additionally, we observed the downsides of some of
these mentioned methods, be it the limited usage of inverse CDF
sampling, the complexity of finding a good distribution for impor-
tance sampling or the correlation introduced by low discrepancy
sequences in QMC.

Finally, a few applications of Monte Carlo in rendering algorithms
were discussed, most importantly the basics of stochastic ray trac-
ing and stochastic radiosity. We have seen that the entire lighting
of a scene can be calculated using integrals, which can in turn be
approximated using Monte Carlo methods.
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