Rendering: Materials

Bernhard Kerbl

Research Division of Computer Graphics
Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria
Today’s Roadmap

- Adding refractions
 - Snell’s Law
 - Fresnel Reflectance
 - Specular BTDF

- Important concepts
 - Chromatic Aberration
 - Heckbert Notation
 - Caustics
Today’s Roadmap

- Adding refractions
 - Snell’s Law
 - Fresnel Reflectance
 - Specular BTDF

- Important concepts
 - Chromatic Aberration
 - Heckbert Notation
 - Caustics
Reflection Model Sources

- **Physical (wave) optics:**
 - Derived using a detailed model of light
 - Treating it as wave and computing solutions to Maxwell’s equations
 - Computationally expensive, usually not appreciably more accurate

- **Geometric optics:**
 - Requires surface’s low-level scattering and geometric properties
 - Closed-form reflection models derived from these properties
 - More tractable, complex wave effects like polarization are ignored
Specular Reflection (Mirror)

- The angle of exiting light θ_o is the same as the angle of incidence θ_i

- Incoming light is only transported in a single direction
Specular Reflection and Transmission

- Last time, we assumed that the entire radiance is reflected (mirror)

- This is usually not the case
 - Some light is reflected on the surface
 - Some enters the new material (scattered, absorbed or refracted)
 - Meeting point of two different media is called interface

- When entering a different medium, light often changes direction

- Governed by the materials’ index of refraction and Snell’s law
Specular Reflection and Transmission
Snell’s Law

- Based on the indices of refraction for the two materials
 - η_i for the medium that the light ray is currently in
 - η_t for the new medium into which light is transmitted

- **Index of refraction**: how fast light travels in medium

- Snell’s law, essentially:
 \[\eta_i \sin \theta_i = \eta_t \sin \theta_t \]

- Given η_i, θ_i and η_t, we can easily solve for θ_t
Fresnel Reflectance

- How much of the light do we reflect?

- Not constant, but actually depends on the θ_i

- The larger θ_i, the better the chance for reflection

- If $\eta_i > \eta_t$, if incident light exceeds a certain θ_i, all light may be reflected (*total internal reflection*)
Fresnel Reflectance

- Should be handled differently, depending on the materials involved
- Distinguish how material responds to energy transported by light
- We usually consider three major groups:
 - Dielectrics conduct electricity poorly (glass, air...)
 - Conductors (*metals*, reflect a lot, transmitted light quickly absorbed)
 - Semiconductors (complex, but also rare – we can ignore them)
- We will focus on **dielectrics** today
Examples for the Index of Refraction in Dielectrics

- **Gases**: $1 \,–\, 1.0005$ (no-man’s land from 1.05 to 1.25)
- **Liquids**: 1.3 (water) – 1.5 (olive oil)
- **Solids**: 1.3 (ice) – 2.5 (diamond)
Fresnel Reflectance for Dielectrics

- Defined for parallel and perpendicular polarized light (r_{\parallel} and r_{\perp}):

 \[r_{\parallel} = \frac{\eta_t \cos \theta_i - \eta_i \cos \theta_t}{\eta_t \cos \theta_i + \eta_i \cos \theta_t}, \quad r_{\perp} = \frac{\eta_i \cos \theta_i - \eta_t \cos \theta_t}{\eta_i \cos \theta_i + \eta_t \cos \theta_t} \]

- Amount of reflected light (unpolarized light, average of squares):
 \[F_r = \frac{1}{2} (r_{\parallel}^2 + r_{\perp}^2) \]

- Amount of refracted light (conservation of energy): $1 - F_r$
Bidirectional Transmittance Distribution Function (BTDF)

- Refracted light usually changes direction in new medium
- Remember that we work with radiance: \(d\Phi = L_i dA \perp d\omega\)
- Refracted light changes direction \(\rightarrow\) influences radiance!
- Relate incoming to refracted light:

\[
L_o \cos \theta_o dA \sin \theta_o d\theta_o d\phi_o = (1 - F_r)L_i \cos \theta_i dA \sin \theta_i d\theta_i d\phi_i
\]

- Differentiating Snell’s law w.r.t. \(\theta\), we get:

\[
\eta_o \cos \theta_o d\theta_o = \eta_i \cos \theta_i d\theta_i \rightarrow \frac{\cos \theta_o d\theta_o}{\cos \theta_i d\theta_i} = \frac{\eta_i}{\eta_o}
\]
Bidirectional Transmittance Distribution Function (BTDF)

- Substituting, we get:

\[L_o \eta_i^2 d\phi_o = (1 - F_r) L_i \eta_o^2 d\phi_i \rightarrow L_o = (1 - F_r) \frac{\eta_o^2}{\eta_i^2} L_i \]

- We have all the required information for the specular BTDF!
 - Use \(T(\omega, n) \) to compute direction of \(\omega \) when refracted at interface
 - Like specular BRDF, light only goes in a single direction
 - Can reuse BRDF \(\delta(\omega) \) and normalization (similar implementation!)

\[f_r(x, \omega_i \rightarrow \omega_o) = \frac{\eta_o^2}{\eta_i^2} (1 - F_r) \frac{\delta(\omega_i - T(\omega_o, n))}{|\cos \theta_i|} \]
Bidirectional Transmittance Distribution Function (BTDF)

- When light refracts into a material with a higher η, the energy is compressed into a smaller set of angles.

- For the BTDF, $f_r(x, \omega_i \rightarrow \omega_o) = f_r(x, \omega_o \rightarrow \omega_i)$ is not guaranteed.

- No reciprocity, but $\eta_i^2 f_r(x, \omega_i \rightarrow \omega_o) = \eta_o^2 f_r(x, \omega_o \rightarrow \omega_i)$ holds!

- If you follow a view ray, do the same computations as above, just:
 - Make sure you choose η_i for medium ray comes from
 - Make sure you choose η_t for medium ray goes to
Dielectrics Implementation

- Just continue one path, use Fresnel to decide \rightarrow reflect or refract?

- View ray behaves exactly like **incident light** in the above equations

- You may find it easier to flip the normal if light **exits** a medium
 - Light that enters e.g. a glass body must also exit at some point
 - I.e., the incoming light ray is not in same hemisphere as n
 - Consistent with using η_i and η_t for current/new medium

- Solving for θ_t, you may get “$\sin \theta_t > 1$” \rightarrow **total internal reflection**
Today’s Roadmap

- Adding refractions
 - Snell’s Law
 - Fresnel Reflectance
 - Specular BTDF

- Important concepts
 - Chromatic Aberration
 - Heckbert Notation
 - Caustics
Physically speaking, the change in direction is wavelength-dependent.

For proper simulation, would have to at least bend R/G/B differently.

Would spawn two additional rays!

Can of course be done, but is often ignored (tiny effect on most images).
Heckbert Path Notation

- Assign a letter to every interaction of a light path from light to eye
 - L – light
 - D – diffuse surface
 - S – specular surface
 - E – eye

- Use regex to describe specific (e.g., very challenging) path types
 - LE: direct path from light to eye
 - L(D|S)*E: any path from light to eye
 - LDS+E: a path with one diffuse bounce, followed by specular bounces
A Quick Word on Caustics

- General: focused light from interacting with curved, specular surface

 ![Image of caustics in wine glass](CC BY-SA 3.0, Heiner Otterstedt, Kaustik, Wikipedia, “Caustic (optics)"

- For us, who are concerned with rendering and path tracing: LS+DE

 ![Computer rendering of a wine glass caustic](CC BY-SA 4.0, Markus Selmke, Computer rendering of a wine glass caustic, Wikipedia, “Caustic (optics)”)

- Usually challenging to render (takes extremely long to converge)
Neither Adam nor I are experts on materials (yet!) and we ran out of time due to some other obligations...

We would have liked to talk about:
- Glossy BSDFs (microfacets) and physics
- Participating media
- ...

We will put videos of people that are experts on the topic into the playlist. You’ll probably learn more than what you could from us :)

There will be links to reading material as well

These topics will not be covered in the exam!
SIGGRAPH University - Introduction to "Physically Based Shading in Theory and Practice" by Naty Hoffman (!!!)

SIGGRAPH University - Recent Advances in Physically Based Shading by Naty Hoffman (advanced, in the same video there are also some other talks)
References and Further Reading

- Material for Dielectrics largely based on “Physically Based Rendering” book, chapter 8: Reflection Models

- [1] Physically Based Rendering (course book, chapters 8 and 9 for materials, chapter 11 for volume rendering)

- [4] Production Volume Rendering (SIGGRAPH 2017 Course)