»
5

Rendering: Path Tracing |

Bernhard Kerbl

Research Division of Computer Graphics
Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria

Today’s Goal

m Add the last missing piece, the BSDF (simple version)

m Finally, we will generate some great-looking images by putting
together all the things we learned:

m Light Physics

m Monte Carlo Integration

m The Rendering Equation

m The Path Tracing Algorithm

m We will also check out ways to make the procedure fast and stab!e‘

-~ ®
\
Rendering — Path Tracing | 2 ﬁ

Diffuse N Rendering 'J l

Equation
Recap

Path Tracing @ l l

BSDF (aka, the
missing part)
®

Next Event

: . Russian Roulette
Estimation

What is indirect illumination?
How do multiple bounces work?
What is a path?

Can we add other effects too?

Specular

d Path Tracing v2.0

Rendering — Path Tracing | 3

Diffuse R Rendering 'J l

Equation
Recap Path Tracing @ l l
BSDF (aka, the
missing part) Next Event :
What is indirect illumination? Estimation Russian Roulette

How do multiple bounces work?
What is a path?
Can we add other effects too?

Specular

d Path Tracing v2.0

Rendering — Path Tracing | 4

The Missing Part of the Rendering Equation

Le(a:,v)E(a:,v)Jr/ fr(z,w — v)

(2

L;(x,w)cos(f,)dw

m Bidirectional Scattering Distribution Function (BSDF)

m Describes the light transport properties of the material

m So far, we avoided this term or replaced it with constant factors

m Can model reflections, refractions, volumetric scattering...

Rendering — Path Tracing | 5

Bidirectional Reflectance Distribution Function (BRDF)

m Considers only the reflection of incoming light onto a surface
m The BRDF is a limited instance of the full BSDF (e.g., no transparency)
m Good for starting out, complex materials need full BSDF
m More on that in another lecture

m A BRDF function f,.(x, w; = w,) with input directions w;, w,
m uses convention: w; and w, are assumed to point away from x

m How much irradiance from w; is reflected as radiance to w,at x?

Rendering — Path Tracing | 6

Bidirectional Reflectance Distribution Function (BRDF) m

m “How much irradiance from w; is reflected as radiance to w,at x?”

dLi(X, wo) . dLi(x' wo)
dE;(x, w;) | L;(x, w;) cosg(w;i) dw;j

/

Le(xz,v) = E(z,v) +]ﬂ fr(x,w — v)L;(x,w) cos(d,) dw

O f?‘(wai - wo) —

m Helmbholtz reciprocity: f-(x, w; = w,) = f-(x, w, = w;)

= Conserves energy: |, f,(x,w > v)cosfdw <1V v

Rendering — Path Tracing | 7

Condition for Energy Conservation

= Why must the BRDF f;. fulfill [f.(x, w = v) cosg(w) dw < 1?

m Intuitive interpretation with reciprocity: Shine a laser light along —v
onto x. We must have [_ f,.(x,v - o) cosg(w) dw < 1

m If we find a direction v for which this ’ A
is not true, it means we would reflect
more light than is coming in (furnace test!)

Rendering — Path Tracing | 8

Condition for Energy Conservation

= Why must the BRDF f;. fulfill [f.(x, w = v) cosg(w) dw < 1?

m Intuitive interpretation with reciprocity: Shine a laser light along —v
onto x. We must have [_ f,.(x,v - o) cosg(w) dw < 1

m If we find a direction v for which this
is not true, it means we would reflect
more light than is coming in (furnace test!)

Rendering — Path Tracing | 9

BRDF Types

m We usually distinguish three basic BRDF types
m Perfectly diffuse (light is scattered equally in/from all directions)
m Perfectly specular (light is reflected in/from exactly one direction)
m Glossy (mixture of the other two, stronger reflectance around r;))

A A A
n n n

X X X
Diffuse Specular Glossy

NG
Rendering — Path Tracing | 10 .

BRDF Types

m We usually distinguish three basic BRDF types

m Perfectly diffuse (light is scattered equally in/from all directions)
m Perfectly specular (light is reflected in/from exactly one direction)
m Glossy (mixture of the other two, stronger reflectance around r;))

Rendering — Path Tracing |

Sampling the BRDF T

m Before, we considered the BRDF value and sampling of w separately

m For implementation, it makes a lot of sense to combine them
®m f.(x,w — v) depends only on x, v and next ray direction w
m Rendering equation: we can’t predict L;, but f,-(x, w = v) and cos 8

m Our renderings will converge faster if the distribution of w actually
matches the shape of f,.(x, w — v) cos 6 (importance sampling!)

m If we put the BRDF in charge of choosing our w, we can make it
sample a distribution that directly matches f..(x, w — v) cos 8

m This actually makes things cleaner in code

Rendering — Path Tracing | 12

How to Handle Diffuse BRDFs

m Diffuse materials reflect same amount of light in/from all directions

mf(x,w > D) =§‘v’v,w4n<§

m p = amount of reflected light .
mp<linrgb

| 0
m Importance sampling f,.(x, w = v) cos 8 = use p(w) pc;s
= Making it a valid PDF leads to p(w) = CO; 0

m From previous exercise: it’s cosine-weighted hemisphere sampling!
N

Rendering — Path Tracing | 13

How to Implement Diffuse BRDFs

m Method sample(v): generate a cosine-weighted sample

p

m Method evaluate(a, b):ifa,b £ n < g, return f.(x,b = a) = -

m Method pdf(w) : return the proper p(w) for the passed sample
m Combine them into unit that takes care of handling diffuse materials

m Use terms as before. Abstracts the importance sampling away!

3
Rendering — Path Tracing | 14 .

Today’s Roadmap m

Diffuse Rendering
Equation
Recap_

Path Tracing l l

Next Event

: . Russian Roulette
Estimation

What is indirect illumination?
How do multiple bounces work?
What is a path?

Can we add other effects too?

Specular

d Path Tracing v2.0

Rendering — Path Tracing | 15

Things get interesting if we look at indirect illumination

Adam Celarek 16 source: owh work

Indirect lllumination

Rendering — Path Tracing | 17

Recursive Rendering Equation, Recap

% =
/<\ Material, modelled

X by the BRDF Light from
l direction w Solid angle

1 l
Le(x,v) = E(x,v) + /Q fr(z,w — v)L;(x,w) cos(f,;) dw

Light going in Light emitted from x ‘ ‘ ‘ ‘ ‘ ‘
direction v in direction v _/4

‘ K
\
Rendering — Path Tracing | 18 ﬁ.

Recursive Rendering Equation, Recap

% =
/<\ Material, modelled

X by the BRDF Evaluate light from
l direction w recursively Solid angle

| l
Le(x,v) = E(x,v) + /Q fr(z,w — v)L;(x,w) cos(f,;) dw

Light going in Light emitted from x ‘ ‘ ‘ ‘ ‘ ‘
direction v in direction v _/4

1 K
\
Rendering — Path Tracing | 19 ﬁ.

Recursive Rendering Equation, Recap

m To get the next bounce, we just evaluate this function recursively

L(zy — v) = E(z; — v) +/ fo(r1,w1 = v)L(z1 + wy) cos(0,) dwy

2
’/—l L(.’L‘l < wl) = L(:’Ez — (JJz) ! '_J

L(zg — we) = E(x2 — wo) + / fo(zo,w — wo) L(xg + w) cos(d,) dw
. . i 1ﬁ

Implementing the Rendering Equation

Li(Scene scene, Ray ray, int depth)

{

Color emitted = ©;
if (!findIntersection(scene, ray)) return 0;
Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= maxDepth) return emitted;< Recursion limit

// BRDF should decide on the next ray

// (It has to, e.g. for specular reflections)

BRDF brdf = getBRDF(its);

Ray wo = BRDFsample(brdf, -ray); < :

float pdf = BRDFpdf(brdf, wo); Diffuse BRDF
Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting _
Color indirect = Li(scene, wo, depth + 1); < Recursion
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

Rendering — Path Tracing | 21

One Bounce

Li(Scene scene, Ray ray, int depth)

{
Color emitted = ©;

if (!findIntersection(scene, ray)) return 0;
Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 1) return emitted;

// BRDF should decide on the next ray

// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);

Ray wo = BRDFsample(brdf, -ray);

float pdf = BRDFpdf(brdf, wo);

Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting
Color indirect = Li(scene, wo, depth + 1);
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

Rendering — Path Tracing | 22

Two Bounces

Li(Scene scene, Ray ray, int depth)

{
Color emitted = ©;

if (!findIntersection(scene, ray)) return 0;
Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 2) return emitted;

// BRDF should decide on the next ray

// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);

Ray wo = BRDFsample(brdf, -ray);

float pdf = BRDFpdf(brdf, wo);

Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting
Color indirect = Li(scene, wo, depth + 1);
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

Rendering — Path Tracing | 23

Three Bounces

Li(Scene scene, Ray ray, int depth)

{
Color emitted = ©;

if (!findIntersection(scene, ray)) return 0;
Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 3) return emitted;

// BRDF should decide on the next ray

// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);

Ray wo = BRDFsample(brdf, -ray);

float pdf = BRDFpdf(brdf, wo);

Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting
Color indirect = Li(scene, wo, depth + 1);
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

Rendering — Path Tracing | 24

Diffuse J J l

Next Event
Estimation

BSDF (aka, the

missing part)

Russian Roulette

What is indirect illumination?
How do multiple bounces work?
What is a path?

Can we add other effects too?

Specular

d Path Tracing v2.0

Rendering — Path Tracing | 25

How to Handle Specular BRDFs (Mirrors)

m For purely specular BRDFs (a perfect mirror surface), irradiance from
the perfect mirror direction 7;, is completely reflected to v

A
n

m Irradiance coming from any other direction

does not reflect at all towards v ”\/

B fi(q,w-ov)>0 w=mr,

m Problem: if we pick the next direction w randomly as before, the
chances of ever hitting r;, by accident are infinitely small!

Vol
\
Rendering — Path Tracing | 26 .

The Dirac Delta Function

m Model specular reflection with the Dirac delta function
m Delta function 6 (x) is defined to be 0 everywhere exceptat x = 0

m Use a shifted version §,(w) that is 0 everywhere except at w = 7;,

m Per definition, fﬂ d,(w) dw = 1 to obtain a valid PDF for sampling

m Ponder this for a moment: what value does §,(7;,) have?

NG
Rendering — Path Tracing | 27 .

Energy-Preserving Specular BRDF

m Full energy preservation: fﬂ fr(x,w = v) L; cosg(w) dw = Ly,
= If we integrate using f,-(x,w - v) = §,(w), we get L,. cosg(7,)

Oy(w)
cosg(ry)

m We lost some light! We compensate: f,.(x,w — v) =

m If we consider the properties of the Dirac delta function, we can try
to derive the same methods that we used before for diffuse BRDFs

3
Rendering — Path Tracing | 28 .

Try to Implement Specular BRDF

m sample(v): mirror v about n (invert vy, vy, in local space) and return

0a(Ta) _ o0
cosg(7Tg) o cosg(7Tg)

m Problem: How to calculate anything reasonable with co?

m evaluate(a, b): 0 if b # 1, else return

m Problem: we are comparing two vectors with floats (Stability?)
m pdf(w): 0 if w # 1;, else: 6, (1;,) =

Sp(w) 1
Sy(w)cosg(ry) cosg(ry) ¥

m But, if w = 1, evaluate(v, w) / pdf(w) =

Rendering — Path Tracing | 29

How to Implement Diffuse and Specular BRDFs

m Specular BRDF: using evaluate/pdf without sample is awkward

m Let’s make a change to the path tracing routine and BRDF interface

m Suggestion: let sample method generate w and a multiplier for L;

m Leave application of cos 8 and p(w) to the BRDF (if necessary)
» Diffuse: importance sample w, apply p(w), cos 8 cancels out
m Specular: pick w = 1;,, p(w) cancels out, cos 6 cancels out

Rendering — Path Tracing | 30

Revising the Specular BRDF Implementation

m sample(v): mirror v about n (invert vy, vy, in local space)

m Return 7;, as generated sample direction
m Return multiplier for L; as 1 (full radiance passed on)

m No other function except sample should be able to just guess 7;,
m evaluate(a, b): always return 0

m pdf(w): always return O

Rendering — Path Tracing | 31

Implementing the Rendering Equation v2.0

Li(Scene scene, Ray ray, int depth)
{
Color emitted = ©;
if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance

if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= max_depth) return emitted;

// BRDF should decide on the next ray

// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);

BRDFSample sample;

sample = BRDFsample(brdf, -ray); <

// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

Rendering — Path Tracing |

New, combined BRDF sample.value contains
PDF and cosine factors, if necessary

32

One Bounce

Li(Scene scene, Ray ray, int depth)
{
Color emitted = ©;
if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 1) return emitted;

// BRDF should decide on the next ray

// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);

BRDFSample sample;

sample = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting

Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

Rendering — Path Tracing |

Two Bounces

Li(Scene scene, Ray ray, int depth)

{
Color emitted = ©;
if (!findIntersection(scene, ray)) return 0;
Intersection its = getIntersection(scene, ray);
// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);
if(depth >= 2) return emitted;
// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
BRDFSample sample;
sample = BRDFsample(brdf, -ray);
// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

}

Rendering — Path Tracing |

Three Bounces

Li(Scene scene, Ray ray, int depth)

{
Color emitted = ©;
if (!findIntersection(scene, ray)) return 0;
Intersection its = getIntersection(scene, ray);
// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);
if(depth >= 3) return emitted;
// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
BRDFSample sample;
sample = BRDFsample(brdf, -ray);
// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

}

Rendering — Path Tracing |

How many bounces is enough?

m Remember: if we want to be unbiased, then the probability of each
possible path (i.e., journey of a photon) must be non-zero

m Photons stop bouncing when they have been entirely absorbed
m Problem: no real-world material absorbs 100% of incoming light

m No matter how many bounces, the probability never goes to zero
—> you can never stop!

N3
Rendering — Path Tracing | 36 .

oo Bounces

Li(Scene scene, Ray ray, int depth)

{

Color emitted = ©;

if (!findIntersection(scene, ray)) return o; \build\Release\nori.exe

Intersection its = getIntersection(scene, ray);

// Take care of emittance

if (isLightSource(its)) emitted = getRadiance(its);

if(false) return emitted;

// BRDF should decide on the next ray

// (It has to, e.g. for specular reflections)

BRDF brdf = getBRDF(its);

BRDFSample sample;

sample = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting

Color indirect = Li(scene, sample.wo, depth + 1); « e

eturn emitted + sample.value * indirect; m Renderer never finishes. What to do?
}

> 4

Rendering — Path Tracing | 37

Optimizing Infinite Paths

m In practice, most contribution comes from the first few bounces

Le+TLe+T2Le+
T?Le

m Can we exploit this fact and make long paths possible, but unlikely? -

Rendering — Path Tracing | 38 ﬁ

Diffuse J J l

Next Event
Estimation

Russian Roulette

What is indirect illumination?
How do multiple bounces work?
What is a path?

Can we add other effects too?

Specular

d Path Tracing v2.0

Rendering — Path Tracing | 39

Russian Roulette (RR)

m Pickap > 0. At each bounce, draw a random variable ¢ and decide
m ¢ < p: keep going for another bounce
m ¢ = p:endpath

m The longer a path goes on, the more likely it is to get terminated
m The probability of a ray surviving the N bounce is p"

m Whenever a path continues after a bounce, compensate for its (un)-

likeliness by weighting the color returned from L; with %

NS
\
Rendering — Path Tracing | 40 .

Russian Roulette..?

m “..but if the possibility for infinitely long paths remains, doesn’t that
mean that my renderer may take forever to finish?”

m Almost certainly no

m In practice, if you choose an adequate p, you are more likely to get
struck by lightning while reading this than that ever happening

m “Ok, cool, so the lower | choose p, the better, right? Can we just take
something really small?” Well, not exactly.

Vol
\
Rendering — Path Tracing | 41 .

Choosing p = 0.95

m Low chance of
stopping early

m 500 samples
per pixel

m Runtime: 260s

Rendering — Path Tracing |

Choosing p = 0.6

m High chance of
stopping early

m 500 samples
er pixel

m Runtime: 60s

m Worse, but faster.
More samples?

Rendering — Path Tracing |

Choosing p = 0.6

m High chance of
stopping early

m 1500 samples
er pixel

m Runtime: 270s

Rendering — Path Tracing |

i

0.6, 1500 samples, 270s
Took longer but looks worse!

33 A

e
ﬂ AR
Pt

p

SRR

T RSP sy
R

0.95, 500 samples, 260s

p:

PRI Yoen

Rendering — Path Tracing |

Picking the Right Russian Roulette Probability

m If p(x)islow but f(x) is not = high contribution of rare samples!

m Also called “fireflies”

m Hard to get rid off!

m Choose p at each bounce according to remaining color contribution

— X;,Wi—V;) COS O;
= p1 = 1, py at N*" bounce = maxggp 1l_v=11 b lpd;(a)il))pi | >
3 3

Rendering — Path Tracing | 46

Picking the Right Russian Roulette Probability

m Some materials absorb barely any incoming light (mirrors!)
m Imagine two mirrors opposite of each other

e RN
m Ray may bounce between them forever e R
m Bad: limit bounces to a strict maximum T |

v N
m Better:clamp RRp toavalue< 1, e.g. 0.99

m Use a minimal depth before allowing Russian Roulette to take effect
m Preserve a minimal path length for indirect illumination
m Make sure to exclude guaranteed bounces from path weights

I 7
Rendering — Path Tracing | 47 .

Path Tracing + Russian Roulette

m It works. But what about all that noise?

Rendering — Path Tracing | 48

What IS a Path?

m A path is defined by the random values that you draw along it

m Path of length N can be seen as a multi-dimensional random
variable, e.g.: (&,&5, ..., &n)T (need at least 8, ¢ per bounce)

m The more bounces we make, the more dimensions we add
m Monte Carlo is fine with handling infinite-dimensional integrals

m We pay the price for additional dimensions with additional noise

Vol
\
Rendering — Path Tracing | 49 .

Dimensions of Path Tracing M

m We already know some of them

m Random sample positions inside pixel (2)
m Constructing a new ray after each bounce (2N)
m Choosing a specific strategy for MIS (1)

m Other possible choices we have not yet considered!!!
m Lens coordinates (for depth-of-field) (2)
m Time (for motion blur) (1)

Rendering — Path Tracing | 50

Depth-of-Field

m Simulate depth-of-field for focal length f1!
m Create ray r through pixel as before Far from focal length (blurred)

m Find focal point f along r at distance f e — \ _
m Pick random location x, y on lens (disk)

m Actually shoot ray from x, y through f &
""‘ o f2 | l 1 J
» /

Close to focal length (sharp)

‘\'
51 .

Motion Blur m

m For motion blur, we make geometry a function of time ¢t

m Draw arandom t, follow path as before
m Check which triangles ray intersects at t
m Acceleration structure must support parameterization with t!

~
~
~
~
~
~

pos(0)

@ Ray — ﬁ_.'

pos(0) pos(t)
’ N L
Niabot, “Two animations rotating around a figure, with motion blur (left) and without”,
Wikipedia, “Motion Blur”, horizontally flipped, CC BY-SA 3.0

pos(t) 2 !

Rendering — Path Tracing | 52

https://creativecommons.org/licenses/by-sa/3.0

Back to Noise

m Higher-dimensional path tracing is particularly prone to noise
m How can we fix it?

m We already saw some solutions — and they still apply
m More samples (brute force)
®m Importance sampling whenever we can (we already do it for BRDFs)
m Light source sampling, recursively? = Next Event Estimation (NEE)
m Building on NEE: recursive multiple importance sampling

NS
\
Rendering — Path Tracing | 53 .

Diffuse J J l

Next Event

What is indirect illumination?
How do multiple bounces work?
What is a path?

Can we add other effects too?

Estimation

Specular

d Path Tracing v2.0

Rendering — Path Tracing | 54

Next Event Estimation m

m Builds on light source sampling. Think: where can light come from?

| |
/77 1\\\

Rendering — Path Tracing | 55

Next Event Estimation m

m Builds on light source sampling. Think: where can light come from?

Indirect

direct

Rendering — Path Tracing | 56

Next Event Estimation m

m We can map out the full hemisphere and distinguish direct/indirect

| |
/77 1\\\

Indirect

direct

Rendering — Path Tracing | 57

Next Event Estimation m

m At each bounce, use light source sampling to get direct illumination

m Use BRDF sample to generate new direction to collect indirect light

|)
/711 \N\N\

Indirect

direct

Rendering — Path Tracing | 58

Next Event Estimation m

m At each bounce, use light source sampling to get direct illumination

m Use BRDF sample to generate new direction to collect indirect light

|)
/717 1\\\

Indirect

direct

Rendering — Path Tracing | 59

Next Event Estimation m

m At each bounce, use light source sampling to get direct illumination
m Use BRDF sample to generate new direction to collect indirect light

|)
/77 1\\\

Indirect

direct

Rendering — Path Tracing | 60

Divide and Conquer

m Light source sampling for direct light
+

m BRDF sampling for finding indirect light /111N ndirect

.. direct

m Add them together to cover the hemisphere
m Light source sampling to project light source onto hemisphere

m Importance sampling of the hemisphere via BRDF to generate next
direction to collect potential indirect light from next hit point

NG
Rendering — Path Tracing | 61 .

Divide and Conquer

m Problem: what happens if the indirect sample actually hits the light?

m Indirect sample accidentally direct,
light is added twice in one bounce!

indirect

direct

m We did not restrict BRDF directions
(and we actually don’t want to)

m Idea: actually ignore emittance completely! We don’t need it,
because what emittance did, light source sampling now does for us

NS
\
Rendering — Path Tracing | 62 .

First Attempt at Next Event Estimation

Color emitted = 0;

[...]

// DONT take care of emittance
// if (isLightSource(its)) emitted = getRadiance(its);

[...] // Stop at some point based on Russian Roulette probability
BRDF brdf = getBRDF(its);

// Get direct sample on a light source with light surface sampling

LightSourceSample samplelLS = samplelLightSurface(its);

// Light source direction is not generated by the BRDF, so we evaluate rendering equation the old way
// Note: samplelS.radiance already includes light source cosTheta(y), 1/r”2, 1/dA

float direct = BRDFevaluate(brdf, -ray, samplelLS.dir) * cosTheta(its, samplelS.dir) * samplelS.radiance;

// BRDF should decide on the next indirect sample

BRDFSample sampleBRDF = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting

Color indirect = Li(scene, sampleBRDF.wo, depth + 1);

return (emitted + direct + sampleBRDF.value * indirect) / RR_probability;

Rendering — Path Tracing | 63

A First Test Run of Next Event Estimation

m The noise is mostly gone now!

m But some information lost:
m Specular reflections of lights
m Light sources themselves
m Caustics

m It seems eliminating emittance
altogether was too much...

Rendering — Path Tracing | 64

Enabling Emittance for Special Paths

m At the first bounce, there was no previous bounce for which we
computed the direct lighting (i.e., no next event estimation)

m With specular materials, we know that the BRDF allows reflection
only from a single direction, thus light source sampling will fail

m Idea: actually ignore emittance most of the time, except if
m The current hit point is the first hit after leaving the camera
m The last material was fully specular (light source sampling denied)

AR 7
Rendering — Path Tracing | 65 .

Path Tracing + Russian Roulette + Next Event Estimation

Rendering — Path Tracing |

How to Handle Glossy BRDFs?

m Most objects are actually neither completely diffuse nor completely
specular. We never talked about glossy BRDFs...

m Also, we only looked at reflections (BRDFs). What about other light
scattering or transparency, the full BSDF?

m We will handle those soon...

Rendering — Path Tracing | 67

References and Further Reading

m [1] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias
Zwicker, and Henrik Wann Jensen. 2008. Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Trans. Graph. 27, 3 (August 2008)

m [2] Depth-of-Field Implementation in a Path Tracer: https://medium.com/@elopel39/depth-of-field-in-path-
tracing-e61180417027

m [3] Ryan Overbeck, Craig Donner, and Ravi Ramamoorthi. Adaptive Wavelet Rendering. ACM Transactions on
Graphics (SIGGRAPH ASIA 09), 28(5), December 20089.

m [4] Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold Next Event Estimation. Comput. Graph.
Forum 34, 4 (July 2015), 87-97.

Rendering — Path Tracing | 68

https://medium.com/@elope139/depth-of-field-in-path-tracing-e61180417027

