
Rendering: Path Tracing I

Bernhard Kerbl

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria

Today’s Goal

Add the last missing piece, the BSDF (simple version)

Finally, we will generate some great-looking images by putting
together all the things we learned:

Light Physics

Monte Carlo Integration

The Rendering Equation

The Path Tracing Algorithm

We will also check out ways to make the procedure fast and stable
Rendering – Path Tracing I 2

Today’s Roadmap

Rendering – Path Tracing I 3

What is indirect illumination?

How do multiple bounces work?

What is a path?

Can we add other effects too?

Path Tracing

Next Event

Estimation

Path Tracing v2.0

Russian Roulette

Rendering

Equation

Recap

BSDF (aka, the

missing part)

Diffuse

Specular

Today’s Roadmap

Rendering – Path Tracing I 4

What is indirect illumination?

How do multiple bounces work?

What is a path?

Can we add other effects too?

Path Tracing

Next Event

Estimation

Path Tracing v2.0

Russian Roulette

Rendering

Equation

Recap

BSDF (aka, the

missing part)

Diffuse

Specular

The Missing Part of the Rendering Equation

Bidirectional Scattering Distribution Function (BSDF)

Describes the light transport properties of the material

So far, we avoided this term or replaced it with constant factors

Can model reflections, refractions, volumetric scattering…

Rendering – Path Tracing I 5

Bidirectional Reflectance Distribution Function (BRDF)

Considers only the reflection of incoming light onto a surface

The BRDF is a limited instance of the full BSDF (e.g., no transparency)

Good for starting out, complex materials need full BSDF

More on that in another lecture

A BRDF function 𝑓𝑟(𝑥, 𝜔𝑖 → 𝜔𝑜) with input directions 𝜔𝑖, 𝜔𝑜
uses convention: 𝜔𝑖 and 𝜔𝑜 are assumed to point away from 𝑥

How much irradiance from 𝜔𝑖 is reflected as radiance to 𝜔𝑜at 𝑥?

Rendering – Path Tracing I 6

Bidirectional Reflectance Distribution Function (BRDF)

“How much irradiance from 𝜔𝑖 is reflected as radiance to 𝜔𝑜at 𝑥?”

𝑓𝑟 𝑥, 𝜔𝑖 → 𝜔𝑜 =
𝑑𝐿𝑖(𝑥, 𝜔𝑜)

𝑑𝐸𝑖(𝑥, 𝜔𝑖)
=

𝑑𝐿𝑖(𝑥, 𝜔𝑜)

𝐿𝑖 𝑥, 𝜔𝑖 cos𝜃 𝜔𝑖 𝑑𝜔𝑖

Helmholtz reciprocity: 𝑓𝑟 𝑥, 𝜔𝑖 → 𝜔𝑜 = 𝑓𝑟(𝑥, 𝜔𝑜 → 𝜔𝑖)

Conserves energy: ׬Ω𝑓𝑟 𝑥, 𝜔 → 𝑣 cos 𝜃 𝑑𝜔 ≤ 1 ∀ 𝑣

Rendering – Path Tracing I 7

Condition for Energy Conservation

Why must the BRDF 𝑓𝑟 fulfill ׬Ω𝑓𝑟 𝑥, 𝜔 → 𝑣 cos𝜃(𝜔) 𝑑𝜔 ≤ 1?

Intuitive interpretation with reciprocity: Shine a laser light along −𝑣
onto 𝑥. We must have ׬Ω𝑓𝑟 𝑥, 𝑣 → 𝜔 cos𝜃(𝜔) 𝑑𝜔 ≤ 1

If we find a direction 𝑣 for which this
is not true, it means we would reflect
more light than is coming in (furnace test!)

Rendering – Path Tracing I 8

𝑥

𝑣

Condition for Energy Conservation

Why must the BRDF 𝑓𝑟 fulfill ׬Ω𝑓𝑟 𝑥, 𝜔 → 𝑣 cos𝜃(𝜔) 𝑑𝜔 ≤ 1?

Intuitive interpretation with reciprocity: Shine a laser light along −𝑣
onto 𝑥. We must have ׬Ω𝑓𝑟 𝑥, 𝑣 → 𝜔 cos𝜃(𝜔) 𝑑𝜔 ≤ 1

If we find a direction 𝑣 for which this
is not true, it means we would reflect
more light than is coming in (furnace test!)

Rendering – Path Tracing I 9

𝑥

𝑣

BRDF Types

We usually distinguish three basic BRDF types
Perfectly diffuse (light is scattered equally in/from all directions)
Perfectly specular (light is reflected in/from exactly one direction)
Glossy (mixture of the other two, stronger reflectance around 𝑟𝑣)

Rendering – Path Tracing I 10

𝑛

𝑟𝑣𝑣

𝑛

𝑣

𝑛

𝑣 𝑟𝑣

𝑥𝑥𝑥

Diffuse Specular Glossy

BRDF Types

Rendering – Path Tracing I 11

Diffuse

We usually distinguish three basic BRDF types
Perfectly diffuse (light is scattered equally in/from all directions)
Perfectly specular (light is reflected in/from exactly one direction)
Glossy (mixture of the other two, stronger reflectance around 𝑟𝑣)

Sampling the BRDF

Before, we considered the BRDF value and sampling of 𝜔 separately

For implementation, it makes a lot of sense to combine them

𝑓𝑟(𝑥, 𝜔 → 𝑣) depends only on 𝑥, 𝑣 and next ray direction 𝜔

Rendering equation: we can’t predict 𝐿𝑖, but 𝑓𝑟 𝑥, 𝜔 → 𝑣 and cos 𝜃

Our renderings will converge faster if the distribution of 𝜔 actually
matches the shape of 𝑓𝑟 𝑥, 𝜔 → 𝑣 cos 𝜃 (importance sampling!)

If we put the BRDF in charge of choosing our 𝜔, we can make it
sample a distribution that directly matches 𝑓𝑟 𝑥, 𝜔 → 𝑣 cos 𝜃

This actually makes things cleaner in code

Rendering – Path Tracing I 12

How to Handle Diffuse BRDFs

Diffuse materials reflect same amount of light in/from all directions

𝑓𝑟 𝑥, 𝜔 → 𝑣 =
𝜌

𝜋
∀ 𝑣,𝜔 ∠ 𝑛 <

𝜋

2

𝜌 = amount of reflected light

𝜌 ≤ 1 in 𝑟, 𝑔, 𝑏

Importance sampling 𝑓𝑟 𝑥, 𝜔 → 𝑣 cos 𝜃→ use 𝑝 𝜔 ∝
𝜌 cos 𝜃

𝜋

Making it a valid PDF leads to 𝑝 𝜔 =
cos 𝜃

𝜋

From previous exercise: it’s cosine-weighted hemisphere sampling!
Rendering – Path Tracing I 13

𝑛

𝑥

𝜔2

𝜔3

𝑣

𝜔1

How to Implement Diffuse BRDFs

Method sample(𝑣): generate a cosine-weighted sample

Method evaluate(𝑎, 𝑏): if 𝑎, 𝑏 ∠ 𝑛 <
𝜋

2
, return 𝑓𝑟 𝑥, 𝑏 → 𝑎 =

𝜌

𝜋

Method pdf(𝜔) : return the proper 𝑝(𝜔) for the passed sample

Combine them into unit that takes care of handling diffuse materials

Use terms as before. Abstracts the importance sampling away!
Rendering – Path Tracing I 14

Today’s Roadmap

Rendering – Path Tracing I 15

What is indirect illumination?

How do multiple bounces work?

What is a path?

Can we add other effects too?

Path Tracing

Next Event

Estimation

Path Tracing v2.0

Russian Roulette

Rendering

Equation

Recap

BSDF (aka, the

missing part)

Diffuse

Specular

Things get interesting if we look at indirect illumination

Adam Celarek 16 source: own work

Indirect Illumination

Difficult in real-time graphics – comes naturally in path tracing!

Rendering – Path Tracing I 17

Recursive Rendering Equation, Recap

Rendering – Path Tracing I 18

Light going in
direction v

Light from
direction ω Solid angle

Material, modelled
by the BRDF

Light emitted from x
in direction v

Recursive Rendering Equation, Recap

Rendering – Path Tracing I 19

Light going in
direction v

Evaluate light from
direction ω recursively Solid angle

Material, modelled
by the BRDF

Light emitted from x
in direction v

Recursive Rendering Equation, Recap

To get the next bounce, we just evaluate this function recursively

Rendering – Path Tracing I 20

Implementing the Rendering Equation

Rendering – Path Tracing I 21

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= maxDepth) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
Ray wo = BRDFsample(brdf, -ray);
float pdf = BRDFpdf(brdf, wo);
Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting
Color indirect = Li(scene, wo, depth + 1);
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

}

Recursion

Diffuse BRDF

Recursion limit

One Bounce

Rendering – Path Tracing I 22

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 1) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
Ray wo = BRDFsample(brdf, -ray);
float pdf = BRDFpdf(brdf, wo);
Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting
Color indirect = Li(scene, wo, depth + 1);
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

}

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 2) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
Ray wo = BRDFsample(brdf, -ray);
float pdf = BRDFpdf(brdf, wo);
Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting
Color indirect = Li(scene, wo, depth + 1);
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

}

Two Bounces

Rendering – Path Tracing I 23

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 3) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
Ray wo = BRDFsample(brdf, -ray);
float pdf = BRDFpdf(brdf, wo);
Color brdfValue = BRDFevaluate(brdf, -ray, wo);

// Call recursively for indirect lighting
Color indirect = Li(scene, wo, depth + 1);
return emitted + brdfValue * indirect * cosTheta(its, wo) / pdf;

}

Three Bounces

Rendering – Path Tracing I 24

Today’s Roadmap

Rendering – Path Tracing I 25

What is indirect illumination?

How do multiple bounces work?

What is a path?

Can we add other effects too?

Path Tracing

Next Event

Estimation

Path Tracing v2.0

Russian Roulette

Rendering

Equation

Recap

BSDF (aka, the

missing part)

Diffuse

Specular

How to Handle Specular BRDFs (Mirrors)

For purely specular BRDFs (a perfect mirror surface), irradiance from
the perfect mirror direction 𝑟𝑣 is completely reflected to 𝑣

Irradiance coming from any other direction
does not reflect at all towards 𝑣

𝑓𝑟 𝑥, 𝜔 → 𝑣 > 0⇔ 𝜔 = 𝑟𝑣

Problem: if we pick the next direction 𝜔 randomly as before, the
chances of ever hitting 𝑟𝑣 by accident are infinitely small!

Rendering – Path Tracing I 26

𝑛

𝑟𝑣𝑣

The Dirac Delta Function

Model specular reflection with the Dirac delta function

Delta function 𝛿(𝑥) is defined to be 0 everywhere except at 𝑥 = 0

Use a shifted version 𝛿𝑣(𝜔) that is 0 everywhere except at 𝜔 = 𝑟𝑣

Per definition, ׬Ω𝛿𝑣 𝜔 𝑑𝜔 = 1 to obtain a valid PDF for sampling

Ponder this for a moment: what value does 𝛿𝑣 𝑟𝑣 have?

Rendering – Path Tracing I 27

Energy-Preserving Specular BRDF

Full energy preservation: ׬Ω 𝑓𝑟 𝑥, 𝜔 → 𝑣 𝐿𝑖 cos𝜃(𝜔) 𝑑𝜔 = 𝐿𝑟𝑣

If we integrate using 𝑓𝑟 𝑥, 𝜔 → 𝑣 = 𝛿𝑣(𝜔), we get 𝐿𝑟𝑣 cos𝜃(𝑟𝑣)

We lost some light! We compensate: 𝑓𝑟 𝑥, 𝜔 → 𝑣 =
𝛿𝑣(𝜔)

cos𝜃(𝑟𝑣)

If we consider the properties of the Dirac delta function, we can try
to derive the same methods that we used before for diffuse BRDFs

Rendering – Path Tracing I 28

Try to Implement Specular BRDF

sample(𝑣): mirror 𝑣 about 𝑛 (invert 𝑣𝑥, 𝑣y in local space) and return

evaluate(𝑎, 𝑏): 0 if 𝑏 ≠ 𝑟𝑎, else return
𝛿𝑎(𝑟𝑎)

cos𝜃(𝑟𝑎)
=

∞

cos𝜃(𝑟𝑎)

Problem: How to calculate anything reasonable with ∞?

Problem: we are comparing two vectors with floats (Stability?)

pdf(𝜔): 0 if 𝜔 ≠ 𝑟𝑣, else: 𝛿𝑣 𝑟𝑣 = ∞

But, if 𝜔 = 𝑟𝑣, evaluate(𝑣, 𝜔) / pdf(𝜔) =
𝛿𝑣(𝜔)

𝛿𝑣(𝜔)cos𝜃(𝑟𝑣)
=

1

cos𝜃(𝑟𝑣)
Rendering – Path Tracing I 29

How to Implement Diffuse and Specular BRDFs

Specular BRDF: using evaluate/pdf without sample is awkward

Let’s make a change to the path tracing routine and BRDF interface

Suggestion: let sample method generate 𝜔 and a multiplier for 𝐿𝑖

Leave application of cos 𝜃 and 𝑝(𝜔) to the BRDF (if necessary)

Diffuse: importance sample 𝜔, apply 𝑝 𝜔 , cos 𝜃 cancels out

Specular: pick 𝜔 = 𝑟𝑣, 𝑝 𝜔 cancels out, cos 𝜃 cancels out

Rendering – Path Tracing I 30

Revising the Specular BRDF Implementation

sample(𝑣): mirror 𝑣 about 𝑛 (invert 𝑣𝑥, 𝑣y in local space)

Return 𝑟𝑣 as generated sample direction

Return multiplier for 𝐿𝑖 as 1 (full radiance passed on)

No other function except sample should be able to just guess 𝑟𝑣

evaluate(𝑎, 𝑏): always return 0

pdf(𝜔): always return 0

Rendering – Path Tracing I 31

Implementing the Rendering Equation v2.0

Rendering – Path Tracing I 32

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= max_depth) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
BRDFSample sample;

sample = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

}

New, combined BRDF sample.value contains

PDF and cosine factors, if necessary

One Bounce

Rendering – Path Tracing I 33

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 1) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
BRDFSample sample;

sample = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

}

Two Bounces

Rendering – Path Tracing I 34

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 2) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
BRDFSample sample;

sample = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

}

Three Bounces

Rendering – Path Tracing I 35

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(depth >= 3) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
BRDFSample sample;

sample = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

}

How many bounces is enough?

Remember: if we want to be unbiased, then the probability of each
possible path (i.e., journey of a photon) must be non-zero

Photons stop bouncing when they have been entirely absorbed

Problem: no real-world material absorbs 100% of incoming light

No matter how many bounces, the probability never goes to zero
→ you can never stop!

Rendering – Path Tracing I 36

∞ Bounces

Renderer never finishes. What to do?

Rendering – Path Tracing I 37

Li(Scene scene, Ray ray, int depth)
{

Color emitted = 0;

if (!findIntersection(scene, ray)) return 0;

Intersection its = getIntersection(scene, ray);

// Take care of emittance
if (isLightSource(its)) emitted = getRadiance(its);

if(false) return emitted;

// BRDF should decide on the next ray
// (It has to, e.g. for specular reflections)
BRDF brdf = getBRDF(its);
BRDFSample sample;

sample = BRDFsample(brdf, -ray);

// Call recursively for indirect lighting
Color indirect = Li(scene, sample.wo, depth + 1);
return emitted + sample.value * indirect;

}

Optimizing Infinite Paths

In practice, most contribution comes from the first few bounces

Can we exploit this fact and make long paths possible, but unlikely?
Rendering – Path Tracing I 38

Today’s Roadmap

Rendering – Path Tracing I 39

What is indirect illumination?

How do multiple bounces work?

What is a path?

Can we add other effects too?

Path Tracing

Next Event

Estimation

Path Tracing v2.0

Russian Roulette

Rendering

Equation

Recap

BSDF (aka, the

missing part)

Diffuse

Specular

Russian Roulette (RR)

Pick a 𝑝 > 0. At each bounce, draw a random variable 𝜉 and decide

𝜉 < 𝑝: keep going for another bounce

𝜉 ≥ 𝑝: end path

The longer a path goes on, the more likely it is to get terminated

The probability of a ray surviving the 𝑁𝑡ℎ bounce is 𝑝𝑁

Whenever a path continues after a bounce, compensate for its (un)-

likeliness by weighting the color returned from 𝐿𝑖 with
1

𝑝

Rendering – Path Tracing I 40

Russian Roulette..?

“…but if the possibility for infinitely long paths remains, doesn’t that
mean that my renderer may take forever to finish?”

Almost certainly no

In practice, if you choose an adequate 𝑝, you are more likely to get
struck by lightning while reading this than that ever happening

“Ok, cool, so the lower I choose 𝑝, the better, right? Can we just take
something really small?” Well, not exactly.

Rendering – Path Tracing I 41

Choosing 𝑝 = 0.95

Low chance of
stopping early

500 samples
per pixel

Runtime: 260s

Rendering – Path Tracing I 42

Choosing 𝑝 = 0.6

High chance of
stopping early

500 samples
per pixel

Runtime: 60s

Worse, but faster.
More samples?

Rendering – Path Tracing I 43

Choosing 𝑝 = 0.6

High chance of
stopping early

1500 samples
per pixel

Runtime: 270s

Rendering – Path Tracing I 44

High 𝑝 vs low 𝑝

Rendering – Path Tracing I 45

𝑝 = 0.95, 500 samples, 260s 𝑝 = 0.6, 1500 samples, 270s

Took longer but looks worse!

Picking the Right Russian Roulette Probability

If 𝑝(𝑥) is low but 𝑓(𝑥) is not → high contribution of rare samples!

Also called “fireflies”

Hard to get rid off!

Choose 𝑝 at each bounce according to remaining color contribution

𝑝1 = 1, 𝑝𝑁 at 𝑁𝑡ℎ bounce = maxRGB ς𝑖=1
𝑁−1 𝑓𝑟 𝑥𝑖,𝜔𝑖→𝑣𝑖 cos 𝜃𝑖

pdf 𝜔𝑖 𝑝𝑖
Rendering – Path Tracing I 46

Picking the Right Russian Roulette Probability

Some materials absorb barely any incoming light (mirrors!)

Imagine two mirrors opposite of each other

Ray may bounce between them forever

Bad: limit bounces to a strict maximum

Better: clamp RR 𝑝 to a value < 1, e.g. 0.99

Use a minimal depth before allowing Russian Roulette to take effect

Preserve a minimal path length for indirect illumination

Make sure to exclude guaranteed bounces from path weights

Rendering – Path Tracing I 47

Path Tracing + Russian Roulette

It works. But what about all that noise?

Rendering – Path Tracing I 48

What IS a Path?

A path is defined by the random values that you draw along it

Path of length 𝑁 can be seen as a multi-dimensional random
variable, e.g.: 𝜉1, 𝜉2, … , 𝜉2𝑁

𝑇 (need at least 𝜃, 𝜙 per bounce)

The more bounces we make, the more dimensions we add

Monte Carlo is fine with handling infinite-dimensional integrals

We pay the price for additional dimensions with additional noise
Rendering – Path Tracing I 49

Dimensions of Path Tracing

We already know some of them

Random sample positions inside pixel (2)

Constructing a new ray after each bounce (2𝑁)

Choosing a specific strategy for MIS (1)

…

Other possible choices we have not yet considered[1]

Lens coordinates (for depth-of-field) (2)

Time (for motion blur) (1)

…
Rendering – Path Tracing I 50

Depth-of-Field

Simulate depth-of-field for focal length 𝑓[2]

Create ray 𝑟 through pixel as before

Find focal point 𝒇 along 𝑟 at distance 𝑓

Pick random location 𝑥, 𝑦 on lens (disk)

Actually shoot ray from 𝑥, 𝑦 through 𝒇

Rendering – Path Tracing I 51

𝑓

Close to focal length (sharp)

Far from focal length (blurred)

𝒇𝟏

𝒇𝟐

Motion Blur

For motion blur, we make geometry a function of time 𝑡

Draw a random 𝑡, follow path as before

Check which triangles ray intersects at 𝑡

Acceleration structure must support parameterization with 𝑡!

Rendering – Path Tracing I 52

𝑝𝑜𝑠(0)

𝑝𝑜𝑠(𝑡)𝑝𝑜𝑠(0)

𝑝𝑜𝑠(𝑡)

Ray 𝑟 at time 𝑡

Niabot, “Two animations rotating around a figure, with motion blur (left) and without”,

Wikipedia, “Motion Blur”, horizontally flipped, CC BY-SA 3.0

https://creativecommons.org/licenses/by-sa/3.0

Back to Noise

Higher-dimensional path tracing is particularly prone to noise

How can we fix it?

We already saw some solutions – and they still apply

More samples (brute force)

Importance sampling whenever we can (we already do it for BRDFs)

Light source sampling, recursively? → Next Event Estimation (NEE)

Building on NEE: recursive multiple importance sampling

Rendering – Path Tracing I 53

Today’s Roadmap

Rendering – Path Tracing I 54

What is indirect illumination?

How do multiple bounces work?

What is a path?

Can we add other effects too?

Path Tracing

Next Event

Estimation

Path Tracing v2.0

Russian Roulette

Rendering

Equation

Recap

BSDF (aka, the

missing part)

Diffuse

Specular

Next Event Estimation

Builds on light source sampling. Think: where can light come from?

Rendering – Path Tracing I 55

Next Event Estimation

Builds on light source sampling. Think: where can light come from?

Rendering – Path Tracing I 56

indirect

direct

Next Event Estimation

We can map out the full hemisphere and distinguish direct/indirect

Rendering – Path Tracing I 57

indirect

direct

Next Event Estimation

At each bounce, use light source sampling to get direct illumination

Use BRDF sample to generate new direction to collect indirect light

Rendering – Path Tracing I 58

indirect

direct

Next Event Estimation

At each bounce, use light source sampling to get direct illumination

Use BRDF sample to generate new direction to collect indirect light

Rendering – Path Tracing I 59

indirect

direct

Next Event Estimation

At each bounce, use light source sampling to get direct illumination

Use BRDF sample to generate new direction to collect indirect light

Rendering – Path Tracing I 60

indirect

direct

Divide and Conquer

Light source sampling for direct light

+

BRDF sampling for finding indirect light

Add them together to cover the hemisphere

Light source sampling to project light source onto hemisphere

Importance sampling of the hemisphere via BRDF to generate next
direction to collect potential indirect light from next hit point

Rendering – Path Tracing I 61

indirect

direct

Divide and Conquer

Problem: what happens if the indirect sample actually hits the light?

Indirect sample accidentally direct,
light is added twice in one bounce!

We did not restrict BRDF directions
(and we actually don’t want to)

Idea: actually ignore emittance completely! We don’t need it,
because what emittance did, light source sampling now does for us

Rendering – Path Tracing I 62

?

indirect

direct

First Attempt at Next Event Estimation

Rendering – Path Tracing I 63

Color emitted = 0;

[...]

// DON‘T take care of emittance
// if (isLightSource(its)) emitted = getRadiance(its);

[...] // Stop at some point based on Russian Roulette probability

BRDF brdf = getBRDF(its);

// Get direct sample on a light source with light surface sampling
LightSourceSample sampleLS = sampleLightSurface(its);
// Light source direction is not generated by the BRDF, so we evaluate rendering equation the old way
// Note: sampleLS.radiance already includes light source cosTheta(y), 1/r^2, 1/dA
float direct = BRDFevaluate(brdf, -ray, sampleLS.dir) * cosTheta(its, sampleLS.dir) * sampleLS.radiance;

// BRDF should decide on the next indirect sample
BRDFSample sampleBRDF = BRDFsample(brdf, -ray);
// Call recursively for indirect lighting
Color indirect = Li(scene, sampleBRDF.wo, depth + 1);
return (emitted + direct + sampleBRDF.value * indirect) / RR_probability;

A First Test Run of Next Event Estimation

The noise is mostly gone now!

But some information lost:

Specular reflections of lights

Light sources themselves

Caustics

It seems eliminating emittance
altogether was too much…

Rendering – Path Tracing I 64

Enabling Emittance for Special Paths

At the first bounce, there was no previous bounce for which we
computed the direct lighting (i.e., no next event estimation)

With specular materials, we know that the BRDF allows reflection
only from a single direction, thus light source sampling will fail

Idea: actually ignore emittance most of the time, except if

The current hit point is the first hit after leaving the camera

The last material was fully specular (light source sampling denied)

Rendering – Path Tracing I 65

Path Tracing + Russian Roulette + Next Event Estimation

Rendering – Path Tracing I 66

How to Handle Glossy BRDFs?

Most objects are actually neither completely diffuse nor completely
specular. We never talked about glossy BRDFs…

Also, we only looked at reflections (BRDFs). What about other light
scattering or transparency, the full BSDF?

We will handle those soon…

Rendering – Path Tracing I 67

𝑛

𝜔𝑜 𝑟𝑣

References and Further Reading

[1] Toshiya Hachisuka, Wojciech Jarosz, Richard Peter Weistroffer, Kevin Dale, Greg Humphreys, Matthias
Zwicker, and Henrik Wann Jensen. 2008. Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Trans. Graph. 27, 3 (August 2008)

[2] Depth-of-Field Implementation in a Path Tracer: https://medium.com/@elope139/depth-of-field-in-path-
tracing-e61180417027

[3] Ryan Overbeck, Craig Donner, and Ravi Ramamoorthi. Adaptive Wavelet Rendering. ACM Transactions on
Graphics (SIGGRAPH ASIA 09), 28(5), December 2009.

[4] Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Manifold Next Event Estimation. Comput. Graph.
Forum 34, 4 (July 2015), 87–97.

Rendering – Path Tracing I 68

https://medium.com/@elope139/depth-of-field-in-path-tracing-e61180417027

