Rendering: Monte Carlo Integration li

Bernhard Kerbl

Research Division of Computer Graphics
Institute of Visual Computing & Human-Centered Technology
TU Wien, Austria

With slides based on material by Jaakko Lehtinen, used with permission

Today’s Goal TU

m Integrating the cosine-weighted radiance L; (x, w) at a point x

m Integral of the light function NN s
over the hemisphere, w.r.t. repene Solid angle
direction/solid angle at w Le(z,v) = /er(éﬂ,w — v)L;(z,w) cos(0,) dw

Light going in
direction v

m Let’s find a solution! —_—
m How do we integrate over the hemisphere?
m How do we do it smartly?

Rendering — Monte Carlo Integration | 2

Sampling a Unit Disk

m Imagine we have a disk-shaped surface with radius r = 1 that
registers incoming light (color) from directional light sources

m As an exercise, we want to approximate the total
incoming light over the disk’s surface area

m We integrate over an area of size

m We will use the Monte Carlo integral for that 2

Rendering — Monte Carlo Integration Il 3

Uniformly Sampling the Unit Disk

m If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average X 7

m By drawing uniform samplesin x and vy,
we cannot cover the area precisely

m Inscribed square: information lost

m Circumscribed square: unnecessary samples

Rendering — Monte Carlo Integration Il 4

Uniformly Sampling the Unit Disk

m If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

m By drawing uniform samplesin x and vy,
we cannot cover the area precisely

m Inscribed square: information lost

m Circumscribed square: unnecessary samples

Rendering — Monte Carlo Integration Il 5

Uniformly Sampling the Unit Disk

m If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

m By drawing uniform samplesin x and vy,
we cannot cover the area precisely

m Inscribed square: information lost

m Circumscribed square: unnecessary samples

Rendering — Monte Carlo Integration Il 6

Uniformly Sampling the Unit Disk

m If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

m By drawing uniform samplesin x and vy,
we cannot cover the area precisely

m Inscribed square: information lost

m Circumscribed square: unnecessary samples
m This is actually somewhat ok!

Rendering — Monte Carlo Integration Il 7

Rejection Sampling m

m Requires a PDF py(x) and a constant ¢ such that f(x) < cpy(x)

m Draw ¢; and X; from their respective distributions. If the point
(X;, &;cpx (X;)) lies under f(x), then the sample is accepted

loop forever: _— T

sample X from py’s distribution -
if §; - cpx(X;) < f(X;) then — ..

return X;

Rendering — Monte Carlo Integration Il 8

Rejection Sampling

m Requires a PDF py(x) and a constant ¢ such that f(x) < cpy(x)

m Draw ¢; and X; from their respective distributions. If the point
(X;, &;cpx (X;)) lies under f(x), then the sample is accepted

loop forever:

sample X from py’s distribution
it §; - cpx(X;) < f(X;) then

return X;

w Unitdisk: f(x,y) =1 F W2 +y2<D) iy =1 ooy
0 otherwise 4 2

Rendering — Monte Carlo Integration Il

Back to the Unit Disk

m We do not want to waste samples if we can avoid it
m Instead, find a way to generate uniform samples on the disk

m Second attempt: draw from 2D polar coordinates
m Polar coordinates defined by radius r € [0,1) and angle 6 € [0,2m)

m Transformation to cartesian coordinates:
X =1rsiné
y =1 Cos0

Rendering — Monte Carlo Integration Il 10

Uniformly Sampling the Unit Disk?

m Convert two € to ranges [0, 1), [0,2m) for polar coordinates

m Convert to cartesian coordinates

void sampleUnitDisk()

{
std::default random engine r_rand_eng(@xdecaf);
std::default random engine theta_rand_eng(@xcaffe);
std::uniform _real distribution<double> uniform_dist(0.0, 1.0);
for (int i = @; i < NUM_SAMPLES; i++)
{
auto r = uniform_dist(r_rand_eng);
auto theta = uniform_dist(theta_rand_eng) * 2 * M_PI;
auto x = r * sin(theta);
auto y = r * cos(theta);
samples2D[i] = std::make_pair(x, y);
}
}

Rendering — Monte Carlo Integration Il 11

m We successfully sampled the unit disk in the proper range

m However, the distribution is not
uniform with respect to the area

0,5

m Samples clump together at center ..

-0,5

m Averaging those samples will give e
us a skewed result for the integral!l - ot

-1 -0,5 0 0,5 1

Rendering — Monte Carlo Integration Il 12

Uniformly Sampling the Unit Disk: A Solution

m The area of a disk is proportional to 2, times a constant factor

m If we see the disk as concentric rings of width Ar, the j inner rings

2
) , Ti
up to radius r; = jAr should contain (7]) N out of N total samples

= Conversely, the i*" sample should lie in the ring at radius r; = r\/%

m Since ¢ is uniform in [0, 1), we can switch %for Etogetr; =1/

N3l
\
Rendering — Monte Carlo Integration Il 13 .

Uniformly Sampling the Unit Disk: A Solution

m It works, and it is not even a bad way to L.,
: : v RSRAS W
arrive at the correct solution RERELI RS, oo AT

m However, for more complex scenarios, we : '3'.‘.,'{3,-.;;;;..-,:,;
might struggle to find the solution so easily 1 05 0 o5 1

m With the tools we introduced earlier, we can 05 Sorabbat e
formalize this process for arbitrary setups

Rendering — Monte Carlo Integration Il 14

Polar To Cartesian Coordinates

m Let’s transform a regular grid from polar to cartesian coordinates

1.00 A
0 6-
0.75 A
5 .
0.50 -
4 - 0.25 A
3 1 0.00 A
—0.25 -
2 .
—0.50 -
1 ~0.75 -
0 - —1.00 A
OiO of2 0f4 0r6 0r8 110 -1.0 —-0.5 0.0 0.5 1.0
r X =rcos(8),Y =rsin(0)

a IRE
\
Rendering — Monte Carlo Integration Il 15 ﬁ.

First Attempt to Learn the PDF

m Take 100k samples, transform and see which box they end up in

1.0 3x10°3
0.8
0.6
0.4
0.2
2x1073
0.0
0.0 0.2 0.4 0.6 0.8 1.0

El) EZ

Rendering — Monte Carlo Integration Il

16

1.00

0.75

0.50

0.25

0.00

-0.25

—0.50 A1

—0.75 A

—-1.00 T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

X = §; cos(2méy), Y = & sin(2m¢,)

Knowing the PDF TU

m If we know the effect of a transformation T on the PDF, we can
m Use it in the Monte Carlo integral to weight our samples, or
m Compensate to get a uniform sampling method after transformation

Input (&4,&5) Cartesian (x,y)

1.0 1 1.00 A
—=—

0.75 4

0.8 A

0.50 -

0.6 0.25

0.00

0.4 A 0.25 4

Polar (r,9) oso] \ N

—-0.75 A1

0.2 A

0.0 A —1.00 1

0.0 0.2 0.4 0.6 0.8 1.0

L

OjO 0:2 0:4 0:6 0:8 1:0 ‘ P
\
Rendering — Monte Carlo Integration Il 17 .

>

o [N w £~y w o
1 1 1 1 1 1 1

Computing the PDF after a Transformation

m Assume a random variable A and a bijective transformation
T that yields another variable B = T(A)

m Bijectivity dictates that b = T'(a) must be either monotonically
increasing or decreasing with a

m This implies that there is a unique B; for every A;, and vice versa

= In this case, the CDFs for the two variables fulfill Pz (T (a)) = Ps(a)

N3l
\
Rendering — Monte Carlo Integration Il 18 .

Computing the PDF after a Transformation

dPg(b) _ dP4(a)
da da
dPg(b) _ dPy(a)
da da

m If b =T (a) and b increases with a, we have:

m If b decreases with a (e.g. b = —a), we have:

m Since pg is the non-negative derivative of Pg, we can rewrite as:
db
— | = ~ dPx(x) v (x) dx
P (b) da Pa (a)) Using: i _P 0
-1
db
b) = |[— a
pe(b) = |-~ pala)

Rendering — Monte Carlo Integration Il 19

Computing the PDF after a Transformation

~1
m Let’sinterpret pg(b) = 3—2 pa(a)

. . . . dp|~1
m It is the probability density of A, multiplied by —

-1

db : o : :
has two intuitive Interpretations:

da

the change in sampling density at point a if we transform a by T
or,

the inverse change in the volume of an infinitesimal hypercube at
point a if we transform a by T

Rendering — Monte Carlo Integration Il 20

%

Multidimensional Transformations

m If we try to apply the above to the unit disk, we failat x = rsin 6

-1

d .
| : the transformation that produces one

dr
target variable is dependent on both input variables and vice-versa

m We can’t evaluate

m We cannot compute the change in the PDF between individual
variables, we must take them all into account simultaneously

m It's matrix time

Rendering — Monte Carlo Integration Il 21

Multidimensional Transformations

= We write the set of N values from a multidimensional variable A
as a vector a and the N outputs of transformation T as a vector b:

ar\ | b4 T, (a)
&=(5),b=(s)= : = T(a)
AN by Ty(a)

m Instead of quantifying the change in volume incurred by T (a),
dT (a)

~— |, our goal is now to quantify the change incurred by T(a)

Rendering — Monte Carlo Integration Il 22

The Jacobian Matrix

= For a transformation b = T(a), we can define the Jacobian matrix
that contains all bj, a; combinations of partial differentials

db, db,
dby dbay
da;, day

= If we consider A’s domain as a space with N axes, Jr(a) gives the
change of the edges of an infinitesimal hypercube from a to T (a)

NG
Rendering — Monte Carlo Integration Il 23 .

The Jacobian Matrix, Visualized m

m Change of edges of an infinitesimal hypercube with extent (1,1)

oy | ob o,
da; day a2
R) ob
Oby by ()

da, day

]T(C_i) —

Rendering — Monte Carlo Integration Il

The Jacobian

TU

WIEN

m The columns of a square matrix M can be interpreted as the natural

base vectors of a space

1\

/o

\o/

\o/

if they were transformed by M

m The determinant |M| of M computes the volume

of a parallelepiped spanned by these vectors!3!

b O

m |/7|, called the Jacobian of T, gives the volume change ata by T

Rendering — Monte Carlo Integration Il

25

%

Computing the PDF of a Transformation

r ox Ox
o1 (p) _ |l ar a8\l _|fcos@® —rsind\| _
: o(p)| Jrl = oy oy |l Ksin@ rcose)‘ -
or 00
= p(,y) =222 orp(r,0) = 1 p(x,y):

a uniform density in (x, y) must be proportional to r in (1, 6)

. i

Rendering — Monte Carlo Integration Il

Compare PDFs After Transformation

1.00 A

0.75

0.50 -

1073

0.25

0.00

—0.25 A

—0.50 A

—0.75 A

T T T T T T 10_5
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

p(r,0)
T

Using p(r,0) = iand p(x,y) =

Rendering — Monte Carlo Integration Il

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Measured

How To Visualize the Computed PDF Conversion? TU

m Python code, for the interested

num_bins = 20

xlist = np.linspace(-1.9, 1.9, num_bins)
ylist = np.linspace(-1.0, 1.0, num_bins)
bin_volume = 4 / (num_bins*num_bins)

X, Y = np.meshgrid(xlist, ylist)
X += 1/num_bins
Y += 1/num_bins

r = np.sqrt(X*X+Y*Y)
uniform dist = 1/(2 * np.pi)
pdf_transform = 1/r

Z = uniform_dist * pdf_transform * bin_volume

Z[r>1] = ©

fig,ax = plt.subplots(1,1)

cp = plt.pcolor(X, Y, Z,cmap="viridis',norm=matplotlib.colors.LogNorm())
fig.colorbar(cp) # Add a colorbar to a plot

plt.show()

Rendering — Monte Carlo Integration Il 28

Sampling Joint PDFs Correctly

m For independent variables, the joint PDF p(x, y, ...) is px (x)py (y) ...
m In general, this is an assumption that we should not rely on
m Furthermore, after a transformation, only the joint PDF is known

m The proper way to sample multiple variables X, Y is to compute
m the marginal density function pyx (x) of one
m the conditional density function py(y|x) of the other

Rendering — Monte Carlo Integration Il 29

Marginal and Conditional Density Function

m Assume we have obtained the joint PDF p(x, y) of variables X,Y
with ranges |ay, by) and |ay, by)

® In a 2D domain with X, Y we can think of py(x) as the average
density of p(x, y) at a given x over all possible values y

m We can obtain the marginal density function for one of them by

integrating out all the others, e.g.: px(x) = f;: p(x,y) dy

p(x,y)
px(x)

Rendering — Monte Carlo Integration Il 30

= We can then find p(y|x) =

Adding More Variables

m What to do for multiple variables, e.g. X, Y and Z?

NS
\
Rendering — Monte Carlo Integration Il 31 .

Find first marginal density py(x) = fa f (%, y,2) dy dz
Find first conditional density py (v, z|x) = p;zé;)

Find second marginal density py (y|x) = f;zzp(x, y,z) dz
Find second conditional density py(z|x,y) = ZSZ’;';C))

Integrate + invert first marginal, first and second conditional densities
Sample each of them
Extend ad libitum to even more variables

Sampling the Unit Disk: The Formal Solution

m The size of the sampling domain in cartesian coordinates is 7

m Since we want uniform sampling and sample probabilities must

1

integrate to 1, the PDF in cartesian coordinates is p(x,y) = ~

r

= We know that p(r,0) = r p(x,y), sowe want p(r,8) =—

T

_ [4m _ _pre) _ 1
m pr(r) = fo p(r,0) d0 = 2r and p(0|r) = = 2

Rendering — Monte Carlo Integration Il 32

Sampling the Unit Disk: The Formal Solution

m If we draw samples for our 7, 6 with the above PDFs, we get
uniform distribution in (x, y) after applying transformation T

0 1.00 1072
6
0.75
5
0.50
1073 1073
4 0.25
3 0.00
—-0.25
2 104
—0.50 A
104
1
—0.75 A
0 T —1.00 T T 107>
0.0 0.2 0.4 0.6 0.8 1.0 —-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Rendering — Monte Carlo Integration Il 33

Sampling the Unit Disk: The Formal Solution

m Integrate marginal and conditional PDFs and
invert: we get the same solution as before:

O T=PR_1(€1)=\/€_1
m 0 =P51(€2) = 2m¢,

m p(0|r) is constant: no matter what radius we are looking at, all
positions on a ring of that radius (angle) should be equally likely

T

= Final integral: RGBorar = N L RGB(R; sin©;, R; cos ©;)

Rendering — Monte Carlo Integration Il 34

Moving on to the Hemisphere

m This took as a while, but we have seen all the formal procedures

m We only need to switch from integrating planar area to points w
on hemisphere surface (i.e., vectors (x, y, z) with length 1)

m Use spherical coordinates and bijective T from (1,0, ¢) to (x, y, z):
x = 71sinf cos ¢
Yy =71Ssinf sin ¢
Z =1cos6

Rendering — Monte Carlo Integration Il 35

Deriving Integration Over Hemisphere

m Each direction w represents an infinitesimal surface area portion dw
m How do we integrate a function f(w) with differential dw?
m Integration over points on hemisphere surface w, w.r.t. (8, ¢)

Rendering — Monte Carlo Integration Il 36

Deriving Integration Over Hemisphere

m We assume a planar surface with an upright facing normaln

m We use the integral intervals 6 € [O, g) , ¢ € [0, 2m)

m l.e., a curve from perpendicular to parallel for 8, a ring for ¢

Rendering — Monte Carlo Integration Il 37

Deriving Integration Over Hemisphere

m We can split the surface along @ into ribbons of width A6 — d6f
m The upper edge of the ribbon is slightly shorter than the lower
m If we keep adding more and more ribbons, this difference vanishes

Rendering — Monte Carlo Integration Il 38

Deriving Integration Over Hemisphere

m As aribbon’s width goes to d@, its area becomes its length times df
m We can find this length by projecting the ribbon to the ground
m Using trigonometry, we find the length of a ribbon is 27rsin ¢

Rendering — Monte Carlo Integration Il 39

Deriving Integration Over Hemisphere

m As aribbon’s width goes to d@, its area becomes its length times df
m We can find this length by projecting the ribbon to the ground
m Using trigonometry, we find the length of a ribbon is 2sin 6

Rendering — Monte Carlo Integration Il 40

Deriving Integration Over Hemisphere

m The length of a ribbon spans the entire interval ¢ € |0, 2m)

m Convert the length to an integral over d¢: 2sin 6 = fozn sin @ dg¢

T
2

= The final integral: [, f(w) dw = [foznf(a)) sinf d¢ dé

Rendering — Monte Carlo Integration Il 41

Deriving PDF for Hemisphere Sampling

m Integral of f(w) over area Aw = waf(a)) dw
| Y;

054¢

= Integral of f(w) w.r.t. (d6,d¢) = |, f(w)sin® do do

0 ng
m Integration domain and f(w) are identical, thus: dw = sin 8 d¢ d6

mw — (0,¢)is bijective, we have p(0, ¢) d6 d¢p = p(w) dw and:

p(0,¢) = sinb p(w)

N
\
Rendering — Monte Carlo Integration Il 42 ﬁ.

Deriving PDF for Hemisphere Sampling, Formal

m Target distribution in w, which is (x, y, z) with \/XZ +y2+z4=1

m The transformation T from (1,6, ¢) to (x,y, z):
x = 71sinf cos ¢
y =rsinfsin ¢
Z =1cos6

m The Jacobian of the transformation T gives |J;-| = r? sin @

m Hence, we have p(7,0,¢) = r*sin@ p(x,y,z) = 1sin8 p(w)

‘ \'\
Rendering — Monte Carlo Integration Il 43 .

Uniformly Sampling the Unit Hemisphere

m The domain, i.e., the unit hemisphere surface area, is 2.

1

Uniformly sampling the domain over w implies p(w) = po

sin 6

m Hence, since p(8,¢) = r* sin 8 p(w), we want p(0, ¢p) =

2TT

= Marginal density pg(0): foznp(H, ¢)dep =sinb

m Conditional density p(¢|0): p0.9) _ 1

pe(d) 2m

Rendering — Monte Carlo Integration Il

Uniformly Sampling the Unit Hemisphere — Complete m

m Antiderivative of pg(6): | sin@ d6 = 1 — cos 6 (added constant 1)

m Antiderivative of p(¢|8): | % dp = %

m Invert them to get 8 = cos™1 &; (cos is symmetric), ¢ = 27é,
m Apply transformation T on (6, @) to obtain uniformly distributed w

m Done!
1 \\ ®
Rendering — Monte Carlo Integration Il 45 .

Arbitrary Hemispheres m

m The orientation of sampled hemispheres depends on surface normal

m Use the tangent, bitangent and normal vectors of the intersection

B Wyorid = X - tangent + y - bitangent + z - normal

m Or, if available, use ToWorld transformation methods

Rendering — Monte Carlo Integration Il 46

Applications for Uniform Hemisphere Sampling

m Diffuse lighting based on last lecture’s insights with constant f..

m What do we use for Ll7 (from the physics chapter)
. . 7“’\)(B bMya;cﬁgiaéléI;nFodelled :'Iigrz’é;z)onmw |
m Full rendering equation: Solid angle
next time Le(x,v) = / fr(x,w — v)L;(x,w) cos(b,) dw
Q
Light going in e
direction v

ambient occlusion, direct lighting

Rendering — Monte Carlo Integration Il 47

Ambient Occlusion m

m Consider all unblocked directions around x as indirect light sources,

cos 6 i .
over directions w around the normal

integrate V(x, x + aw) -

m Limit ray length to «, return
if no intersection closer than a 0o

Rendering — Monte Carlo Integration Il

Ambient Occlusion

m Fine geometric details on objects are accentuated by the absence of
ambient light due to the shadows cast by close-by geometry

cos(@)
T

L,.(x)= fV(x X+ aw) dw

m Integrate over directions w on the unit
hemisphere defined by point x, normal n

if x > (x +aw) free
if x = (x+ aw) blocked

Rendering — Monte Carlo Integration Il 49

nV(x,x+ aw) = -

Cosine-Weighted Importance Sampling

m Recap: variance is low if the sampling function mimics the signal

1 . . QL
m Weuse f, = — for ambient occlusion, therefore the contribution of

signal samples varies mostly with cos 6

m It would be best to apply importance sampling: use a sampling
strategy for w, such that p(w) « cos 6

m We have gone through all the necessary steps.
Try to solve this formally with the inversion method as an exercise!

‘)
\
Rendering — Monte Carlo Integration Il 50 ﬁ

Smart Cosine-Weighted Importance Sampling

= Malley’s method: uniformly pick (x, y) samples on the unit disk

m Project them to the hemisphere surface (z = \/1 — x?% — yz)

m Done! Your samples are now
distributed with p(w) o« cos @

m Why does this work? Try to come up with your own proof!

N
\
Rendering — Monte Carlo Integration Il 51 ﬁ.

Finding Light TU

m We can use Monte Carlo integration to compute the direct
illumination from light sources in the scene at a point x l
/Ty

m Naive version: sample unit hemisphere n
uniformly, hoping to hit light sources

m Check closest hit for each direction w

I ifhitalight!

m Use L;(x,w) =
0 otherwise

Rendering — Monte Carlo Integration Il 52

Sampling a Light Source, Revisited

m A special kind of importance sampling: integrate over light sources!

-

1 if path from x to vy is unblocked

U V , — < .
m UseV(x,y) 0 otherwise

\

Apply Ty

Soft shadows (usable for rendering)

o nVJ/// || lsl light intensity at
/\ @ position y on

m Pick y on light, e.g. uniformly

n the surface
cos 0. dA v‘\’T‘ vi:ibility Inew, ray tracing) mittercoslo)
] T'); y: Change IN VOlume Of L(z)= [folz,y— o) LUV (z,y) cos(@m)cojﬂ@ dA,
Sy
infinitesimal 2D hypercube aty v
projected onto x’s hemisphere |

™ 3
\
Rendering — Monte Carlo Integration Il 53 ﬁ.

Sampling a Light Source, Revisited

Sl e

100 samples per pixel, hemisphere sampling

100 samples per pixel, light source sampling

Rendering — Monte Carlo Integration Il 54

Hemisphere Sampling lllustrated

Rendering — Monte Carlo Integration Il 55

Light Source Sampling lllustrated

Rendering — Monte Carlo Integration Il 56

Monte Carlo Integration

m But where does the actual integration step happen?

m In the basic case, directly in the main sampling loop for each pixel!
m Static scene: Samples through pixels p always hit the same point x
m Once x has been hit, the sampling of its hemisphere follows PDF
m Return sampled values (colors), weighted by the corresponding PDF

m Use N samples for p, sum color values weighted by PDF, average:

1 - L;(x, w)
FN — _z
N&s p(w)
57

Rendering — Monte Carlo Integration Il

Monte Carlo Integration as Loop Over Pixel Samples m

m We achieve integration around x with multiple samples through p
m A bit wasteful, but is a general, valid solution
m We will see in a second why this is convenient

m Weight returned values by PDF, sum up and divide by N

~
~
~
~
N
~
~
N
~
~
~

) .

Rendering — Monte Carlo Integration Il 58

Monte Carlo Integration as Loop Over Pixel Samples m

Given: camera, pixel p, scene, pdf

rgb = {0,0,0}

for1in [0, N) do
ray = ray I hroughPixel(camera, p)
x = findIntersection(ray, scene)

color = getlntegratorValue(x)

rgb += color
end for \N

L 1 L;(x, w)
rgb /= N <« Ni=1 (@)

function getlntegratorValue(x)
omega = getDirectionOnHemisphere(x, pdf)
Li = evaluateLight(x, omega, scene)

return L1 / pdf(omega)

Rendering — Monte Carlo Integration Il 59

Stratified Sampling

m With random uniform sampling, we can get unlucky

m E.g. all samples clump in a corner

°
m If we don’t know anything of the integrand, o
we want a relatively uniform sampling °
m Not regular, though, because of alias patterns! S T
® .I e |®
m Subdivide domain into non-overlapping regions o |[®[o |o
(e.g. a regular grid). Each region is called a stratum °|®| | o

m Pick new random sample in stratum with lowest number of samples

‘]
\
Rendering — Monte Carlo Integration Il 60 ﬁ

Monte Carlo Integration for Pixels

m In the first lecture, we used supersampling to fight off aliasing
m Pixels are another instance where we use Monte Carlo integration
m Choosing samples within pixels is an instance of stratified sampling

m Uniform 2D distribution, average over a pixel rectangle: box filter
m We will see more advanced methods for filtering in future lectures
m If we didn’t use at least one sample per pixel, we would leave holes

IR)
Rendering — Monte Carlo Integration Il 61 .

Monte Carlo Integration for Pixels

m Samples are randomly jittered in each stratum

m Ergo, we don’t hit the same x with each
pixel sample (py, py) inside pixel p

jp jpre (x,v) dpy dp,y J

y

m We just add two random variables! x; X2

m Instead of integrating over a hemisphere, we are integrating over all
surface points visible to a pixel and their respective hemispheres

m The box filter over pixel color samples implements uniform integral

IR)
Rendering — Monte Carlo Integration Il 62 .

The Box Filter for a Pixel (Monte Carlo Integration) m

Given: camera, pixel coordinates (pixel_x, pixel_y), scene

rgb = {0,0,0}

for11in [0, N) do
px = pixel_x + uniform_random_sample() // &; = P¢(§;) = Pz L&)
py = pixel_y + uniform_random_sample()

ray = ray T hroughPixelPos(camera, px, py)

X = ﬁndlnterseCtlon(raY’ Scene) Nothing else necessary: offsets in x and y are

_ uniformly distributed, they are independent,
I’gb T= getIntegratorValue(x) the domain size of each pixel is 1x1=1 and so

we don’t have to change the integration at all.

end for

rgb /= N
1 3 .

Rendering — Monte Carlo Integration Il 63 .

Low-Discrepancy Series

m Stratified sampling is a special case of low-discrepancy sampling!¥!

m Replace the built-in RNG with a sample generation algorithm that
sacrifices randomness for good spatial distribution

m Great for:
m Faster convergence (reduction of noise)
m GPUs (they don’t love random numbers)
m Transparent and portable sampling behavior

Rendering — Monte Carlo Integration Il 64

Halton Sequences

m For n-D, pick n different, co-prime bases (e.g. 2,3)

m Based on radical inverse: an integer a can be written
with base bandd € [0,b — 1]asa = Y™, d;(a)b'™?}

m Forb = 2,d € |0,1]: this is binary representation of
integers: 13 =0x2°+1x21+1x2%2+1x23

m di(a)

= Radical inverse with m digits: ®(a) = },;=, .

Rendering — Monte Carlo Integration Il 65

Default RNG

o g ©
o s ©
0%, © o

2,3 Halton Sequenze

¥

pedia, Halton Sequence — “Own work”

Jheald, Wiki

https://commons.wikimedia.org/wiki/User:Jheald

Halton Sequences

m Start at any integer value for each of the n variables [=7
— m i—1 2 ® oooomo(’;

= Need data structure to represent a = ;= d;(a)b FIRECIR

m Can be written for arbitrary b with some bit fiddling JERY

. . Default RNG
m For each new n-D sample, increment all n integers

pedia, Halton Sequence — “Own work”

m Compute their radical inverse with their proper base

Jheald, Wiki

o g ©
o s ©
0%, © o

00000
) © o
o (]

m Using same sequence for all pixels = patterns @

2,3 Halton Sequenze

NSl
\
Rendering — Monte Carlo Integration Il 66 .

https://commons.wikimedia.org/wiki/User:Jheald

Halton Sequences

m Large primes will behave similarly = patterns @ ,,,,,,,,,,,,

00000
.....

. ® 8 =

lllll
!!!!!!
......
000000
llllll
......

m Repetitive patterns should always be avoided! st

.......
.......
.......
ccccccc
.......
.......
.......
lllllll
.......

. . .] 29,31 Halton Sequence
m Option 1: use different starting values for different

instances (e.g. for each pixel) e

m Option 2: instead of incrementing d;, cycle through
random permutations of [0, b — 1] in each instance

m E.g.:b=3,{0,2, 1} instead of {O 1,2} 29,31 Halton Scramhlad

N3
Rendering — Monte Carlo Integration Il .

Moving Forward

m Get comfortable with all approaches to integration and sampling

m The mental image of “area under the curve” eventually collapses
(infinite-dimensional integral coming up next!)

m Transformations between sample domains may be non-trivial
m Once you grasp the underlying concepts, applying the math is easy

m We have seen simpler explanations for the most important parts
m Uniformly sampling a hemisphere
m Cosine-weighted sampling of a hemisphere

Rendering — Monte Carlo Integration Il 68

References and Further Reading

Slide set based mostly on chapter 13 of Physically Based Rendering: From Theory to Implementation

[1] Steven Strogatz, Infinite Powers: How Calculus Reveals the Secrets of the Universe

[2] Video, Why “probability of 0” does not mean “impossible” | Probabilities of probabilities, part 2:
https://www.youtube.com/watch?v=ZA4JkHKZM50

[3] Video, The determinant | Essence of linear algebra, chapter 6:
https://www.youtube.com/watch?v=Ip3X9LOh2dk

[4] SIGGRAPH 2012 Course: Advanced (Quasi-) Monte Carlo Methods for Image Synthesis,
https://sites.google.com/site/gmcrendering/

[5] Wikipedia, Van der Corput Sequence, https://en.wikipedia.org/wiki/Van der Corput sequence

Rendering — Monte Carlo Integration Il 69

https://www.youtube.com/watch?v=ZA4JkHKZM50
https://www.youtube.com/watch?v=Ip3X9LOh2dk
https://sites.google.com/site/qmcrendering/
https://en.wikipedia.org/wiki/Van_der_Corput_sequence

