
Rendering: Monte Carlo Integration II

Bernhard Kerbl

Research Division of Computer Graphics

Institute of Visual Computing & Human-Centered Technology

TU Wien, Austria
With slides based on material by Jaakko Lehtinen, used with permission

න

Integrating the cosine-weighted radiance 𝐿𝑖(𝑥, 𝜔) at a point 𝑥

Integral of the light function
over the hemisphere, w.r.t.
direction/solid angle at 𝜔

Let’s find a solution!

How do we integrate over the hemisphere?

How do we do it smartly?

Today’s Goal

Rendering – Monte Carlo Integration I 2

Sampling a Unit Disk

Imagine we have a disk-shaped surface with radius 𝑟 = 1 that
registers incoming light (color) from directional light sources

As an exercise, we want to approximate the total
incoming light over the disk’s surface area

We integrate over an area of size 𝜋

We will use the Monte Carlo integral for that

Rendering – Monte Carlo Integration II 3

2

2
r = 1

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average × 𝜋

By drawing uniform samples in 𝑥 and 𝑦,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Monte Carlo Integration II 4

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in 𝑥 and 𝑦,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Monte Carlo Integration II 5

Uniformly Sampling the Unit Disk

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in 𝑥 and 𝑦,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

Rendering – Monte Carlo Integration II 6

If we can manage to uniformly sample the disk, then we can
compute the Monte Carlo integral as a simple average

By drawing uniform samples in 𝑥 and 𝑦,
we cannot cover the area precisely

Inscribed square: information lost

Circumscribed square: unnecessary samples

This is actually somewhat ok!

Uniformly Sampling the Unit Disk

Rendering – Monte Carlo Integration II 7

Rejection Sampling

Requires a PDF 𝑝𝑋(𝑥) and a constant 𝑐 such that 𝑓 𝑥 < 𝑐𝑝𝑋(𝑥)

Draw 𝜉𝑖 and 𝑋𝑖 from their respective distributions. If the point
(𝑋𝑖 , 𝜉𝑖𝑐𝑝𝑋 𝑋𝑖) lies under 𝑓 𝑥 , then the sample is accepted

loop forever:

sample 𝑋 from 𝑝𝑋’s distribution

if 𝜉𝑖 ⋅ 𝑐𝑝𝑋 𝑋𝑖 < 𝑓 𝑋𝑖 then

return 𝑋𝑖

Rendering – Monte Carlo Integration II 8

Rejection Sampling

Requires a PDF 𝑝𝑋(𝑥) and a constant 𝑐 such that 𝑓 𝑥 < 𝑐𝑝𝑋(𝑥)

Draw 𝜉𝑖 and 𝑋𝑖 from their respective distributions. If the point
(𝑋𝑖 , 𝜉𝑖𝑐𝑝𝑋 𝑋𝑖) lies under 𝑓 𝑥 , then the sample is accepted

loop forever:

sample 𝑋 from 𝑝𝑋’s distribution

if 𝜉𝑖 ⋅ 𝑐𝑝𝑋 𝑋𝑖 < 𝑓 𝑋𝑖 then

return 𝑋𝑖

Unit disk: 𝑓 𝑥, 𝑦 = ൝1 𝑖𝑓 (𝑥2 + 𝑦2 ≤ 1)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑝 𝑥, 𝑦 =

1

4
, 𝑐 = 4

Rendering – Monte Carlo Integration II 9

Back to the Unit Disk

We do not want to waste samples if we can avoid it

Instead, find a way to generate uniform samples on the disk

Second attempt: draw from 2D polar coordinates

Polar coordinates defined by radius 𝑟 ∈ [0,1) and angle 𝜃 ∈ [0,2𝜋)

Transformation to cartesian coordinates:
𝑥 = 𝑟 sin 𝜃
y = 𝑟 cos 𝜃

Rendering – Monte Carlo Integration II 10

Uniformly Sampling the Unit Disk?

Convert two 𝜉 to ranges 0, 1 , [0,2𝜋) for polar coordinates

Convert to cartesian coordinates

Rendering – Monte Carlo Integration II 11

void sampleUnitDisk()
{

std::default_random_engine r_rand_eng(0xdecaf);
std::default_random_engine theta_rand_eng(0xcaffe);

std::uniform_real_distribution<double> uniform_dist(0.0, 1.0);

for (int i = 0; i < NUM_SAMPLES; i++)
{

auto r = uniform_dist(r_rand_eng);
auto theta = uniform_dist(theta_rand_eng) * 2 * M_PI;
auto x = r * sin(theta);
auto y = r * cos(theta);

samples2D[i] = std::make_pair(x, y);
}

}

We successfully sampled the unit disk in the proper range

However, the distribution is not
uniform with respect to the area

Samples clump together at center

Averaging those samples will give
us a skewed result for the integral!

Clumping

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

Rendering – Monte Carlo Integration II 12

Uniformly Sampling the Unit Disk: A Solution

The area of a disk is proportional to 𝑟2, times a constant factor 𝜋

If we see the disk as concentric rings of width Δ𝑟, the 𝑗 inner rings

up to radius 𝑟𝑗 = 𝑗Δ𝑟 should contain
𝑟𝑗

𝑟

2
𝑁 out of 𝑁 total samples

Conversely, the 𝑖𝑡ℎ sample should lie in the ring at radius 𝑟𝑖 = 𝑟
𝑖

𝑁

Since 𝜉 is uniform in [0, 1), we can switch
𝑗

𝑁
for 𝜉 to get 𝑟𝑖 = 𝑟 𝜉𝑖

Rendering – Monte Carlo Integration II 13

Uniformly Sampling the Unit Disk: A Solution

It works, and it is not even a bad way to
arrive at the correct solution

However, for more complex scenarios, we
might struggle to find the solution so easily

With the tools we introduced earlier, we can
formalize this process for arbitrary setups

Rendering – Monte Carlo Integration II 14

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

Let’s transform a regular grid from polar to cartesian coordinates

Polar To Cartesian Coordinates

Rendering – Monte Carlo Integration II 15

𝑋 = 𝑟 cos(𝜃), 𝑌 = 𝑟 sin(𝜃)𝑟

𝜃

Take 100k samples, transform and see which box they end up in

First Attempt to Learn the PDF

Rendering – Monte Carlo Integration II 16

𝑋 = 𝜉1 cos(2𝜋𝜉2), 𝑌 = 𝜉1 sin(2𝜋𝜉2)ξ1, ξ2

Knowing the PDF

If we know the effect of a transformation 𝑇 on the PDF, we can

Use it in the Monte Carlo integral to weight our samples, or

Compensate to get a uniform sampling method after transformation

Rendering – Monte Carlo Integration II 17

𝐼𝑛𝑝𝑢𝑡 (𝜉1, 𝜉2) 𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 (𝑥, 𝑦)

𝑃𝑜𝑙𝑎𝑟 (r, 𝜃)

𝑇(𝑟, 𝜃)

Computing the PDF after a Transformation

Assume a random variable 𝐴 and a bijective transformation
𝑇 that yields another variable 𝐵 = 𝑇 𝐴

Bijectivity dictates that 𝑏 = 𝑇(𝑎) must be either monotonically
increasing or decreasing with 𝑎

This implies that there is a unique 𝐵i for every 𝐴i, and vice versa

In this case, the CDFs for the two variables fulfill 𝑃𝐵 𝑇(𝑎) = 𝑃𝐴(𝑎)

Rendering – Monte Carlo Integration II 18

Computing the PDF after a Transformation

If 𝑏 = 𝑇(𝑎) and 𝑏 increases with 𝑎, we have:
𝑑𝑃𝐵(𝑏)

𝑑𝑎
=

𝑑𝑃𝐴(𝑎)

𝑑𝑎

If 𝑏 decreases with 𝑎 (e.g. 𝑏 = −𝑎), we have: −
𝑑𝑃𝐵(𝑏)

𝑑𝑎
=

𝑑𝑃𝐴(𝑎)

𝑑𝑎

Since 𝑝𝐵 is the non-negative derivative of 𝑃𝐵, we can rewrite as:

𝑝𝐵 𝑏
𝑑𝑏

𝑑𝑎
= 𝑝𝐴 𝑎 ,

𝑝𝐵 𝑏 =
𝑑𝑏

𝑑𝑎

−1

𝑝𝐴 𝑎

Rendering – Monte Carlo Integration II 19

𝑈𝑠𝑖𝑛𝑔:
𝑑𝑃𝑋 𝑥

𝑑𝑦
=
𝑝𝑋 𝑥 𝑑𝑥

𝑑𝑦

Computing the PDF after a Transformation

Let’s interpret 𝑝𝐵 𝑏 =
𝑑𝑏

𝑑𝑎

−1
𝑝𝐴 𝑎

It is the probability density of 𝐴, multiplied by
𝑑𝑏

𝑑𝑎

−1

𝑑𝑏

𝑑𝑎

−1
has two intuitive interpretations:

the change in sampling density at point 𝑎 if we transform 𝑎 by 𝑇
or,
the inverse change in the volume of an infinitesimal hypercube at
point 𝑎 if we transform 𝑎 by 𝑇

Rendering – Monte Carlo Integration II 20

Multidimensional Transformations

If we try to apply the above to the unit disk, we fail at 𝑥 = 𝑟 sin 𝜃

We can’t evaluate
𝑑𝑥

𝑑𝑟

−1
: the transformation that produces one

target variable is dependent on both input variables and vice-versa

We cannot compute the change in the PDF between individual
variables, we must take them all into account simultaneously

It’s matrix time
Rendering – Monte Carlo Integration II 21

Multidimensional Transformations

We write the set of 𝑁 values from a multidimensional variable Ԧ𝐴

as a vector Ԧ𝑎 and the 𝑁 outputs of transformation 𝑇 as a vector 𝑏:

Ԧ𝑎 =

𝑎1
⋮
𝑎𝑁

, 𝑏 =
𝑏1
⋮
𝑏𝑁

=
𝑇1(Ԧ𝑎)
⋮

𝑇𝑁(Ԧ𝑎)
= 𝑇(Ԧ𝑎)

Instead of quantifying the change in volume incurred by 𝑇 𝑎 ,
𝑑𝑇 𝑎

𝑑𝑎
, our goal is now to quantify the change incurred by 𝑇 Ԧ𝑎

Rendering – Monte Carlo Integration II 22

The Jacobian Matrix

For a transformation 𝑏 = 𝑇(Ԧ𝑎), we can define the Jacobian matrix
that contains all 𝑏𝑗 , 𝑎𝑖 combinations of partial differentials

𝐽𝑇(Ԧ𝑎) =

𝜕𝑏1

𝜕𝑎1
⋯

𝜕𝑏1

𝜕𝑎𝑁

⋮ ⋱ ⋮
𝜕𝑏𝑀

𝜕𝑎1
⋯

𝜕𝑏𝑀

𝜕𝑎𝑁

If we consider Ԧ𝐴’s domain as a space with 𝑁 axes, 𝐽𝑇(Ԧ𝑎) gives the
change of the edges of an infinitesimal hypercube from Ԧ𝑎 to 𝑇(Ԧ𝑎)

Rendering – Monte Carlo Integration II 23

The Jacobian Matrix, Visualized

Change of edges of an infinitesimal hypercube with extent 1,1

𝐽𝑇(Ԧ𝑎) =

𝜕𝑏1
𝜕𝑎1

⋯
𝜕𝑏1
𝜕𝑎𝑁

⋮ ⋱ ⋮
𝜕𝑏𝑁
𝜕𝑎1

⋯
𝜕𝑏𝑁
𝜕𝑎𝑁

Rendering – Monte Carlo Integration II 24

𝑏Ԧ𝑎
1
0

𝜕𝑏1
𝜕𝑎1
𝜕𝑏2
𝜕𝑎1

0
1

𝜕𝑏1
𝜕𝑎2
𝜕𝑏2
𝜕𝑎2

The Jacobian

The columns of a square matrix 𝑀 can be interpreted as the natural

base vectors of a space

1
0
⋮
0

,

0
1
⋮
0

if they were transformed by 𝑀

The determinant 𝑀 of 𝑀 computes the volume
of a parallelepiped spanned by these vectors[3]

𝐽𝑇 , called the Jacobian of 𝑇, gives the volume change at Ԧ𝑎 by 𝑇

Rendering – Monte Carlo Integration II 25

𝑏

𝑱𝑻 𝒂

Computing the PDF of a Transformation

Let’s try polar coordinates again:
𝑥
𝑦 = 𝑇

𝑟
𝜃

=
𝑟 sin 𝜃
𝑟 cos 𝜃

𝜕𝑇
𝑟
𝜃

𝜕
𝑟
𝜃

= 𝐽𝑇 =

𝜕𝑥

𝜕𝑟

𝜕𝑥

𝜕𝜃
𝜕𝑦

𝜕𝑟

𝜕𝑦

𝜕𝜃

=
cos 𝜃 −𝑟 sin 𝜃
sin 𝜃 𝑟 cos 𝜃

= r

𝑝 𝑥, 𝑦 =
𝑝(𝑟,𝜃)

𝑟
, or 𝑝 𝑟, 𝜃 = 𝑟 𝑝 𝑥, 𝑦 :

a uniform density in 𝑥, 𝑦 must be proportional to 𝑟 in (𝑟, 𝜃)

Rendering – Monte Carlo Integration II 26

Compare PDFs After Transformation

Rendering – Monte Carlo Integration II 27

MeasuredUsing 𝑝 𝑟, 𝜃 =
1

2𝜋
and 𝑝 𝑥, 𝑦 =

𝑝(𝑟,𝜃)

𝑟

How To Visualize the Computed PDF Conversion?

Python code, for the interested

Rendering – Monte Carlo Integration II 28

num_bins = 20

xlist = np.linspace(-1.0, 1.0, num_bins)
ylist = np.linspace(-1.0, 1.0, num_bins)
bin_volume = 4 / (num_bins*num_bins)

X, Y = np.meshgrid(xlist, ylist)
X += 1/num_bins
Y += 1/num_bins

r = np.sqrt(X*X+Y*Y)
uniform_dist = 1/(2 * np.pi)
pdf_transform = 1/r

Z = uniform_dist * pdf_transform * bin_volume
Z[r>1] = 0
fig,ax = plt.subplots(1,1)
cp = plt.pcolor(X, Y, Z,cmap='viridis',norm=matplotlib.colors.LogNorm())
fig.colorbar(cp) # Add a colorbar to a plot
plt.show()

Sampling Joint PDFs Correctly

For independent variables, the joint PDF 𝑝(𝑥, 𝑦, …) is 𝑝𝑋 𝑥 𝑝𝑌 𝑦 …

In general, this is an assumption that we should not rely on

Furthermore, after a transformation, only the joint PDF is known

The proper way to sample multiple variables 𝑋, 𝑌 is to compute

the marginal density function 𝑝𝑋 𝑥 of one

the conditional density function 𝑝𝑌 𝑦|𝑥 of the other

Rendering – Monte Carlo Integration II 29

Marginal and Conditional Density Function

Assume we have obtained the joint PDF 𝑝 𝑥, 𝑦 of variables 𝑋, 𝑌
with ranges [𝑎𝑋, 𝑏𝑋) and [𝑎𝑌, 𝑏𝑌)

In a 2D domain with 𝑋, 𝑌 we can think of 𝑝𝑋 𝑥 as the average
density of 𝑝 𝑥, 𝑦 at a given 𝑥 over all possible values 𝑦

We can obtain the marginal density function for one of them by

integrating out all the others, e.g.: 𝑝𝑋 𝑥 = 𝑎𝑌׬
𝑏𝑌 𝑝 𝑥, 𝑦 𝑑𝑦

We can then find 𝑝 𝑦|𝑥 =
𝑝(𝑥,𝑦)

𝑝𝑋(𝑥)

Rendering – Monte Carlo Integration II 30

Adding More Variables

What to do for multiple variables, e.g. 𝑋, 𝑌 and 𝑍?

Find first marginal density 𝑝𝑋 𝑥 = 𝑎𝑍׬
𝑏𝑍
𝑎𝑌׬
𝑏𝑌
𝑝 𝑥, 𝑦, 𝑧 𝑑𝑦 𝑑𝑧

Find first conditional density 𝑝𝑋 𝑦, 𝑧|𝑥 =
𝑝 𝑥,𝑦,𝑧

𝑝𝑋 𝑥

Find second marginal density 𝑝𝑌 𝑦|𝑥 = 𝑎𝑍׬
𝑏𝑍
𝑝 𝑥, 𝑦, 𝑧 𝑑𝑧

Find second conditional density 𝑝𝑋 𝑧|𝑥, 𝑦 =
𝑝 𝑦,𝑧|𝑥

𝑝𝑌 𝑦|𝑥

Integrate + invert first marginal, first and second conditional densities

Sample each of them

Extend ad libitum to even more variables

Rendering – Monte Carlo Integration II 31

Sampling the Unit Disk: The Formal Solution

The size of the sampling domain in cartesian coordinates is 𝜋

Since we want uniform sampling and sample probabilities must

integrate to 1, the PDF in cartesian coordinates is 𝑝 𝑥, 𝑦 =
1

𝜋

We know that 𝑝 𝑟, 𝜃 = 𝑟 𝑝 𝑥, 𝑦 , so we want 𝑝 𝑟, 𝜃 =
𝑟

𝜋

𝑝𝑅 𝑟 = 0׬
2𝜋
𝑝 𝑟, 𝜃 𝑑𝜃 = 2𝑟 and 𝑝 𝜃|𝑟 =

𝑝(𝑟,𝜃)

𝑝𝑅(𝑟)
=

1

2𝜋

Rendering – Monte Carlo Integration II 32

Sampling the Unit Disk: The Formal Solution

If we draw samples for our 𝑟, 𝜃 with the above PDFs, we get
uniform distribution in (𝑥, 𝑦) after applying transformation 𝑇

Rendering – Monte Carlo Integration II 33

𝑟

𝜃

Sampling the Unit Disk: The Formal Solution

Integrate marginal and conditional PDFs and
invert: we get the same solution as before:

𝑟 = P𝑅
−1 𝜉1 = 𝜉1

𝜃 = 𝑃Θ
−1 𝜉2 = 2𝜋𝜉2

𝑝 𝜃|𝑟 is constant: no matter what radius we are looking at, all
positions on a ring of that radius (angle) should be equally likely

Final integral: 𝑅𝐺𝐵𝑡𝑜𝑡𝑎𝑙 =
𝜋

𝑁
σ𝑖=1
𝑁 𝑅𝐺𝐵(𝑅𝑖 𝑠𝑖𝑛 Θ𝑖 , 𝑅𝑖 𝑐𝑜𝑠 Θ𝑖)

Rendering – Monte Carlo Integration II 34

Moving on to the Hemisphere

This took as a while, but we have seen all the formal procedures

We only need to switch from integrating planar area to points 𝜔
on hemisphere surface (i.e., vectors 𝑥, 𝑦, 𝑧 with length 1)

Use spherical coordinates and bijective 𝑇 from (𝑟, 𝜃, 𝜙) to 𝑥, 𝑦, 𝑧 :
𝑥 = 𝑟 sin 𝜃 cos𝜙
𝑦 = 𝑟 sin 𝜃 sin𝜙
𝑧 = 𝑟 cos 𝜃

Rendering – Monte Carlo Integration II 35

Deriving Integration Over Hemisphere

Each direction 𝜔 represents an infinitesimal surface area portion 𝑑𝜔

How do we integrate a function 𝑓(𝜔) with differential 𝑑𝜔?

Integration over points on hemisphere surface 𝜔, w.r.t. (𝜃, 𝜙)

Rendering – Monte Carlo Integration II 36

𝜃

𝜙

𝜔
𝑑𝜔

𝑛

Deriving Integration Over Hemisphere

We assume a planar surface with an upright facing normal 𝑛

We use the integral intervals 𝜃 ∈ 0,
𝜋

2
, 𝜙 ∈ [0, 2𝜋)

I.e., a curve from perpendicular to parallel for 𝜃, a ring for 𝜙

Rendering – Monte Carlo Integration II 37

2𝜋

𝜋

2

𝑛

Deriving Integration Over Hemisphere

We can split the surface along 𝜃 into ribbons of width Δ𝜃 → 𝑑𝜃

The upper edge of the ribbon is slightly shorter than the lower

If we keep adding more and more ribbons, this difference vanishes

Rendering – Monte Carlo Integration II 38

Δ𝜃

Deriving Integration Over Hemisphere

As a ribbon’s width goes to 𝑑𝜃, its area becomes its length times 𝑑𝜃

We can find this length by projecting the ribbon to the ground

Using trigonometry, we find the length of a ribbon is 2𝜋sin 𝜃

Rendering – Monte Carlo Integration II 39

Deriving Integration Over Hemisphere

As a ribbon’s width goes to 𝑑𝜃, its area becomes its length times 𝑑𝜃

We can find this length by projecting the ribbon to the ground

Using trigonometry, we find the length of a ribbon is 2𝜋sin 𝜃

Rendering – Monte Carlo Integration II 40

sin 𝜃
𝜃

𝑛

The length of a ribbon spans the entire interval 𝜙 ∈ [0, 2𝜋)

Convert the length to an integral over 𝑑𝜙: 2𝜋sin 𝜃 = 0׬
2𝜋
sin 𝜃 𝑑𝜙

The final integral: ׬Ω𝑓 𝜔 𝑑𝜔 = 0׬

𝜋

2 0׬
2𝜋
𝑓(𝜔) sin 𝜃 𝑑𝜙 𝑑𝜃

Deriving Integration Over Hemisphere

Rendering – Monte Carlo Integration II 41

𝜃

𝜙

𝜔
𝑑𝜔

𝑛

Deriving PDF for Hemisphere Sampling

Integral of 𝑓(𝜔) over area Δ𝜔 = Δ𝜔׬ 𝑓(𝜔) 𝑑𝜔

Integral of 𝑓(𝜔) w.r.t. (𝑑𝜃, 𝑑𝜙) = Δ𝜃׬ Δ𝜙׬ 𝑓 𝜔 sin 𝜃 𝑑𝜙 𝑑𝜃

Integration domain and 𝑓 𝜔 are identical, thus: 𝑑𝜔 = sin 𝜃 𝑑𝜙 𝑑𝜃

𝜔 → 𝜃, 𝜙 is bijective, we have 𝑝 𝜃, 𝜙 d𝜃 𝑑𝜙 = 𝑝 𝜔 𝑑𝜔 and:

𝑝 𝜃, 𝜙 = sin 𝜃 𝑝 𝜔

Rendering – Monte Carlo Integration II 42

Δ𝜔
Δ𝜃

Deriving PDF for Hemisphere Sampling, Formal

Target distribution in 𝜔, which is (𝑥, 𝑦, 𝑧) with x2 + 𝑦2 + 𝑧2 = 1

The transformation 𝑇 from (𝑟, 𝜃, 𝜙) to 𝑥, 𝑦, 𝑧 :
𝑥 = 𝑟 sin 𝜃 cos𝜙
𝑦 = 𝑟 sin 𝜃 sin𝜙
𝑧 = 𝑟 cos 𝜃

The Jacobian of the transformation 𝑇 gives 𝐽𝑇 = 𝑟2 sin 𝜃

Hence, we have 𝑝 𝑟, 𝜃, 𝜙 = 𝑟2 sin 𝜃 𝑝(𝑥, 𝑦, 𝑧) = 1 sin 𝜃 𝑝(𝜔)

Rendering – Monte Carlo Integration II 43

Uniformly Sampling the Unit Hemisphere

The domain, i.e., the unit hemisphere surface area, is 2𝜋.

Uniformly sampling the domain over 𝜔 implies 𝑝 𝜔 =
1

2𝜋

Hence, since 𝑝 𝜃, 𝜙 = 𝑟2 sin 𝜃 𝑝 𝜔 , we want 𝑝 𝜃, 𝜙 =
sin 𝜃

2𝜋

Marginal density 𝑝Θ(𝜃): 0׬
2𝜋
𝑝 𝜃, 𝜙 𝑑𝜙 = sin 𝜃

Conditional density 𝑝 𝜙|𝜃 :
𝑝 𝜃,𝜙

𝑝Θ(𝜃)
=

1

2𝜋
Rendering – Monte Carlo Integration II 44

Uniformly Sampling the Unit Hemisphere – Complete

Antiderivative of 𝑝Θ(𝜃): ׬ sin 𝜃 𝑑𝜃 = 1 − cos 𝜃 (added constant 1)

Antiderivative of 𝑝 𝜙|𝜃 ׬ :
1

2𝜋
𝑑𝜙 =

𝜙

2𝜋

Invert them to get 𝜃 = cos−1 𝜉1 (cos is symmetric), 𝜙 = 2𝜋𝜉2

Apply transformation 𝑇 on (𝜃, 𝜙) to obtain uniformly distributed 𝜔

Done!
Rendering – Monte Carlo Integration II 45

Arbitrary Hemispheres

The orientation of sampled hemispheres depends on surface normal

Use the tangent, bitangent and normal vectors of the intersection

𝜔𝑤𝑜𝑟𝑙𝑑 = 𝑥 ⋅ 𝑡𝑎𝑛𝑔𝑒𝑛𝑡 + 𝑦 ⋅ 𝑏𝑖𝑡𝑎𝑛𝑔𝑒𝑛𝑡 + 𝑧 ⋅ 𝑛𝑜𝑟𝑚𝑎𝑙

Or, if available, use ToWorld transformation methods

Rendering – Monte Carlo Integration II 46

Applications for Uniform Hemisphere Sampling

Diffuse lighting based on last lecture’s insights with constant 𝑓𝑟

What do we use for 𝐿𝑖?

Full rendering equation:
next time

This time:
ambient occlusion, direct lighting

Rendering – Monte Carlo Integration II 47

Consider all unblocked directions around 𝑥 as indirect light sources,

integrate 𝑉 𝑥, 𝑥 + 𝛼𝜔
cos 𝜃

𝜋
over directions 𝜔 around the normal

Limit ray length to 𝛼, return free
if no intersection closer than 𝛼

Ambient Occlusion

Rendering – Monte Carlo Integration II 48

Fine geometric details on objects are accentuated by the absence of
ambient light due to the shadows cast by close-by geometry

Integrate over directions 𝜔 on the unit
hemisphere defined by point 𝑥, normal 𝑛

𝑉 𝑥, 𝑥 + 𝛼𝜔 = ቊ
1 𝑖𝑓 𝑥 → 𝑥 + 𝛼𝜔 𝑓𝑟𝑒𝑒
0 𝑖𝑓 𝑥 → (𝑥 + 𝛼𝜔) 𝑏𝑙𝑜𝑐𝑘𝑒𝑑

Ambient Occlusion

Rendering – Monte Carlo Integration II 49

Cosine-Weighted Importance Sampling

Recap: variance is low if the sampling function mimics the signal

We use 𝑓𝑟 =
1

𝜋
for ambient occlusion, therefore the contribution of

signal samples varies mostly with cos 𝜃

It would be best to apply importance sampling: use a sampling
strategy for 𝜔, such that 𝑝 𝜔 ∝ cos 𝜃

We have gone through all the necessary steps.
Try to solve this formally with the inversion method as an exercise!

Rendering – Monte Carlo Integration II 50

Smart Cosine-Weighted Importance Sampling

Malley’s method: uniformly pick 𝑥, 𝑦 samples on the unit disk

Project them to the hemisphere surface 𝑧 = 1 − 𝑥2 − 𝑦2

Done! Your samples are now
distributed with 𝑝 𝜔 ∝ cos 𝜃

Why does this work? Try to come up with your own proof!
Rendering – Monte Carlo Integration II 51

We can use Monte Carlo integration to compute the direct
illumination from light sources in the scene at a point 𝑥

Naïve version: sample unit hemisphere
uniformly, hoping to hit light sources

Check closest hit for each direction 𝜔

Use 𝐿𝑖 𝑥, 𝜔 = ൝𝐿𝑒
𝑙

𝑖𝑓 ℎ𝑖𝑡 𝑎 𝑙𝑖𝑔ℎ𝑡 𝑙

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑥

𝑛

Finding Light

Rendering – Monte Carlo Integration II 52

𝑙

Sampling a Light Source, Revisited

A special kind of importance sampling: integrate over light sources!

Use 𝑉 𝑥, 𝑦 = ቊ
1 𝑖𝑓 𝑝𝑎𝑡ℎ 𝑓𝑟𝑜𝑚 𝑥 𝑡𝑜 𝑦 𝑖𝑠 𝑢𝑛𝑏𝑙𝑜𝑐𝑘𝑒𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Pick 𝑦 on light, e.g. uniformly

cos 𝜃𝑦 𝑑𝐴𝑦

𝑟2
: change in volume of

infinitesimal 2D hypercube at 𝑦
projected onto 𝑥’s hemisphere

Rendering – Monte Carlo Integration II 53

Sampling a Light Source, Revisited

For inclusion of simple material color and BRDF, use 𝑓𝑟 =
𝜌

𝜋

Works extremely well if the light occupies only a small solid angle

Rendering – Monte Carlo Integration II 54

100 samples per pixel, hemisphere sampling
100 samples per pixel, light source sampling

Hemisphere Sampling Illustrated

Rendering – Monte Carlo Integration II 55

Light Source Sampling Illustrated

Rendering – Monte Carlo Integration II 56

Monte Carlo Integration

But where does the actual integration step happen?

In the basic case, directly in the main sampling loop for each pixel!

Static scene: Samples through pixels 𝑝 always hit the same point 𝑥

Once 𝑥 has been hit, the sampling of its hemisphere follows PDF

Return sampled values (colors), weighted by the corresponding PDF

Use 𝑁 samples for 𝑝, sum color values weighted by PDF, average:

Rendering – Monte Carlo Integration II 57

𝐹𝑁 =
1

𝑁
෍

𝑖=1

𝑁
𝐿𝑖(𝑥, 𝜔)

𝑝(𝜔)

Monte Carlo Integration as Loop Over Pixel Samples

We achieve integration around 𝑥 with multiple samples through 𝑝

A bit wasteful, but is a general, valid solution

We will see in a second why this is convenient

Weight returned values by PDF, sum up and divide by 𝑁

Rendering – Monte Carlo Integration II 58

𝑥

𝑝

Monte Carlo Integration as Loop Over Pixel Samples

Given: camera, pixel p, scene, pdf

rgb = {0,0,0}

for i in [0, N) do

ray = rayThroughPixel(camera, p)

x = findIntersection(ray, scene)

color = getIntegratorValue(x)

rgb += color

end for

rgb /= N

function getIntegratorValue(x)

omega = getDirectionOnHemisphere(x, pdf)

Li = evaluateLight(x, omega, scene)

return Li / pdf(omega)

Rendering – Monte Carlo Integration II 59

1

𝑁
෍

𝑖=1

𝑁
𝐿𝑖(𝑥, 𝜔)

𝑝(𝜔)

Stratified Sampling

With random uniform sampling, we can get unlucky

E.g. all samples clump in a corner

If we don’t know anything of the integrand,
we want a relatively uniform sampling

Not regular, though, because of alias patterns!

Subdivide domain into non-overlapping regions
(e.g. a regular grid). Each region is called a stratum

Pick new random sample in stratum with lowest number of samples

Rendering – Monte Carlo Integration II 60

Monte Carlo Integration for Pixels

In the first lecture, we used supersampling to fight off aliasing

Pixels are another instance where we use Monte Carlo integration

Choosing samples within pixels is an instance of stratified sampling

Uniform 2D distribution, average over a pixel rectangle: box filter

We will see more advanced methods for filtering in future lectures

If we didn’t use at least one sample per pixel, we would leave holes

Rendering – Monte Carlo Integration II 61

Monte Carlo Integration for Pixels

Samples are randomly jittered in each stratum

Ergo, we don’t hit the same 𝑥 with each
pixel sample (𝑝𝑥, 𝑝𝑦) inside pixel 𝑝

We just add two random variables!

Instead of integrating over a hemisphere, we are integrating over all
surface points visible to a pixel and their respective hemispheres

The box filter over pixel color samples implements uniform integral

Rendering – Monte Carlo Integration II 62

න
𝑝𝑦

න
𝑝𝑥

𝐿𝑒(𝑥, 𝑣) 𝑑𝑝𝑥 𝑑𝑝𝑦 𝑣1

𝑣2

𝑥1 𝑥2

𝑝

The Box Filter for a Pixel (Monte Carlo Integration)

Given: camera, pixel coordinates (pixel_x, pixel_y), scene

rgb = {0,0,0}

for i in [0, N) do

px = pixel_x + uniform_random_sample() // 𝜉𝑖 = 𝑃𝜉 𝜉𝑖 = 𝑃𝜉
−1(𝜉𝑖)

py = pixel_y + uniform_random_sample()

ray = rayThroughPixelPos(camera, px, py)

x = findIntersection(ray, scene)

rgb += getIntegratorValue(x)

end for

rgb /= N

Rendering – Monte Carlo Integration II 63

Nothing else necessary: offsets in x and y are

uniformly distributed, they are independent,

the domain size of each pixel is 1x1=1 and so

we don’t have to change the integration at all.

Low-Discrepancy Series

Stratified sampling is a special case of low-discrepancy sampling[4]

Replace the built-in RNG with a sample generation algorithm that
sacrifices randomness for good spatial distribution

Great for:

Faster convergence (reduction of noise)

GPUs (they don’t love random numbers)

Transparent and portable sampling behavior

Rendering – Monte Carlo Integration II 64

Halton Sequences

For 𝑛-D, pick 𝑛 different, co-prime bases (e.g. 2,3)

Based on radical inverse: an integer 𝑎 can be written

with base 𝑏 and 𝑑 ∈ [0, 𝑏 − 1] as 𝑎 = σ𝑖=1
𝑚 𝑑𝑖(𝑎)𝑏

𝑖−1

For 𝑏 = 2, 𝑑 ∈ [0,1]: this is binary representation of
integers: 13 = 0 × 20 + 1 × 21 + 1 × 22 + 1 × 23

Radical inverse with 𝑚 digits: Φ 𝑎 = σ𝑖=1
𝑚 𝑑𝑖(𝑎)

𝑏𝑖

Rendering – Monte Carlo Integration II 65

Default RNG

2,3 Halton Sequence

J
h

e
a

ld
,
W

ik
ip

e
d
ia

,
H

a
lt

o
n

 S
e

q
u

e
n

c
e

 –
“O

w
n

 w
o

rk
”

https://commons.wikimedia.org/wiki/User:Jheald

Halton Sequences

Start at any integer value for each of the 𝑛 variables

Need data structure to represent 𝑎 = σ𝑖=1
𝑚 𝑑𝑖(𝑎)𝑏

𝑖−1

Can be written for arbitrary 𝑏 with some bit fiddling

For each new 𝑛-D sample, increment all 𝑛 integers

Compute their radical inverse with their proper base

Using same sequence for all pixels → patterns

Rendering – Monte Carlo Integration II 66

Default RNG

2,3 Halton Sequence

J
h

e
a

ld
,
W

ik
ip

e
d
ia

,
H

a
lt

o
n

 S
e

q
u

e
n

c
e

 –
“O

w
n

 w
o

rk
”

https://commons.wikimedia.org/wiki/User:Jheald

Halton Sequences

Large primes will behave similarly → patterns

Repetitive patterns should always be avoided!

Option 1: use different starting values for different
instances (e.g. for each pixel)

Option 2: instead of incrementing 𝑑𝑖, cycle through
random permutations of [0, 𝑏 − 1] in each instance

E.g.: 𝑏 = 3, 0, 2, 1 instead of 0, 1, 2
Rendering – Monte Carlo Integration II 67

29,31 Halton Sequence

29,31 Halton Scrambled

Moving Forward

Get comfortable with all approaches to integration and sampling

The mental image of “area under the curve” eventually collapses
(infinite-dimensional integral coming up next!)

Transformations between sample domains may be non-trivial

Once you grasp the underlying concepts, applying the math is easy

We have seen simpler explanations for the most important parts

Uniformly sampling a hemisphere

Cosine-weighted sampling of a hemisphere

Rendering – Monte Carlo Integration II 68

References and Further Reading

Slide set based mostly on chapter 13 of Physically Based Rendering: From Theory to Implementation

[1] Steven Strogatz, Infinite Powers: How Calculus Reveals the Secrets of the Universe

[2] Video, Why “probability of 0” does not mean “impossible” | Probabilities of probabilities, part 2:
https://www.youtube.com/watch?v=ZA4JkHKZM50

[3] Video, The determinant | Essence of linear algebra, chapter 6:
https://www.youtube.com/watch?v=Ip3X9LOh2dk

[4] SIGGRAPH 2012 Course: Advanced (Quasi-) Monte Carlo Methods for Image Synthesis,
https://sites.google.com/site/qmcrendering/

[5] Wikipedia, Van der Corput Sequence, https://en.wikipedia.org/wiki/Van_der_Corput_sequence

Rendering – Monte Carlo Integration II 69

https://www.youtube.com/watch?v=ZA4JkHKZM50
https://www.youtube.com/watch?v=Ip3X9LOh2dk
https://sites.google.com/site/qmcrendering/
https://en.wikipedia.org/wiki/Van_der_Corput_sequence

